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Objective: Type 2 diabetes mellitus (T2DM) is associated with lower gray matter
(GM) volumes. However, little is known about the impact of glycemic control
on brain atrophy, especially in highly susceptible regions. Therefore, we aim to
identify the effect of glycemic variability (GV) on long-term changes in brain
volume among individuals with T2DM.

Methods: A longitudinal clinical, biochemical, and imaging assessment was
conducted at a baseline visit on 170 individuals (85 with T2DM), from which 29
(15 with T2DM) were evaluated at a 7-year follow-up visit. Brain regional volumes
were evaluated with 3 T MRI, using the FreeSurfer 7 longitudinal pipeline. GV
metrics such as SD, M-value, MAG (mean absolute glucose change), MAGE
(mean amplitude of glycemic excursion), and CoV (coefficient of variation) were
calculated in both visits.

Results: Statistically significant negative correlations between GV metrics and
symmetrized percent change (SPC) of GM volumes were found in specific
cortical and subcortical regions of individuals with T2DM. MAGE was correlated
with regionally specific atrophy on the temporal lobe (r = —-0.63, p = 0.021),
insula (p = —=0.62, p = 0.022), thalamus (r = =0.64; p = 0.024), hippocampus
(r = —-0.59; p =0.034), and putamen (p = —0.65, p = 0.017). Concerning the
hippocampal subregions, the presubiculum was significantly correlated with
MAGE (r = -0.73; p = 0.005). Baseline GV was consistently associated with
temporal lobe SPC. Linear regression analysis showed that, for each increase of
1 mmol/L in MAGE value, the SPC of the temporal lobe decreases on average by
1.2% (higher atrophy rate).

Conclusion: The relationship between longitudinal GM atrophy and GV has a
regionally specific pattern, suggesting localized brain susceptibility to intra-daily
glucose fluctuations. Negative correlations between GV metrics and SPC volume
of regions involved in habit-learning, decision-making, and memory highlight
GV as a mediator of the neural impact of T2DM on the reward prediction-error
circuits.
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1 Introduction

Diabetes mellitus is associated with various changes in brain
function and structure (Biessels and Reijmer, 2014). Brain atrophy,
characterized by lower total and regional gray matter (GM) volumes,
has consistently been reported in patients with type 2 diabetes
(T2DM), particularly among older adults with cognitive dysfunction
(Geijselaers et al., 2015). With the global epidemic of T2DM and the
growing aging population (Khan et al., 2019), a focus on diabetes
brain health might have an additional impact on delaying or even
preventing diabetes-related mental health conditions.

Previous longitudinal studies have shown relatively homogeneous
results regarding the accelerated progression of brain atrophy in
individuals with type 2 diabetes compared to controls (de Bresser
et al,, 2010; van Elderen et al., 2010; Brundel et al., 2014; Espeland
et al., 2016; Callisaya et al., 2019). However, there is conflicting
evidence on the diabetes-related risk factors that contribute to
structural changes in the brain. Van Elderen et al. found a correlation
between brain volume loss with fasting glucose levels and insulin
therapy (van Elderen et al., 2010). Furthermore, de Bresser et al.
demonstrated that increasing age and hypertension were associated
with a greater progression of brain atrophy (de Bresser et al., 2010).
However, Brundel et al., using ultra-high-field MR, did not find any
differences in the burden of microvascular lesions between diabetic
patients and control groups, nor did they find any significant
relationships with cognitive testing (Brundel et al., 2014). By analyzing
data from the ‘Second Manifestations of ARTerial disease-Magnetic
Resonance’ (SMART-MR) study, Kooistra et al. found an increased
rate of brain atrophy and vascular lesion load in diabetes individuals
with symptomatic atherosclerotic disease only slightly exceeding
controls, but with no changes in cognitive performance over time
(Kooistra et al., 2013).

Regarding the distribution of brain atrophy throughout the brain,
longitudinal data are missing; however, it appears that there is a
variable impact across brain areas, with the temporal lobe and
hippocampus showing more susceptibility to atrophy (Moheet et al.,
2015; Zhang et al., 2022). This regional vulnerability is noteworthy, as
connectivity between the temporal lobe and subcortical regions relates
to behavioral regulation and cognitive control regarding responses to
emotional cues (D'Ostilio et al., 2012; Heller et al., 2016). The reward
dopaminergic system, encompassing mesolimbic and mesocortical
pathways, might be involved in dysmetabolic conditions, particularly
through disruption of insulin signaling. Animal and human studies
have reported insulin as a key regulator of dopamine turnover, as
reduced insulin-sensitivity correlates with reduced endogenous
dopamine levels, and the apoptotic processes of dopaminergic neurons
are influenced by insulin (Caravaggio et al., 2015; Fiory et al., 2019).

In the ‘Leukoaraiosis and disability in the elderly study’ (LADIS),
Korf et al. showed an association between medial temporal lobe atrophy

and diabetes, independently of the amount of small vessel disease (Korf

et al,, 2007). Hayashi et al. reported that hippocampal and whole brain
atrophy was more frequent in older individuals with T2DM than in
controls (Hayashi et al., 2011). Den Heijer et al. found that T2DM subjects
had greater hippocampal and amygdalar atrophy compared with controls,
regardless of vascular pathology (den Heijer et al., 2003). However, in a
large cross-sectional study, Wisse et al. showed that patients with T2DM
had greater brain atrophy but not hippocampal atrophy compared to
controls (Wisse et al., 2014). Furthermore, no associations were found
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between brain volume and HbAlc or memory outcomes. Consistent
clinical correlates of regional brain atrophy in diabetes are lacking, and the
mechanisms underlying the central nervous system microstructural
abnormalities are still unclear. With the well-established microvascular
cerebral dysfunction in diabetes (van Sloten et al., 2020), rapid glucose
fluctuations might directly affect brain structure and function. An
accumulation of aberrant metabolites, depletion of metabolic cofactors,
and incremental oxidative stress has been described as a consequence of
rapid glycemic peaks, leading to neuroinflammation, neuronal
dysfunction, and apoptosis (Sima et al, 2004; Van Dyken and
Lacoste, 2018).

Glycemic variability is a valuable tool for diabetes management in
the clinical setting, since its metrics that represent short-term or long-
term glycemic excursions are independent risk factors for diabetes
complications (Ceriello et al, 2019). In cross-sectional studies,
glycemic variability has been negatively associated with cognitive
function (Zhong, 2012; Rizzo et al., 2010; Lee et al., 2022). Furthermore,
time-specific multi-scale glycemic variability may contribute to
cognitive impairment and GM atrophy as indirectly estimated from
statistical parametric mapping (SPM) using the LONI Probabilistic
Brain Atlas in a longitudinal study of older adults with and without
T2DM (Cui et al., 2014). Future prospective data might finally establish
glycemic variability as a key player in diabetes-related brain outcomes.

In the present study; a longitudinal case—control investigation was
conducted to explore regional cerebral correlates of T2DM brain structural
changes in a 7-year follow-up. We hypothesized that relationships between
short-term glycemic variability metrics and GM volume could
be independent from long-term glycemic control, e.g., HbA1c, clarifying
the role of glycemic variability on brain structure of T2DM.

2 Methods
2.1 Study design

Individuals with T2DM were recruited from the Endocrinology
Department, along with a control group from the local community,
during two years (2012-2013), for the baseline evaluation (Visit 0). All
participants were contacted by telephone for a follow-up assessment
(Visit 1) from 2019 to 2020. This study was approved by the local
Ethics Committee and followed the tenets of the Declaration of
Helsinki. Written informed consent was obtained from all participants
after research procedures had been fully explained during both visits.

2.2 Eligibility criteria

All participants fulfilled the inclusion criteria: age between 45 and
75 years, T2DM confirmed by the 2019 World Health Organization
(WHO) (WHO, 2019), with determination of fasting glucose levels,
HbAlc, and absence of diabetes auto-antibodies (T2DM group) or
exclusion of T2DM according to the same criteria (control group). In
all participants, we ascertained the absence of the following exclusion
criteria: history of neurological or psychiatric disease, dementia or
cognitive impairment, active malignancy, inflammatory disease,
chronic drug or alcohol dependence, or severe visual impairment. The
eligibility criteria were reviewed and confirmed in the follow-up
assessment (Visit 1). Patients with previous cerebrovascular accident

frontiersin.org


https://doi.org/10.3389/fnins.2025.1430185
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Moreno et al.

or other cortical vascular pathology were excluded, as well as
participants with cognitive decline or incomplete MRI protocol or
low-quality criteria in any of the visits.

2.3 Clinical evaluation, laboratory
assessments, and glycemic variability
metrics

In both visits, all participants were submitted to a thorough
clinical examination performed by a team of physicians, which
included personal medical history, complete physical exam with
ophthalmology assessment (retinal fundus photographs and optical
coherence tomography), diagnosis and characterization of other
micro/macrovascular complications (diabetic peripheral neuropathy
defined using the Toronto Consensus Statement (Tesfaye et al., 2010),
previous history of peripheral artery occlusion or myocardial
infarction) and neurophysiological testing. Blood and urine samples
were collected to determine inclusion criteria, disease status, and
diabetic nephropathy staging (urinary albumin-to-creatinine ratio).

Glycemic variability metrics were calculated with EasyGV® software
(available free for noncommercial use at www.easygv.co.uk) using 7-point
blood glucose profiles. Blood glucose was obtained throughout the day,
namely, fasting (07:00), post-breakfast (08:30), pre-lunch (12:00), post-
lunch (13:30), pre-supper (19:00), post-supper (20:30), and nighttime
(24:00) for 72 h, as described elsewhere (Kilpatrick et al., 2006; Siegelaar
etal, 2011). In Visit 0, the blood glucose measurements were performed
by the nursing staff. In the follow-up assessment, patients self-reported
the 7-point blood glucose measurements for 24 h on 3 consecutive days
before the visit date. We calculated the short-term glycemic variability
metrics feasible with 72-h data: SD (representation of dispersion from
average glucose), M-value (measure of the glucose excursions in
comparison with an ideal glucose default value of 6.66 mmol/L), MAG
(mean absolute glucose change per unit of time), MAGE (mean amplitude
of glycemic excursions), and CoV (percentage of coefficient of variation
for glucose) (Hill et al., 2011).

2.4 Magnetic resonance imaging
procedures

All participants underwent an MRI protocol on a 3T Tim Trio scanner
(Siemens, Germany) with a 12-channel birdcage head coil, at baseline. A
subgroup underwent a follow-up data acquisition in a 3T Magnetom
Prisma fit scanner (Siemens, Germany), equipped with a 20-channel
birdcage head coil. The MRI protocol included a high-resolution
T1-weighted anatomical image using a 3D Magnetization Prepared Rapid
Acquisition Gradient Echo (MPRAGE) sequence (baseline: TR/TE/
TI = 2530/3.42/1100 ms; follow-up: TR/TE/TT, 2530/3.5/1100 ms; FA = 7°
FoV =256 x 256 mm? 176 slices with 1 mm?® isotropic voxel size). All
acquisitions were performed at the Institute of Nuclear Sciences Applied
to Health (ICNAS) of the University of Coimbra.

2.5 Magnetic resonance imaging analysis

Structural MRI data were processed using the FreeSurfer
longitudinal pipeline (version 7.0, http://surfer.nmr.mgh.harvard.
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edu/) on a Linux (CentOS 6) platform following the standard
“recon-all” stream (technical details of the procedures are described
online, Freesurfer website). The longitudinal approach (Reuter et al.,
2012) is a more robust and sensitive strategy considering that the
scans are from the same individual at different timepoints.
Accordingly, the initialization of several pre-processing steps is based
on common information from an unbiased within-subject template,
controlling, at least partially, for the within-individual variability bias
(Reuter et al., 2012; Iglesias et al., 2016). The recon pipeline included
bias field and motion correction, automated Talairach transformation,
removal of non-brain tissue, tissue intensity normalization, subcortical
structures segmentation and labeling with a non-linear warping atlas,
gray/white matter boundary tessellation, and topology correction for
surface reconstruction and cortical parcellation (Dale et al., 1999;
Fischl et al., 1999). Subcortical regions-of-interest (ROI) segmentation
was based on the Automatic Segmentation (ASEG) atlas (Fischl et al.,
2002), and the cortical ROI parcellation was based on the Desikan-
Killiany-Tourville (DKT40) neuroanatomical atlas (Klein and
Tourville, 2012). Data were visually screened for soft failures, namely
in skull stripping, white matter segmentation, intensity normalization,
and pial surface misplacement, and manually corrected for major
errors, when appropriate. Additional FreeSurfer hippocampal
subregions were analyzed using a longitudinal hippocampal subfields
segmentation pipeline [presubiculum, parasubiculum, subiculum,
fissure, CA1, CA3, CA4, molecular layer, fimbria, molecular and
granule cell layers of the dentate gyrus (GCMLDG), and the
hippocampal amygdala transition area (HATA)] (Iglesias et al., 2015,
2016) that increases the accuracy of volume estimation across the two
time points (Brown et al., 2020). FreeSurfer pipeline also assesses
hippocampus volume in three parcellations: head, body, and tail
(Brown et al., 2020).

Since laterality effects were not expected, volumes from equivalent
region-of-interest ROIs from each hemisphere were averaged. Lobar
volumes were also considered for analysis, as the combination of the
underlying regional ROIs.

2.6 Statistical analysis

Statistical analysis was conducted in IBM SPSS Statistics for
Windows (version 28.0), and graphics were produced using the
ggplot2 package in R (version 2022.07.2). The normality of quantitative
variables was evaluated using the Shapiro-Wilk test. Parametric/
nonparametric testing was used accordingly. Data values in the tables
represent mean * standard deviation for normally distributed
variables or median (interquartile range).

The relative change in volumes for each studied ROI of
each individual was evaluated as the symmetrized percent change
(SPC, %). SCP represents the change of volume (mm?®) between
baseline (V0) and follow-up (V1) concerning the average
volume for both timepoints. It was calculated as follows:
SPC=(V1-V0)/(0.5%( V1+V0 ))x100.

Pearson’s or Spearman’s correlation coefficients were used, as
appropriate, to examine associations between SPC of regional (sub)
cortical areas and glycemic variability metrics - MAG, MAGE,
M-value, and CoV at baseline. The Benjamini-Hochberg method was
used to correct p-values for multiple correlations within seven main
regions and glycemic variability metrics (FDR < 0.05). Other
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TABLE 1 Demographic and clinical characteristics of 27 participants (15 with type 2 diabetes; 12 controls) at baseline (V0) and at follow-up visits (V1)
after 7.1 + 0.7 years.

10.3389/fnins.2025.1430185

Baseline (V0) Follow-up (V1)

Diabetes Control Diabetes Control
Age (years) 56.4+8.2 53.3+6.2 64.6+7.7 614+59
Gender (M:F) 10:5 7:5
Exercice (yes:no) 7:8 7:5
Smoking (yes:no:ex) 1:11:3 0:12:0
Drinking (yes:no) 7:8 4:8
BMI (Kg/m?) 27.7+4.4 258+2.4 29.5 + 3.7%* 25.7 +£2.3%*
Hypertension (yes:no) 11:4 4:8 12:3 4:8
Dyslipidemia (yes:no) 11:4 8:4 11:4 9:3
Fasting glucose 10.0 + 4.6%* 5.0 £ 0.5%* 8.0 + 4.0% 5.1+0.8%
(mmol/L) (n=9)
HbAlc % 9.3 (4)%#* 5.6 (0.5)%%* 7.9 (1.8)%%* 5.7 (0.5)%%*
mmol/mol 78.1 (43.7)%%* 37.7 (6.0)%%* 62.8 (19.7)%*%* 39.4 (5.5)%%**

(n=10)

Cortical volume (cm?) 438.2 +38.5 466.2 +52.9 433.5+34.8 461.5+49.8
Subcortical volume (cm®) 54.4 + 4.5% 60.0 +7.0% 52.7 + 4.6% 58.3+7.3%

#p < 0.05; **p < 0.01; **¥p < 0.001 for comparisons between groups (diabetes vs. control) at baseline (V0) and follow-up (V1). Data are presented as n (%), mean+SD, or median (IQR), as
appropriate. For group comparisons, Student’s -test (continuous variables with normal distribution), Mann-Whitney U-tests (continuous variables without normal distribution), and Chi-

square tests (qualitative variables) were performed as appropriate. BMI, body mass index.

exploratory analyses were also conducted, correlating general SPC
volumes and biochemical parameters.

GLM repeated measures ANOVA (rmANOVA) was used to
compare the (within-subjects) SPC of the cortical volumes of brain
lobes (frontal, parietal, temporal, occipital, cingulate, and insula)
between T2DM and control groups (between-subjects). Similar
analyses were performed independently for both subcortical ROIs and
hippocampal subfields. The epsilon value was used to choose a
correction approach when assumptions of sphericity were not met:
Greenhouse-Geisser (GG, € < 0.75), Huynh-Feldt (HE, € > 0.75). For
all analyses, the critical significance level for all hypothesis testing was
set at 5% (two-tailed).

3 Results

Our original cohort comprised 170 participants evaluated at
baseline (85 with T2DM and 85 healthy controls), from which 29
completed longitudinal assessment (15 with T2DM and 14
controls) after 7.1 + 0.7 years. Two individuals from the control
group were excluded at the follow-up visit for, respectively, not
being compliant with the exclusion criteria and incomplete
imaging protocol.

A symmetrized percentage change (SPC) was calculated to assess
the longitudinal variation of regional cortical, subcortical, and
hippocampal GM volumes.

Selected clinical, laboratory, and image characteristics of the study
subjects at baseline (V0) and follow-up (V1) are presented in Table 1.
Demographics and clinical and volumetric characteristics of the
individuals with T2DM (n = 15) in both visits are presented in Table 2.
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There were statistically significant strong negative correlations
between glycemic variability metrics in baseline (# = 13) and temporal
lobe SPC: p = —0.80 for M-value with temporal lobe SPC, p < 0.001;
r=—0.68 for MAG with temporal lobe SPC, p = 0.011; r = —0.65 for
MAGE with temporal lobe SPC, p = 0.016 (Figure 1A). Significant
negative correlations were observed between variability metrics and
insula’s SPC: p = —0.67 for MAG with insula SPC, p = 0.013; p = —0.63
for MAGE with insula SPC, p = 0.022 (Figure 1A).

Concerning the impact of baseline glycemic variability on
temporal lobe SPC, a linear regression analysis showed that, for each
increase of 1 mmol/L on MAGE value, the SPC of the temporal lobe
decreases on average by 1.2% (higher atrophy rate).

Within the temporal lobe, we found a robust pattern of
statistically significant negative correlations between GV metrics
and temporal lobes’ regions SPC, these correlations varied
between r = —0.56 [Clysy, (—0.85;-0.02)] for the superior temporal
gyrus SPC with MAGE and p = —0.85 [Clsy, (—0.96;-0.54)] for
parahippocampal gyrus SPC with M-value (Figures 1A, 2).
Regarding the correlations between GV metrics in VO (n= 13)
and subcortical longitudinal volumes variation (Figures 1B, 2),
we found statistically significant negative correlations between:
MAG and the thalamus (r = —0.62; p = 0.023), hippocampus (r =
-0.62; p = 0.025), putamen (p = —0.75; p = 0.003), and accumbens
(p = —0.63; p = 0.022); MAGE and thalamus (r = —-0.64; p =
0.024), hippocampus (r = —0.59; p = 0.034), and putamen (p =
—-0.65, p = 0.017); M-value and thalamus (p = —-0.72, p = 0.006),
hippocampus (p = —0.75, p = 0.003), putamen (p = —0.67, p =
0.012), and accumbens (p = —0.60, p = 0.029). These findings
remained  significant after the p-value Benjamini-
Hochberg correction.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1430185
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Moreno et al.

10.3389/fnins.2025.1430185

TABLE 2 Demographics, clinical, and volumetric characteristics of the individuals with type 2 diabetes (n = 15) at baseline (V0) and follow-up (V1).

Baseline (VO) Follow-up (V1) p-value

Fasting glucose (mmol/L) 10.0 + 4.6 8.0+4.0 ns.
HbAlc (mmol/mol) 81.4+333 62.7 +16.7 0.011
(%) 9.6+3.0 79+1.5
Total cholesterol (mmol/L) 4.8 (2.0) 4.0 (1.4) ns
LDL cholesterol (mmol/L) 3.2(1.8) 2.1(1.0) 0.012
eGFR (mil/min/1.73m?) 93.4 +30.5 74.8 £26.6 0.014
Peptide C index 0.6 (2.0) 0.1(0.3) <0.001
Triglyceride glucose index 94+0.7 9.0+£0.8 0.034
SD 23+1.0(n=13) 24+07 n.s.
CoV (%) 263+7.4(n=13) 274+6.4 n.s.
MAG 0.8+ 0.3 (n=13) 0.8+0.3 ns.
MAGE 24+1.1(n=13) 2.7+£09 n.s.
M-value 5.0(7.3) (n=13) 5.1(8.3) n.s.
Duration of disease (years) 121+7.8 192+79 -
Micro/macrovascular complications (yes) 80% (n=12) 80% (n=12) n.s.
Number of complications 1.6+1.1 1.7+ 1.1 ns.
Insulin therapy (yes) 66.7% (n = 10) 66.7% (n = 10) n.s.
Total insulin daily dose (IU) 40.8 +20.9 433 +21.1 n.s.
Oral antidiabetic medication

- Metformin 46.7% (n=7) 46.7% (n=7) -

- DPPIV inhibitors 26.7% (n =4) 20% (n = 3)

- Sulfonylureas 13.3% (n=2) 0

- GLP1 ar 0 26.7% (n = 4)

- SGLT2 inhibitors 0 20% (n=3)
Cortical volume (cm3) 438.2 +38.5 433.5+34.8 n.s.
Subcortical volume (cm3) 544 +4.5 52.7+4.6 0.001

Data are presented as 1 (%), mean+SD, or median (IQR), as appropriate. For group comparisons, Student’s ¢-test (continuous variables with normal distribution), Mann-Whitney U-tests
(continuous variables without normal distribution), and Fisher’s exact test (qualitative variables) were performed.
BMI, body mass index; DPPIV, dipeptidyl peptidase IV; GLP1 ar, glucagon-like peptide 1 agonist receptor; SGLT2i, sodium-glucose transporter 2; MAG, mean absolute glucose change;

MAGE, mean amplitude of glycemic excursion; CoV, coefficient of variation.

A detailed analysis of the correlations with the hippocampal
subfields’ longitudinal volumes variation was also performed,
showing significant negative correlations only in the
presubiculum SPC with M-value (p = —0.86; p < 0.001), MAG
(r =—0.74; p=0.004), and MAGE (r =—0.73; p =0.005)
(Figures 1C, 2).

The correlations between the (sub)cortical SPC and classical
HbAlc
glucose) or clinical characteristics were not significant for either of

laboratory ~ parameters  (including and  fasting
the visits.

A longitudinal assessment of brain atrophy in T2DM vs. controls
was performed. Regarding the cortical GM volumes, a repeated
measures ANOVA was performed using the lobe’s SPC as a within-
subjects effect and group as a between-subjects effect. No statistical
interaction effect was found: Fgs (2.5, 63.5)=1.5 p=0.224
(Figure 3A).

Similarly, in the subcortical analysis, a repeated measures
ANOVA was performed using the subcortical region’s SPC as a

within-subjects effect and group as a between-subjects effect. No
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statistical interaction effect was found: Fgg (1.8, 44.9) = 0.2;
p =0.803 (Figure 3B).

Concerning the largest areas of the hippocampus (head, body, and
tail), no statistical interaction effect was found: Fg (1.5, 36.4) = 0.03;
p =0.934 (Figure 3C).

4 Discussion

This study demonstrated strong negative correlations between GV
metrics and SPC of regional GM volumes over 7 years in the temporal
lobe, insula, and subcortical structures such as the hippocampus,
thalamus, accumbens, and putamen of T2DM individuals.

GV metrics are similar in both visits, suggesting that T2DM
individuals maintain the same pattern of short-term variability,
even though the HbA1lc improves from baseline to follow-up visit.
Therefore, we used baseline (Visit 0) GV metrics in correlation with
brain volumes, exploring the concept of metabolic legacy on the
brain (Folz and Laiteerapong, 2021). Our results are consistent with
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FIGURE 1

Representative 3D images of the parcellated and segmented brain regions assessed using FreeSurfer. Color intensity corresponds to the correlation
coefficient (from —0.76 to —0.54) of the statistically significant associations between baseline MAGE (mmol/L) and symmetrized percent change (SPC,
%) of GM volumes between Visit 1 and baseline of type 2 diabetes individuals in (A) cortical areas, based on the DKT40 classifier atlas, (B) subcortical
areas, and (C) hippocampal subfields. Scatterplots with line of best-fit with (shaded) 95% confidence band for each region-of-interest (ROI) are also

presented.

the findings that GV is an independent risk factor for the
development of diabetes-related complications (Ceriello et al.,
2019) and consequently could have a structural and functional
impact on the diabetic brain, mediated by cerebrovascular disease
and neurodegeneration. Glucose fluctuations contribute to several
damaging pathways mediated by oxidative stress, independently of
chronic hyperglycemia (Chang et al., 2012; Torimoto et al., 2013),
which could represent a possible conceptual explanation of our
results demonstrating the impact of GV on brain volume,
independently of HbAlc.

In the only published longitudinal study assessing the indirectly
estimated influence of time-specific multi-scale glycemic variability
on cognitive impairment and GM atrophy, Cui et al. reported that
T2DM individuals with greater glycemic variability had less GM
volume in cingulate, hippocampal, middle and inferior temporal
gyrus and insula but higher GM volume on supramarginal, left

Frontiers in Neuroscience

angular, and left middle orbitofrontal gyrus, independently from
HbAlc (Cui et al, 2014). Our findings of regionally specific
susceptibility to GV identified the temporal lobe, insula, thalamus,
hippocampus, accumbens, and putamen as the most affected
regions in individuals with T2DM over time, independently from
HbAlc. These results might be clinically relevant, since the
thalamus stands out as an important subcortical hub in the brain,
projecting fibers to nearly the whole cortex, and its volume
corresponds to cognitive performances, motor task behaviors, and
verbal memory (Hwang et al., 2017). The hippocampal-thalamic-
temporal connectivity plays an important role in processing
emotions, language, attention, and memory (Behrens et al., 2003).
Furthermore, central regions related to habit formation and reward,
such as the dorsolateral striatum (putamen) and the nucleus
accumbens (Arias-Carrion et al., 2010), and interoceptive
processing, such as the insular cortex (Chen et al., 2021), appear to
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Heat map representing the statistically significant correlations
between symmetrized percent change (SPC, %) of GM volumes
between Visit 1 and baseline and glycemic variability metrics, in type
2 diabetes individuals. Color represents the strength and the
direction of the correlation coefficient (-1, blue; 0, white; 1, red).

be specifically susceptible to metabolic control. The habit-learning,
reward, and prediction-error circuits allow us to update our
predictions in response to a mismatch between the actual and
expected outcome of an action. This adaptive learning can
dynamically direct our choices toward optimal behavior (Diederen
and Fletcher, 2021). This strongly suggests that this will have to
be considered in patient education programs. In a clinical setting,
this could indeed be crucial for a person living with diabetes to
adjust an insulin bolus, to prevent a hypoglycemic episode, to select
the appropriate nutritional and exercise plan, and to promote better
treatment adherence. By hypothesis, glycemic variability may
provide a prediction error signal of dopaminergic regulation in
T2DM and illustrate how metabolic signals can act as
neuromodulators of adaptive behavior. Our results highlight the
putative influence of GV in these cognitive processes, even in
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neurologically preserved T2DM individuals, demonstrating the
contribution of GV metrics to the underlying mechanisms of
diabetes-related brain atrophy. Among the various factors that
might trigger direct neural damage, brain insulin resistance might
be a significant contributor, as insulin receptors are selectively
distributed in the hippocampus and cerebral cortex (Beddows and
Dodd, 2021). Reduced insulin transport across the blood-brain
barrier and cerebral insulin resistance in areas of high receptor
concentrations may lead to preferential atrophy in these areas.

We applied a (semi) automated longitudinal processing
stream to segment MRI images, allowing for more unbiased and
sensitive estimations of the SPC of volumes between two time
points (Reuter et al., 2012). This pipeline reduces the random
variability sources associated with longitudinal analysis by
defining a within-subject template and producing more robust
and consistent segmentations across time points (Brown et al.,
2020). Curiously, in the temporal lobe, the T2DM group had
wider dispersion of SPC values, revealing that the GM atrophy in
the 7-year follow-up period had a wide variation between
subjects, contrary to the control group, which showed
homogeneity in temporal SPC over time. In earlier longitudinal
studies, T2DM was associated with a 20-50% greater rate of total
brain volume over 3-5 years compared with controls (de Bresser
et al., 2010; van Elderen et al., 2010). Espeland et al. found a
non-significant trend in total brain volume variation of T2DM
women over 4.7 years (Espeland et al, 2016). No regional
assessment was performed in any of these studies.

Some limitations to our study may arise from the small
sample size as, of the initial 170 participants of Visit 0, only 29
agreed to participate in Visit 1. We experienced difficulties in
adhering to the follow-up visit, which was related to the
COVID-19 pandemic restrictions. Moreover, since data collection
started in 2012, the accessibility to real-time or retrospective
continuous glucose monitoring devices was low. Therefore,
we used 7-point blood glucose sampling, obtained throughout
24 h, for 3 consecutive days. Nevertheless, since the individuals
with T2DM selected for Visit 0 of our study were admitted to the
Endocrinology ward, blood glucose was measured by well-trained
nursing staff, providing data reliability. The Visit 1 blood glucose
sampling records were self-reported and showed consistency with
the baseline data.

Regarding the comparison of SPC of GM volumes between
patients with T2DM vs. controls no significant differences were
observed, possibly due to insufficient statistical power.

To the best of our knowledge, this is the first prospective study to
examine the influence of intra-daily glucose fluctuations on regional
(sub)cortical GM volumes, specifically on areas involved in habit-
learning, reward, and prediction-error circuits. Larger longitudinal
studies are needed to substantiate our results and emphasize the
importance of glycemic variability in clinical practice, as it shows
direct correlation with micro- and macrovascular complications and
a neural impact in T2DM individuals.
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