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Background: The objective of this study was to develop machine learning

(ML) algorithms utilizing natural language processing (NLP) techniques for the

automated detection of cervical spondylotic myelopathy (CSM) through the

analysis of positive symptoms in free-text admission notes. This approach

enables the timely identification and management of CSM, leading to

optimal outcomes.

Methods: The dataset consisted of 1,214 patients diagnosed with cervical

diseases as their primary condition between June 2013 and June 2020. A random

ratio of 7:3 was employed to partition the dataset into training and testing

subsets. Two machine learning models, Extreme Gradient Boosting (XGBoost)

and Bidirectional Long Short Term Memory Network (LSTM), were developed.

The performance of these models was assessed using various metrics, including

the Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC),

accuracy, precision, recall, and F1 score.

Results: In the testing set, the LSTM achieved an AUC of 0.9025, an accuracy

of 0.8740, a recall of 0.9560, an F1 score of 0.9122, and a precision of 0.8723.

The LSTM model demonstrated superior clinical applicability compared to the

XGBoost model, as evidenced by calibration curves and decision curve analysis.

Conclusions: The timely identification of suspected CSM allows for prompt

confirmation of diagnosis and treatment. The utilization of NLP algorithm

demonstrated excellent discriminatory capabilities in identifying CSM based

on positive symptoms in free-text admission notes complaint data. This study

showcases the potential of a pre-diagnosis system in the field of spine.

KEYWORDS

Long Short Term Memory Network, machine learning, electronic health record, natural

language processing, cervical spondylotic myelopathy

Introduction

Cervical Spondylotic Myelopathy (CSM) is recognized as the most prevalent cause

of spinal cord dysfunction worldwide (Fehlings et al., 2013). Hospitalizations for CSM

are projected to occur at a rate of 4.04 per 100,000 person-years, with a significant

annual increase in the number of surgical procedures (Lad et al., 2009; Wu et al.,

2013; Bakhsheshian et al., 2017). The timely identification and management of CSM are

imperative in order to achieve optimal outcomes before the occurrence of spinal cord

injury (Bakhsheshian et al., 2017). However, previous research has indicated a delay
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in diagnosis averaging 6.3 years, primarily attributed to the lack of

specific complaints (Sadasivan et al., 1993). Consequently, there is

a need to devise an automated pre-diagnosis tool that can expedite

the time between symptom onset and treatment, thereby alleviating

the labor-intensive manual efforts of surgeons.

The domain of natural language processing (NLP) empowers

computers to analyze, comprehend, and utilize human language.

This artificial intelligence (AI) technology has proven to be effective

across various industries, particularly in the extraction of structured

data from huge databases (Wyles et al., 2019). NLP is suitable

for the medical sector, due to the prevalence of time-consuming

clinical notes (Wyles et al., 2019). Prior research has demonstrated

the benefits of NLP in enhancing risk stratification models

and conducting computerized semantic analysis of clinical notes

(Kreimeyer et al., 2017). In the context of investigating diagnosis

and clinical decision-making under ambiguity, NLP demonstrated

its utility in extracting clinically significant information from

electronic health records (EHRs) to record initial diagnostic

hypotheses (Jones et al., 2018; Castro et al., 2017; Afshar et al.,

2019).

Unlike traditional neural networks, which often assume

independence between inputs and outputs, such models fail to

consider contextual information in sequential data such as text,

audio, and video. Recurrent neural networks (RNNs) are deep

learning algorithms that leverage continuous information across

contexts. These networks consist of recurrent cells, which are

influenced by both previous states and current input through

feedback connections (Yu et al., 2019). In order to address the

long-term dependencies encountered by conventional RNNs, the

Long Short Term Memory Network (LSTM) cell incorporates a

“gate” mechanism to enhance memory retention (Hochreiter and

Schmidhuber, 1997). Previous studies have used machine learning

to distinguish cervical spondylotic myelopathy from normal cases

using X-rays and MRIs (Lee et al., 2022; Wang et al., 2018).

Our research demonstrated that natural language-driven LSTM

models can aid in diagnosing spinal disorders (Ren et al., 2022;

Wang et al., 2024). However, timely access to medical imaging is

limited in low-income countries. Developing a model based on

patient complaints could reduce unnecessary visits and geographic

barriers. Our objective is to use ML models based on NLP that

can automatically identify CSM using the free-text complaints

of patients.

Materials and methods

Data source

We enrolled patients diagnosed with cervical illness who

received treatment at Zhongda Hospital Affiliated to Southeast

University from June 2013 to June 2020. Patients with primary

Abbreviations: NLP, natural language processing; ML, machine learning;

CSM, cervical spondylotic myelopathy; CSR, cervical spondylotic

radiculopathy; EHRs, Electronic medical records; AI, artificial intelligence;

RNNs, Recurrent neural networks; LSTM, Long short-term memory;

XGBoost, Extreme Gradient Boosting; ROC, receiver operating characteristic

curve; AUC, area under the curve.

TABLE 1 Distribution of cervical diseases.

Count

CSR 85

Cervical tumors 19

Cervical trauma 246

Infection 12

CSM 852

CSR, Cervical spondylotic radiculopathy; CSM, Cervical spondylotic myelopathy.

diagnoses in other organs or with insufficient clinical information

were excluded from the study. A total of 1,214 Chinese free-text

admission notes were examined, consisting of main symptoms,

time of occurrence, and causes. The included cases consisted

of 85 instances of cervical spondylotic radiculopathy (CSR), 19

cases of cervical tumors, 246 cases of cervical trauma, 12 cases of

cervical infection, and 852 cases of cervical spondylotic myelopathy

(CSM) (Table 1). Characteristic symptoms and signs of cervical

spondylotic myelopathy (CSM) encompass various manifestations

such as impaired manual dexterity, stiffness, proprioceptive loss,

and diminished glove sensation in the hands. Positive symptoms

were identified from free text describing the main symptom

and reviewed by two researchers. Additionally, individuals may

experience heightened urgency, frequency, or hesitation in

urination, spasticity in the extremities, and gait dysfunction,

including a stiff or spastic gait (Crandall and Batzdorf, 1966; Denno

and Meadows, 1991). Two experienced surgeons independently

confirmed each diagnosis through meticulous examination of

hospital records, MRI scans, and CT scans.

Data analysis

For data analysis, the Jieba package was employed in Python

(version 3.7.6) to extract a word set comprising 428 words from

the admission notes. The dataset underwent word set vectorization

and was subsequently divided into a training set and a testing

set at a random ratio of 7:3. Two NLP-based ML models were

developed using the training set. Bidirectional LSTM models were

implemented using the keras package in Tensorflow (version 2.3),

with the addition of dropout for preventing overfitting (Figure 1).

Detailed information of the LSTM model is shown in Table 2. The

extreme gradient boosting (XGBoost) models were deployed using

the Sci-Kit Learn package in Python (version 3.7.6).

The testing set was used to compare the performance of

the two algorithms, utilizing the following measures: (1) Recall

quantifies the proportion of accurately classified true positives.

(2) Accuracy represents the percentage of accurate predictions

among all predictions made. (3) Precision denotes the ratio of

correct predictions within positive predictions. (4) The F1 score

enables the calculation of the harmonic mean between recall

and precision. (5) The utilization of the Receiver Operating

Characteristic (ROC) curve demonstrates the trade-off between

sensitivity and specificity. The area under the curve (AUC) is a

measure of the probability that a classifier would assign a higher
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FIGURE 1

Inner structure of LSTM model. Bidirectional LSTM layers were conducted with dropout layers to inhibit overfitting. LSTM, Long Short Term Memory

Network.

TABLE 2 The framework of the LSTMmodel.

Layer Description Output shape Parameters

1 Embedding (None,19,160) 68,640

2 Bidirectional (None,19,128) 115,200

3 Dropout (None,19,128) 0

4 Bidirectional (None,19,176) 152,768

5 Dropout (None,19,176) 0

6 Bidirectional (None,19,208) 233,792

7 Dropout (None,19,208) 0

8 Bidirectional (None,252) 337,680

9 Dropout (None,252) 0

10 Dense (None,1) 253

FIGURE 2

ROC curve of LSTM and XGBoost. LSTM, Long Short Term Memory

Network; XGBoost, extreme gradient boosting.

rank to a randomly selected positive instance compared to a

randomly selected negative instance, when normalized units are

TABLE 3 Performance of LSTM and XGBoost.

LSTM XGBoost

ACC 0.8740 0.8247

Recall 0.9560 0.9200

F1-score 0.9122 0.8779

Precision 0.8723 0.8394

LSTM, Long Short TermMemory Network; XGBoost, Extreme gradient boosting.

FIGURE 3

Calibration curves for LSTM and XGBoost.

employed (Ford et al., 2016). Calibration curves and decision

curve analysis enhanced the model’s clinical applicability. The

Shapley additive interpretation (SHAP) based on XGBoost model

identifying key predictive features.

Results

In the test set, the LSTM model achieved an AUC of 0.9025

(Figure 2), an accuracy of 0.8740, a recall of 0.9560, an F1 score
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of 0.9122, and a precision of 0.8723 (Table 3). The XGBoost

model obtained an AUC of 0.8292 (Figure 2), an accuracy of

0.8247, a recall of 0.9200, an F1 score of 0.8779, and a precision

of 0.8394 (Table 3). The LSTM model demonstrated superior

clinical applicability compared to the XGBoost model, as evidenced

by calibration curves and decision curve analysis (Figures 3, 4).

The SHAP based on XGBoost elucidated feature importance,

highlighting the terms that describe the primary symptoms

in the statement with high confidence. The most frequently

occurring words include “numbness”, “weakness”, and “instability”

(Figure 5).

FIGURE 4

Decision curves for LSTM and XGBoost.

Discussion

By utilizing positive symptoms in free-text admission notes

that is easily accessible, the NLP-assisted tool has the capability

to offer accurate medical guidance or conduct initial screening of

cases. This study serves as a proof of concept for a spinal pre-

diagnosis system, which has the potential to eliminate unnecessary

visits and overcome geographical limitations (Zhou et al., 2021).

The Medical pre-diagnosis system (Zhu et al., 2017) has garnered

significant attention, with numerous disease prediction models

being developed for neurological diseases (Güler and Ubeyli, 2007),

pancreatic cancer (Wang et al., 2007), and diabetes (Barakat et al.,

2010). The early identification of suspected CSM through the use of

unstructured data has the potential to save patients time and reduce

hospital costs, particularly in low-income countries with limited

medical resources.

We developed NLP algorithms that effectively differentiate

CSM based on positive symptoms in free-text admission notes.

The LSTM model demonstrated accurate predictions for CSM,

indicating the potential for predicting cervical illness using a

limited amount of EHR data. The inclusion of cyclic connections

allows LSTM to update its current state based on past states, making

it suitable for analyzing sequential data (Yu et al., 2019). Due

to its ability to handle long-term dependencies (Hochreiter and

Schmidhuber, 1997), LSTM is widely used as an RNN model (Yu

et al., 2019). XGBoost is a powerful model for predicting adverse

events in free-text notes (Karhade et al., 2020a,b,c). However,

Tassone et al. discovered that XGBoost exhibits lower performance

compared to deep learning when dealing with big data (Tassone

et al., 2020). While XGBoost achieves lower prediction accuracy

than LSTM, this discrepancy may be attributed to the inherent

difficulty of the current task, as both CSR and cervical tumors

exhibit similar symptoms to CSM.

FIGURE 5

Feature importance based on SHAP.
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NLP algorithms leverage computer-based techniques to

acquire, comprehend, and generate information in human

language (Hirschberg and Manning, 2015). ML can enhance

the efficiency of clinicians’ workload, specifically for tasks that

involve subjective judgment, thereby saving clinicians’ valuable

time (Reddy et al., 2019; Gambhir et al., 2016). Previous studies

utilized NLP for automated surveillance of spine advent events

(Karhade et al., 2020a,b,c, 2021). NLP predicted the severity of

chest injuries using the initial eight hours of clinical records

(Kulshrestha et al., 2021). An AI-based system diagnosed prevalent

childhood diseases by extracting relevant information from EHRs

using a hypothetico-deductive reasoning approach (Liang et al.,

2019). Additionally, a Chinese medicine assistive diagnostic

system was utilized to identify 187 well-known traditional Chinese

medicine disorders and their associated symptoms, relying on

unstructured freestyle records (Zhang et al., 2020). Furthermore,

previous researches have predominantly concentrated on analyzing

pathological changes through radiology reports (Huhdanpaa et al.,

2018; Tan et al., 2018).

There are several limitations that necessitate acknowledgment.

Firstly, this study was conducted retrospectively at a single hospital,

which raises concerns about the generalizability of the findings.

To ensure the broad applicability of the model and minimize

potential bias, it is necessary to conduct external validation and

employ prospective multi-institutional study designs. All patients

included were surgical candidates, which inevitably enhances the

severity of symptoms observed in our data compared to the

overall population.

Conclusions

Early identification of suspected CSM can facilitate timely

confirmation of diagnosis and treatment. Our NLP algorithm

exhibited commendable performance in diagnosing CSM through

EHRs. The findings highlight the potential of a pre-diagnosis

system that utilizes readily available descriptions of the primary

symptom in the spine field.
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