
Frontiers in Neuroscience 01 frontiersin.org

Habit-learning and 
decision-making circuits are 
susceptible to glycemic variability 
in type 2 diabetes: a longitudinal 
study
Carolina Moreno 1,2,3†, Otília C. d’Almeida 1,3†, 
Joana Crisóstomo 1, Nádia Canário 1, Leonor Gomes 1,2,3 and 
Miguel Castelo-Branco 1,3*
1 Faculty of Medicine, University of Coimbra, Coimbra, Portugal, 2 Department of Endocrinology, 
Diabetes and Metabolism, Hospitais da Universidade de Coimbra, ULS Coimbra, Coimbra, Portugal, 
3 CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, Institute of Nuclear 
Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal

Objective: Type 2 diabetes mellitus (T2DM) is associated with lower gray matter 
(GM) volumes. However, little is known about the impact of glycemic control 
on brain atrophy, especially in highly susceptible regions. Therefore, we aim to 
identify the effect of glycemic variability (GV) on long-term changes in brain 
volume among individuals with T2DM.

Methods: A longitudinal clinical, biochemical, and imaging assessment was 
conducted at a baseline visit on 170 individuals (85 with T2DM), from which 29 
(15 with T2DM) were evaluated at a 7-year follow-up visit. Brain regional volumes 
were evaluated with 3 T MRI, using the FreeSurfer 7 longitudinal pipeline. GV 
metrics such as SD, M-value, MAG (mean absolute glucose change), MAGE 
(mean amplitude of glycemic excursion), and CoV (coefficient of variation) were 
calculated in both visits.

Results: Statistically significant negative correlations between GV metrics and 
symmetrized percent change (SPC) of GM volumes were found in specific 
cortical and subcortical regions of individuals with T2DM. MAGE was correlated 
with regionally specific atrophy on the temporal lobe (r  = −0.63, p = 0.021), 
insula (ρ = −0.62, p = 0.022), thalamus (r  = −0.64; p = 0.024), hippocampus 
(r  = −0.59; p = 0.034), and putamen (ρ  = −0.65, p = 0.017). Concerning the 
hippocampal subregions, the presubiculum was significantly correlated with 
MAGE (r  = −0.73; p = 0.005). Baseline GV was consistently associated with 
temporal lobe SPC. Linear regression analysis showed that, for each increase of 
1 mmol/L in MAGE value, the SPC of the temporal lobe decreases on average by 
1.2% (higher atrophy rate).

Conclusion: The relationship between longitudinal GM atrophy and GV has a 
regionally specific pattern, suggesting localized brain susceptibility to intra-daily 
glucose fluctuations. Negative correlations between GV metrics and SPC volume 
of regions involved in habit-learning, decision-making, and memory highlight 
GV as a mediator of the neural impact of T2DM on the reward prediction-error 
circuits.
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1 Introduction

Diabetes mellitus is associated with various changes in brain 
function and structure (Biessels and Reijmer, 2014). Brain atrophy, 
characterized by lower total and regional gray matter (GM) volumes, 
has consistently been reported in patients with type 2 diabetes 
(T2DM), particularly among older adults with cognitive dysfunction 
(Geijselaers et al., 2015). With the global epidemic of T2DM and the 
growing aging population (Khan et al., 2019), a focus on diabetes 
brain health might have an additional impact on delaying or even 
preventing diabetes-related mental health conditions.

Previous longitudinal studies have shown relatively homogeneous 
results regarding the accelerated progression of brain atrophy in 
individuals with type 2 diabetes compared to controls (de Bresser 
et al., 2010; van Elderen et al., 2010; Brundel et al., 2014; Espeland 
et  al., 2016; Callisaya et  al., 2019). However, there is conflicting 
evidence on the diabetes-related risk factors that contribute to 
structural changes in the brain. Van Elderen et al. found a correlation 
between brain volume loss with fasting glucose levels and insulin 
therapy (van Elderen et  al., 2010). Furthermore, de Bresser et  al. 
demonstrated that increasing age and hypertension were associated 
with a greater progression of brain atrophy (de Bresser et al., 2010). 
However, Brundel et al., using ultra-high-field MRI, did not find any 
differences in the burden of microvascular lesions between diabetic 
patients and control groups, nor did they find any significant 
relationships with cognitive testing (Brundel et al., 2014). By analyzing 
data from the ‘Second Manifestations of ARTerial disease-Magnetic 
Resonance’ (SMART-MR) study, Kooistra et al. found an increased 
rate of brain atrophy and vascular lesion load in diabetes individuals 
with symptomatic atherosclerotic disease only slightly exceeding 
controls, but with no changes in cognitive performance over time 
(Kooistra et al., 2013).

Regarding the distribution of brain atrophy throughout the brain, 
longitudinal data are missing; however, it appears that there is a 
variable impact across brain areas, with the temporal lobe and 
hippocampus showing more susceptibility to atrophy (Moheet et al., 
2015; Zhang et al., 2022). This regional vulnerability is noteworthy, as 
connectivity between the temporal lobe and subcortical regions relates 
to behavioral regulation and cognitive control regarding responses to 
emotional cues (D’Ostilio et al., 2012; Heller et al., 2016). The reward 
dopaminergic system, encompassing mesolimbic and mesocortical 
pathways, might be involved in dysmetabolic conditions, particularly 
through disruption of insulin signaling. Animal and human studies 
have reported insulin as a key regulator of dopamine turnover, as 
reduced insulin-sensitivity correlates with reduced endogenous 
dopamine levels, and the apoptotic processes of dopaminergic neurons 
are influenced by insulin (Caravaggio et al., 2015; Fiory et al., 2019).

In the ‘Leukoaraiosis and disability in the elderly study’ (LADIS), 
Korf et al. showed an association between medial temporal lobe atrophy 
and diabetes, independently of the amount of small vessel disease (Korf 
et al., 2007). Hayashi et al. reported that hippocampal and whole brain 
atrophy was more frequent in older individuals with T2DM than in 
controls (Hayashi et al., 2011). Den Heijer et al. found that T2DM subjects 
had greater hippocampal and amygdalar atrophy compared with controls, 
regardless of vascular pathology (den Heijer et al., 2003). However, in a 
large cross-sectional study, Wisse et al. showed that patients with T2DM 
had greater brain atrophy but not hippocampal atrophy compared to 
controls (Wisse et al., 2014). Furthermore, no associations were found 

between brain volume and HbA1c or memory outcomes. Consistent 
clinical correlates of regional brain atrophy in diabetes are lacking, and the 
mechanisms underlying the central nervous system microstructural 
abnormalities are still unclear. With the well-established microvascular 
cerebral dysfunction in diabetes (van Sloten et al., 2020), rapid glucose 
fluctuations might directly affect brain structure and function. An 
accumulation of aberrant metabolites, depletion of metabolic cofactors, 
and incremental oxidative stress has been described as a consequence of 
rapid glycemic peaks, leading to neuroinflammation, neuronal 
dysfunction, and apoptosis (Sima et  al., 2004; Van Dyken and 
Lacoste, 2018).

Glycemic variability is a valuable tool for diabetes management in 
the clinical setting, since its metrics that represent short-term or long-
term glycemic excursions are independent risk factors for diabetes 
complications (Ceriello et  al., 2019). In cross-sectional studies, 
glycemic variability has been negatively associated with cognitive 
function (Zhong, 2012; Rizzo et al., 2010; Lee et al., 2022). Furthermore, 
time-specific multi-scale glycemic variability may contribute to 
cognitive impairment and GM atrophy as indirectly estimated from 
statistical parametric mapping (SPM) using the LONI Probabilistic 
Brain Atlas in a longitudinal study of older adults with and without 
T2DM (Cui et al., 2014). Future prospective data might finally establish 
glycemic variability as a key player in diabetes-related brain outcomes.

In the present study, a longitudinal case–control investigation was 
conducted to explore regional cerebral correlates of T2DM brain structural 
changes in a 7-year follow-up. We hypothesized that relationships between 
short-term glycemic variability metrics and GM volume could 
be independent from long-term glycemic control, e.g., HbA1c, clarifying 
the role of glycemic variability on brain structure of T2DM.

2 Methods

2.1 Study design

Individuals with T2DM were recruited from the Endocrinology 
Department, along with a control group from the local community, 
during two years (2012–2013), for the baseline evaluation (Visit 0). All 
participants were contacted by telephone for a follow-up assessment 
(Visit 1) from 2019 to 2020. This study was approved by the local 
Ethics Committee and followed the tenets of the Declaration of 
Helsinki. Written informed consent was obtained from all participants 
after research procedures had been fully explained during both visits.

2.2 Eligibility criteria

All participants fulfilled the inclusion criteria: age between 45 and 
75 years, T2DM confirmed by the 2019 World Health Organization 
(WHO) (WHO, 2019), with determination of fasting glucose levels, 
HbA1c, and absence of diabetes auto-antibodies (T2DM group) or 
exclusion of T2DM according to the same criteria (control group). In 
all participants, we ascertained the absence of the following exclusion 
criteria: history of neurological or psychiatric disease, dementia or 
cognitive impairment, active malignancy, inflammatory disease, 
chronic drug or alcohol dependence, or severe visual impairment. The 
eligibility criteria were reviewed and confirmed in the follow-up 
assessment (Visit 1). Patients with previous cerebrovascular accident 
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or other cortical vascular pathology were excluded, as well as 
participants with cognitive decline or incomplete MRI protocol or 
low-quality criteria in any of the visits.

2.3 Clinical evaluation, laboratory 
assessments, and glycemic variability 
metrics

In both visits, all participants were submitted to a thorough 
clinical examination performed by a team of physicians, which 
included personal medical history, complete physical exam with 
ophthalmology assessment (retinal fundus photographs and optical 
coherence tomography), diagnosis and characterization of other 
micro/macrovascular complications (diabetic peripheral neuropathy 
defined using the Toronto Consensus Statement (Tesfaye et al., 2010), 
previous history of peripheral artery occlusion or myocardial 
infarction) and neurophysiological testing. Blood and urine samples 
were collected to determine inclusion criteria, disease status, and 
diabetic nephropathy staging (urinary albumin-to-creatinine ratio).

Glycemic variability metrics were calculated with EasyGV® software 
(available free for noncommercial use at www.easygv.co.uk) using 7-point 
blood glucose profiles. Blood glucose was obtained throughout the day, 
namely, fasting (07:00), post-breakfast (08:30), pre-lunch (12:00), post-
lunch (13:30), pre-supper (19:00), post-supper (20:30), and nighttime 
(24:00) for 72 h, as described elsewhere (Kilpatrick et al., 2006; Siegelaar 
et al., 2011). In Visit 0, the blood glucose measurements were performed 
by the nursing staff. In the follow-up assessment, patients self-reported 
the 7-point blood glucose measurements for 24 h on 3 consecutive days 
before the visit date. We calculated the short-term glycemic variability 
metrics feasible with 72-h data: SD (representation of dispersion from 
average glucose), M-value (measure of the glucose excursions in 
comparison with an ideal glucose default value of 6.66 mmol/L), MAG 
(mean absolute glucose change per unit of time), MAGE (mean amplitude 
of glycemic excursions), and CoV (percentage of coefficient of variation 
for glucose) (Hill et al., 2011).

2.4 Magnetic resonance imaging 
procedures

All participants underwent an MRI protocol on a 3T Tim Trio scanner 
(Siemens, Germany)  with a 12-channel birdcage head coil, at baseline. A 
subgroup underwent a follow-up data acquisition in a 3T Magnetom 
Prisma fit scanner (Siemens, Germany), equipped with a 20-channel 
birdcage head coil. The MRI protocol included a high-resolution 
T1-weighted anatomical image using a 3D Magnetization Prepared Rapid 
Acquisition Gradient Echo (MPRAGE) sequence (baseline: TR/TE/
TI = 2530/3.42/1100 ms; follow-up: TR/TE/TI, 2530/3.5/1100 ms; FA = 7°; 
FoV = 256 × 256 mm2; 176 slices with 1 mm3 isotropic voxel size). All 
acquisitions were performed at the Institute of Nuclear Sciences Applied 
to Health (ICNAS) of the University of Coimbra.

2.5 Magnetic resonance imaging analysis

Structural MRI data were processed using the FreeSurfer 
longitudinal pipeline (version 7.0, http://surfer.nmr.mgh.harvard.

edu/) on a Linux (CentOS 6) platform following the standard 
“recon-all” stream (technical details of the procedures are described 
online, Freesurfer website). The longitudinal approach (Reuter et al., 
2012) is a more robust and sensitive strategy considering that the 
scans are from the same individual at different timepoints. 
Accordingly, the initialization of several pre-processing steps is based 
on common information from an unbiased within-subject template, 
controlling, at least partially, for the within-individual variability bias 
(Reuter et al., 2012; Iglesias et al., 2016). The recon pipeline included 
bias field and motion correction, automated Talairach transformation, 
removal of non-brain tissue, tissue intensity normalization, subcortical 
structures segmentation and labeling with a non-linear warping atlas, 
gray/white matter boundary tessellation, and topology correction for 
surface reconstruction and cortical parcellation (Dale et al., 1999; 
Fischl et al., 1999). Subcortical regions-of-interest (ROI) segmentation 
was based on the Automatic Segmentation (ASEG) atlas (Fischl et al., 
2002), and the cortical ROI parcellation was based on the Desikan-
Killiany-Tourville (DKT40) neuroanatomical atlas (Klein and 
Tourville, 2012). Data were visually screened for soft failures, namely 
in skull stripping, white matter segmentation, intensity normalization, 
and pial surface misplacement, and manually corrected for major 
errors, when appropriate. Additional FreeSurfer hippocampal 
subregions were analyzed using a longitudinal hippocampal subfields 
segmentation pipeline [presubiculum, parasubiculum, subiculum, 
fissure, CA1, CA3, CA4, molecular layer, fimbria, molecular and 
granule cell layers of the dentate gyrus (GCMLDG), and the 
hippocampal amygdala transition area (HATA)] (Iglesias et al., 2015, 
2016) that increases the accuracy of volume estimation across the two 
time points (Brown et al., 2020). FreeSurfer pipeline also assesses 
hippocampus volume in three parcellations: head, body, and tail 
(Brown et al., 2020).

Since laterality effects were not expected, volumes from equivalent 
region-of-interest ROIs from each hemisphere were averaged. Lobar 
volumes were also considered for analysis, as the combination of the 
underlying regional ROIs.

2.6 Statistical analysis

Statistical analysis was conducted in IBM SPSS Statistics for 
Windows (version 28.0), and graphics were produced using the 
ggplot2 package in R (version 2022.07.2). The normality of quantitative 
variables was evaluated using the Shapiro–Wilk test. Parametric/
nonparametric testing was used accordingly. Data values in the tables 
represent mean ± standard deviation for normally distributed 
variables or median (interquartile range).

The relative change in volumes for each studied ROI of 
each individual was evaluated as the symmetrized percent change 
(SPC, %). SCP represents the change of volume (mm3) between 
baseline (V0) and follow-up (V1) concerning the average 
volume for both timepoints. It was calculated as follows:  

( ) ( )( )= − × + ×SPC V1 V0 / 0.5 V1 V0 100.
Pearson’s or Spearman’s correlation coefficients were used, as 

appropriate, to examine associations between SPC of regional (sub)
cortical areas and glycemic variability metrics  – MAG, MAGE, 
M-value, and CoV at baseline. The Benjamini-Hochberg method was 
used to correct p-values for multiple correlations within seven main 
regions and glycemic variability metrics (FDR  < 0.05). Other 
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exploratory analyses were also conducted, correlating general SPC 
volumes and biochemical parameters.

GLM repeated measures ANOVA (rmANOVA) was used to 
compare the (within-subjects) SPC of the cortical volumes of brain 
lobes (frontal, parietal, temporal, occipital, cingulate, and insula) 
between T2DM and control groups (between-subjects). Similar 
analyses were performed independently for both subcortical ROIs and 
hippocampal subfields. The epsilon value was used to choose a 
correction approach when assumptions of sphericity were not met: 
Greenhouse–Geisser (GG, ε < 0.75), Huynh–Feldt (HF, ε > 0.75). For 
all analyses, the critical significance level for all hypothesis testing was 
set at 5% (two-tailed).

3 Results

Our original cohort comprised 170 participants evaluated at 
baseline (85 with T2DM and 85 healthy controls), from which 29 
completed longitudinal assessment (15 with T2DM and 14 
controls) after 7.1 ± 0.7 years. Two individuals from the control 
group were excluded at the follow-up visit for, respectively, not 
being compliant with the exclusion criteria and incomplete 
imaging protocol.

A symmetrized percentage change (SPC) was calculated to assess 
the longitudinal variation of regional cortical, subcortical, and 
hippocampal GM volumes.

Selected clinical, laboratory, and image characteristics of the study 
subjects at baseline (V0) and follow-up (V1) are presented in Table 1. 
Demographics and clinical and volumetric characteristics of the 
individuals with T2DM (n = 15) in both visits are presented in Table 2.

There were statistically significant strong negative correlations 
between glycemic variability metrics in baseline (n = 13) and temporal 
lobe SPC: ρ = −0.80 for M-value with temporal lobe SPC, p < 0.001; 
r = −0.68 for MAG with temporal lobe SPC, p = 0.011; r = −0.65 for 
MAGE with temporal lobe SPC, p = 0.016 (Figure 1A). Significant 
negative correlations were observed between variability metrics and 
insula’s SPC: ρ = −0.67 for MAG with insula SPC, p = 0.013; ρ = −0.63 
for MAGE with insula SPC, p = 0.022 (Figure 1A).

Concerning the impact of baseline glycemic variability on 
temporal lobe SPC, a linear regression analysis showed that, for each 
increase of 1 mmol/L on MAGE value, the SPC of the temporal lobe 
decreases on average by 1.2% (higher atrophy rate).

Within the temporal lobe, we  found a robust pattern of 
statistically significant negative correlations between GV metrics 
and temporal lobes’ regions SPC, these correlations varied 
between r = −0.56 [CI95% (−0.85;-0.02)] for the superior temporal 
gyrus SPC with MAGE and ρ = −0.85 [CI95% (−0.96;-0.54)] for 
parahippocampal gyrus SPC with M-value (Figures  1A, 2). 
Regarding the correlations between GV metrics in V0 (n= 13) 
and subcortical longitudinal volumes variation  (Figures 1B, 2), 
we found statistically significant negative correlations between: 
MAG and the thalamus (r = −0.62; p = 0.023), hippocampus (r = 
−0.62; p = 0.025), putamen (ρ = −0.75; p = 0.003), and accumbens 
(ρ = −0.63; p = 0.022); MAGE and thalamus (r = −0.64; p = 
0.024), hippocampus (r = −0.59; p = 0.034), and putamen (ρ = 
−0.65, p = 0.017); M-value and thalamus (ρ = −0.72, p = 0.006), 
hippocampus (ρ = −0.75, p = 0.003), putamen (ρ = −0.67, p = 
0.012), and accumbens (ρ = −0.60, p = 0.029). These findings 
remained significant after the p-value Benjamini-
Hochberg correction.

TABLE 1 Demographic and clinical characteristics of 27 participants (15 with type 2 diabetes; 12 controls) at baseline (V0) and at follow-up visits (V1) 
after 7.1 ± 0.7 years.

Baseline (V0) Follow-up (V1)

Diabetes Control Diabetes Control

Age (years) 56.4 ± 8.2 53.3 ± 6.2 64.6 ± 7.7 61.4 ± 5.9

Gender (M:F) 10:5 7:5 - -

Exercice (yes:no) 7:8 7:5 - -

Smoking (yes:no:ex) 1:11:3 0:12:0 - -

Drinking (yes:no) 7:8 4:8 - -

BMI (Kg/m2) 27.7 ± 4.4 25.8 ± 2.4 29.5 ± 3.7** 25.7 ± 2.3**

Hypertension (yes:no) 11:4 4:8 12:3 4:8

Dyslipidemia (yes:no) 11:4 8:4 11:4 9:3

Fasting glucose

(mmol/L)

10.0 ± 4.6** 5.0 ± 0.5**

(n = 9)

8.0 ± 4.0* 5.1 ± 0.8*

HbA1c %

mmol/mol

9.3 (4)***

78.1 (43.7)***

5.6 (0.5)***

37.7 (6.0)***

(n = 10)

7.9 (1.8)***

62.8 (19.7)***

5.7 (0.5)***

39.4 (5.5)***

Cortical volume (cm3) 438.2 ± 38.5 466.2 ± 52.9 433.5 ± 34.8 461.5 ± 49.8

Subcortical volume (cm3) 54.4 ± 4.5* 60.0 ± 7.0* 52.7 ± 4.6* 58.3 ± 7.3*

*p < 0.05; **p < 0.01; ***p < 0.001 for comparisons between groups (diabetes vs. control) at baseline (V0) and follow-up (V1). Data are presented as n (%), mean±SD, or median (IQR), as 
appropriate. For group comparisons, Student’s t-test (continuous variables with normal distribution), Mann–Whitney U-tests (continuous variables without normal distribution), and Chi-
square tests (qualitative variables) were performed as appropriate. BMI, body mass index.
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A detailed analysis of the correlations with the hippocampal 
subfields’ longitudinal volumes variation was also performed, 
showing significant negative correlations only in the 
presubiculum SPC with M-value (ρ = −0.86; p < 0.001), MAG 
(r  = −0.74; p = 0.004), and MAGE (r  = −0.73; p = 0.005) 
(Figures 1C, 2).

The correlations between the (sub)cortical SPC and classical 
laboratory parameters (including HbA1c and fasting 
glucose) or clinical characteristics were not significant for either of 
the visits.

A longitudinal assessment of brain atrophy in T2DM vs. controls 
was performed. Regarding the cortical GM volumes, a repeated 
measures ANOVA was performed using the lobe’s SPC as a within-
subjects effect and group as a between-subjects effect. No statistical 
interaction effect was found: FGG (2.5, 63.5) = 1.5; p = 0.224 
(Figure 3A).

Similarly, in the subcortical analysis, a repeated measures 
ANOVA was performed using the subcortical region’s SPC as a 
within-subjects effect and group as a between-subjects effect. No 

statistical interaction effect was found: FGG (1.8, 44.9) = 0.2; 
p = 0.803 (Figure 3B).

Concerning the largest areas of the hippocampus (head, body, and 
tail), no statistical interaction effect was found: FGG (1.5, 36.4) = 0.03; 
p = 0.934 (Figure 3C).

4 Discussion

This study demonstrated strong negative correlations between GV 
metrics and SPC of regional GM volumes over 7 years in the temporal 
lobe, insula, and subcortical structures such as the hippocampus, 
thalamus, accumbens, and putamen of T2DM individuals.

GV metrics are similar in both visits, suggesting that T2DM 
individuals maintain the same pattern of short-term variability, 
even though the HbA1c improves from baseline to follow-up visit. 
Therefore, we used baseline (Visit 0) GV metrics in correlation with 
brain volumes, exploring the concept of metabolic legacy on the 
brain (Folz and Laiteerapong, 2021). Our results are consistent with 

TABLE 2 Demographics, clinical, and volumetric characteristics of the individuals with type 2 diabetes (n = 15) at baseline (V0) and follow-up (V1).

Baseline (V0) Follow-up (V1) p-value

Fasting glucose (mmol/L) 10.0 ± 4.6 8.0 ± 4.0 n.s.

HbA1c (mmol/mol)

(%)

81.4 ± 33.3

9.6 ± 3.0

62.7 ± 16.7

7.9 ± 1.5

0.011

Total cholesterol (mmol/L) 4.8 (2.0) 4.0 (1.4) n.s

LDL cholesterol (mmol/L) 3.2 (1.8) 2.1 (1.0) 0.012

eGFR (mil/min/1.73m2) 93.4 ± 30.5 74.8 ± 26.6 0.014

Peptide C index 0.6 (2.0) 0.1 (0.3) <0.001

Triglyceride glucose index 9.4 ± 0.7 9.0 ± 0.8 0.034

SD 2.3 ± 1.0 ( n = 13) 2.4 ± 0.7 n.s.

CoV (%) 26.3 ± 7.4 (n = 13) 27.4 ± 6.4 n.s.

MAG 0.8 ± 0.3 (n = 13) 0.8 ± 0.3 n.s.

MAGE 2.4 ± 1.1 (n = 13) 2.7 ± 0.9 n.s.

M-value 5.0 (7.3) (n = 13) 5.1 (8.3) n.s.

Duration of disease (years) 12.1 ± 7.8 19.2 ± 7.9 -

Micro/macrovascular complications (yes) 80% (n = 12) 80% (n = 12) n.s.

Number of complications 1.6 ± 1.1 1.7 ± 1.1 n.s.

Insulin therapy (yes) 66.7% (n = 10) 66.7% (n = 10) n.s.

Total insulin daily dose (IU) 40.8 ± 20.9 43.3 ± 21.1 n.s.

Oral antidiabetic medication

- Metformin

- DPPIV inhibitors

- Sulfonylureas

- GLP1 ar

- SGLT2 inhibitors

46.7% (n = 7)

26.7% (n = 4)

13.3% (n = 2)

0

0

46.7% (n = 7)

20% (n = 3)

0

26.7% (n = 4)

20% (n = 3)

-

Cortical volume (cm3) 438.2 ± 38.5 433.5 ± 34.8 n.s.

Subcortical volume (cm3) 54.4 ± 4.5 52.7 ± 4.6 0.001

Data are presented as n (%), mean±SD, or median (IQR), as appropriate. For group comparisons, Student’s t-test (continuous variables with normal distribution), Mann–Whitney U-tests 
(continuous variables without normal distribution), and Fisher’s exact test (qualitative variables) were performed.
BMI, body mass index; DPPIV, dipeptidyl peptidase IV; GLP1 ar, glucagon-like peptide 1 agonist receptor; SGLT2i, sodium-glucose transporter 2; MAG, mean absolute glucose change; 
MAGE, mean amplitude of glycemic excursion; CoV, coefficient of variation.
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the findings that GV is an independent risk factor for the 
development of diabetes-related complications (Ceriello et  al., 
2019) and consequently could have a structural and functional 
impact on the diabetic brain, mediated by cerebrovascular disease 
and neurodegeneration. Glucose fluctuations contribute to several 
damaging pathways mediated by oxidative stress, independently of 
chronic hyperglycemia (Chang et al., 2012; Torimoto et al., 2013), 
which could represent a possible conceptual explanation of our 
results demonstrating the impact of GV on brain volume, 
independently of HbA1c.

In the only published longitudinal study assessing the indirectly 
estimated influence of time-specific multi-scale glycemic variability 
on cognitive impairment and GM atrophy, Cui et al. reported that 
T2DM individuals with greater glycemic variability had less GM 
volume in cingulate, hippocampal, middle and inferior temporal 
gyrus and insula but higher GM volume on supramarginal, left 

angular, and left middle orbitofrontal gyrus, independently from 
HbA1c (Cui et  al., 2014). Our findings of regionally specific 
susceptibility to GV identified the temporal lobe, insula, thalamus, 
hippocampus, accumbens, and putamen as the most affected 
regions in individuals with T2DM over time, independently from 
HbA1c. These results might be  clinically relevant, since the 
thalamus stands out as an important subcortical hub in the brain, 
projecting fibers to nearly the whole cortex, and its volume 
corresponds to cognitive performances, motor task behaviors, and 
verbal memory (Hwang et al., 2017). The hippocampal-thalamic-
temporal connectivity plays an important role in processing 
emotions, language, attention, and memory (Behrens et al., 2003). 
Furthermore, central regions related to habit formation and reward, 
such as the dorsolateral striatum (putamen) and the nucleus 
accumbens (Arias-Carrión et  al., 2010), and interoceptive 
processing, such as the insular cortex (Chen et al., 2021), appear to 

FIGURE 1

Representative 3D images of the parcellated and segmented brain regions assessed using FreeSurfer. Color intensity corresponds to the correlation 
coefficient (from −0.76 to −0.54) of the statistically significant associations between baseline MAGE (mmol/L) and symmetrized percent change (SPC, 
%) of GM volumes between Visit 1 and baseline of type 2 diabetes individuals in (A) cortical areas, based on the DKT40 classifier atlas, (B) subcortical 
areas, and (C) hippocampal subfields. Scatterplots with line of best-fit with (shaded) 95% confidence band for each region-of-interest (ROI) are also 
presented.

https://doi.org/10.3389/fnins.2025.1430185
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Moreno et al. 10.3389/fnins.2025.1430185

Frontiers in Neuroscience 07 frontiersin.org

be specifically susceptible to metabolic control. The habit-learning, 
reward, and prediction-error circuits allow us to update our 
predictions in response to a mismatch between the actual and 
expected outcome of an action. This adaptive learning can 
dynamically direct our choices toward optimal behavior (Diederen 
and Fletcher, 2021). This strongly suggests that this will have to 
be considered in patient education programs. In a clinical setting, 
this could indeed be crucial for a person living with diabetes to 
adjust an insulin bolus, to prevent a hypoglycemic episode, to select 
the appropriate nutritional and exercise plan, and to promote better 
treatment adherence. By hypothesis, glycemic variability may 
provide a prediction error signal of dopaminergic regulation in 
T2DM and illustrate how metabolic signals can act as 
neuromodulators of adaptive behavior. Our results highlight the 
putative influence of GV in these cognitive processes, even in 

neurologically preserved T2DM individuals, demonstrating the 
contribution of GV metrics to the underlying mechanisms of 
diabetes-related brain atrophy. Among the various factors that 
might trigger direct neural damage, brain insulin resistance might 
be  a significant contributor, as insulin receptors are selectively 
distributed in the hippocampus and cerebral cortex (Beddows and 
Dodd, 2021). Reduced insulin transport across the blood–brain 
barrier and cerebral insulin resistance in areas of high receptor 
concentrations may lead to preferential atrophy in these areas.

We applied a (semi) automated longitudinal processing 
stream to segment MRI images, allowing for more unbiased and 
sensitive estimations of the SPC of volumes between two time 
points (Reuter et al., 2012). This pipeline reduces the random 
variability sources associated with longitudinal analysis by 
defining a within-subject template and producing more robust 
and consistent segmentations across time points (Brown et al., 
2020). Curiously, in the temporal lobe, the T2DM group had 
wider dispersion of SPC values, revealing that the GM atrophy in 
the 7-year follow-up period had a wide variation between 
subjects, contrary to the control group, which showed 
homogeneity in temporal SPC over time. In earlier longitudinal 
studies, T2DM was associated with a 20–50% greater rate of total 
brain volume over 3–5 years compared with controls (de Bresser 
et  al., 2010; van Elderen et  al., 2010). Espeland et  al. found a 
non-significant trend in total brain volume variation of T2DM 
women over 4.7 years (Espeland et  al., 2016). No regional 
assessment was performed in any of these studies.

Some limitations to our study may arise from the small 
sample size as, of the initial 170 participants of Visit 0, only 29 
agreed to participate in Visit 1. We experienced difficulties in 
adhering to the follow-up visit, which was related to the 
COVID-19 pandemic restrictions. Moreover, since data collection 
started in 2012, the accessibility to real-time or retrospective 
continuous glucose monitoring devices was low. Therefore, 
we used 7-point blood glucose sampling, obtained throughout 
24 h, for 3 consecutive days. Nevertheless, since the individuals 
with T2DM selected for Visit 0 of our study were admitted to the 
Endocrinology ward, blood glucose was measured by well-trained 
nursing staff, providing data reliability. The Visit 1 blood glucose 
sampling records were self-reported and showed consistency with 
the baseline data.

Regarding the comparison of SPC of GM volumes between 
patients with T2DM vs. controls no significant differences were 
observed, possibly due to insufficient statistical power.

To the best of our knowledge, this is the first prospective study to 
examine the influence of intra-daily glucose fluctuations on regional 
(sub)cortical GM volumes, specifically on areas involved in habit-
learning, reward, and prediction-error circuits. Larger longitudinal 
studies are needed to substantiate our results and emphasize the 
importance of glycemic variability in clinical practice, as it shows 
direct correlation with micro- and macrovascular complications and 
a neural impact in T2DM individuals.
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FIGURE 2

Heat map representing the statistically significant correlations 
between symmetrized percent change (SPC, %) of GM volumes 
between Visit 1 and baseline and glycemic variability metrics, in type 
2 diabetes individuals. Color represents the strength and the 
direction of the correlation coefficient (−1, blue; 0, white; 1, red).
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FIGURE 3

Boxplots representing the distribution of individual symmetrized percent change (SPC, %) of GM volumes between Visit 1 and baseline in diabetes (light 
blue) and control (white) groups in (A) cortical lobes, (B) subcortical, and (C) hippocampus regions. Hipp, hippocampus; Amyg, amygdala; Acc, 
accumbens.
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