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Introduction: Music has a profound impact on human emotions, capable of 
eliciting a wide range of emotional responses, a phenomenon that has been 
effectively harnessed in the field of music therapy. Given the close relationship 
between music and language, researchers have begun to explore how music 
influences brain activity and cognitive processes by integrating artificial 
intelligence with advancements in neuroscience.

Methods: In this study, a total of 120 subjects were recruited, all of whom were 
students aged between 19 and 26 years. Each subject is required to listen to 
six 1-minute music segments expressing different emotions and speak at the 
40-second mark. In terms of constructing the classification model, this study 
compares the classification performance of deep neural networks with other 
machine learning algorithms.

Results: The differences in EEG signals between different emotions during 
speech are more pronounced compared to those in a quiet state. In the 
classification of EEG signals for speaking and quiet states, using deep neural 
network algorithms can achieve accuracies of 95.84% and 96.55%, respectively.

Discussion: Under the stimulation of music with different emotions, there 
are certain differences in EEG between speaking and resting states. In the 
construction of EEG classification models, the classification performance of 
deep neural network algorithms is superior to other machine learning algorithms.
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1 Introduction

Music, as a mode of emotional expression, profoundly permeates various aspects of 
human culture and life (Hallam and MacDonald, 2013; Ma, 2022). Its influence extends 
beyond the auditory senses, touching on emotional and psychological dimensions as well 
(Darki et al., 2022; Deshmukh and Gupta, 2022). For instance, music composed in major keys 
tends to be  bright and cheerful, evoking a sense of openness and positivity in listeners. 
Conversely, compositions in minor keys generally appear darker and heavier, eliciting feelings 
of sadness and melancholy (Suzuki et al., 2008). These emotional expressions are intricately 
linked to the tonality and timbre of music. Within a musical piece, altering the key and 
instruments can provide listeners with varying emotional experiences. Moreover, factors such 
as rhythm and melody also significantly impact the emotional tone of music (Schellenberg 
et al., 2000). The emotional response music elicits is a result of brain processing, making the 
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study of the relationship between music and the human brain crucial 
for understanding music’s effects on humans (Putkinen et al., 2021). 
Music therapy, as a method utilizing the unique properties of music 
to promote psychological and physiological health, has been widely 
applied in various medical and rehabilitation settings.

Humans primarily perceive music through the auditory system. 
Therefore, when the auditory system is functioning normally, listening 
to music typically induces brain activity (Chan and Han, 2022; Fasano 
et al., 2023; Fischer et al., 2021). Different types of music can affect 
listeners’ emotional experiences by triggering cognitive processes like 
memory and association (Bedoya et al., 2021; Cardona et al., 2020; 
Talamini et  al., 2022). Specific pieces may evoke recollections of 
particular moments or emotional experiences, leading to 
corresponding emotional reactions (Baird et al., 2018). Additionally, 
music can create various emotional atmospheres, spurring listeners’ 
imagination and immersing them into the musical experience, further 
deepening their emotional engagement. The processing of musical 
information in the brain involves multiple areas (Pando-Naude et al., 
2021; Samiee et al., 2022; Williams et al., 2022). Damage to the right 
temporal lobe can impair musical abilities, confirming the involvement 
of the brain’s right hemisphere in music processing (Särkämö et al., 
2010; Sihvonen et  al., 2016; Wilson and Saling, 2008). However, 
damage to the left hemisphere can also cause difficulties in music 
recognition, indicating the necessity of both hemispheres in 
understanding music (Schuppert, 2000). The brain’s limbic system 
plays a vital role in processing musical emotions; the amygdala 
connects different brain regions to manage music processing, and the 
anterior cingulate cortex regulates emotions.

The brain processes music and language through some similar 
mechanisms. For example, the rhythm of music and the grammatical 
structure of language both stimulate the Broca’s area in the left 
hemisphere, a region closely associated with language processing 
(Meister et al., 2004; Özdemir et al., 2006). This suggests an overlap in 
the neural processing of these two forms of information. Research has 
shown that musical education can enhance children’s language skills, 
including vocabulary, grammar comprehension, and verbal expression 
(Caracci et al., 2022; Lee and Ho, 2023). Musical activities, such as 
singing and rhythm exercises, can improve motivation and 
effectiveness in language learning (Good et  al., 2015). Therefore, 
music can enhance the language abilities of groups with language 
impairments. In music therapy, activities like singing and rhythm 
exercises can boost the language comprehension and vocabulary usage 
of children with autism (Chanyanit et al., 2019; Christensen, 2021). 
The repetitive patterns in music aid in reinforcing memory and 
language learning, making it easier for children to acquire new 
vocabulary and language structures (Falk et al., 2014). On the other 
hand, in receptive music therapy modalities such as Semi directive 
music imagination and song discussions, therapists facilitate patients’ 
acquisition of positive emotional experiences through verbal 
interactions (Gao, 2011).

Thus, there exists a close connection between music and language, 
and brainwave signals serve as a method for studying brain activity, 
which can be applied to examine the relationship between musical and 
linguistic expression at the neural level. In music therapy, especially 
the receptive music therapy, therapists need to engage in dialog with 
patients and monitor their emotional changes. Electroencephalography 
(EEG), with its high temporal resolution, captures the brain activity 
during music and language processing. It is beneficial for music 

therapists to continuously monitor changes in patients’ emotions. 
With the advancement of machine learning, this technology is 
increasingly used to analyze and model brainwave signals. Besedová 
et al. achieved accuracies of 82.9 and 82.4%, respectively, by comparing 
brainwave signals from musically trained individuals and those 
without musical training while listening to music and foreign 
languages, using neural networks for classification (Besedová et al., 
2019). Bo et  al. employed SVM algorithms to analyze brainwave 
signals from listening to music of different emotions, achieving an 
accuracy of 66.8% (Bo et  al., 2019). The establishment of EEG 
classification models can be  applied in various fields such as the 
treatment of neurological diseases and brain-computer interfaces. For 
instance, by analyzing the EEG signals of patients with depression 
while they listen to music with different emotional tones, doctors can 
more accurately assess the patients’ emotional states.

To investigate the relationship between music and language, this 
study recruited 120 subjects and collected their EEG data under two 
conditions: during quiet and speaking, while exposed to different 
emotional music stimuli. Regarding EEG acquisition equipment, 
we developed a customized EEG cap based on OpenBCI to enhance 
the comfort of the data collection process. For EEG signal analysis, 
we  employed Analysis of Variance (ANOVA) and independent 
samples t-tests to examine the differences in brain activity under 
different conditions. Additionally, we utilized neural networks and 
other machine learning algorithms to construct classification models 
for EEG signals under various emotional music stimuli, comparing 
the effects of different algorithms and EEG features on classification  
performance.

Section 2 of this paper introduces the EEG acquisition equipment 
developed in this study, the data collection process, and the data 
processing approach. Section 3 presents the results of EEG signal 
analysis based on ANOVA and independent samples t-tests, as well as 
a comparison of the performance of different classification models. 
Section 4 discusses of the experimental results. The conclusion is 
provided in section 5.

2 Materials and methods

2.1 EEG signal acquisition device

This study developed a portable EEG signal acquisition device 
based on the OpenBCI EEG hardware platform, enabling the 
acquisition of EEG signals from five frontal positions: F7, Fp1, Fz, Fp2, 
and F8. The OpenBCI EEG hardware platform, an open-source EEG 
signal acquisition system, offers low cost and high customizability, 
supporting up to 16-channel EEG signal acquisition. Therefore, it is 
suitable for modifications and secondary development.

Instead of using an EEG cap made from PLA material, this study 
employed a cap made of cotton fabric, as shown in Figure 1 Compared 
to the PLA material EEG cap from OpenBCI (Figure 1A), the cotton 
fabric cap (Figure  1B) provides better flexibility, significantly 
enhancing comfort during prolonged wear. Additionally, the cotton 
cap ensures a closer fit between the electrodes and the skin, 
accommodating different head shapes and sizes, thereby improving 
the quality and stability of signal acquisition.

For the power module design, this study selected a 2000mAh, 
3.7 V lithium battery and incorporated a Type-C interface-based 
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lithium battery charging module. Considering the power consumption 
and operational efficiency of the EEG signal acquisition device, this 
battery model was chosen for its ability to provide stable power over 
an extended period. The charging module is equipped with four LED 
indicators to display the battery status: when all four lights are on, the 
battery is fully charged; when only one light is on and flashing, the 
battery is low and needs recharging. This design effectively provides 
users with information about the device’s battery status. In terms of 
safety, the charging module offers overcharge protection, overvoltage 
protection, and short-circuit protection, thus preventing overcharging, 
over-discharging, and short-circuit hazards. Additionally, the charging 
module can boost the voltage from 3.7 V to 5 V, meeting the power 
requirements of the hardware device. The complete EEG signal 
acquisition device is shown in Figure 1C.

2.2 Design of EEG acquisition process

To capture the changes in EEG activity under different emotional 
musical environments, when the subjects are in quiet and speaking 
states, we designed a comprehensive EEG data acquisition process. 
This process facilitates the acquisition of EEG changes under musical 
stimuli conveying emotions of fear, sadness, anger, calmness, 
happiness, and tension, with a particular focus on EEG signals during 
speaking states. This preparation serves as preliminary groundwork 
for EEG analysis in subsequent language interventions. The EEG 
electrodes are placed at the frontal locations F7, Fp1, Fz, Fp2, and F8. 
The preparation phase prior to data acquisition involves the 
following steps:

 (1) Subjects fill out basic information, including age, gender, and 
experiment number, which helps differentiate subjects in 
subsequent data analysis.

 (2) With the assistance of experiment personnel, subjects wear the 
EEG cap, ensuring that the electrodes are in the correct 
positions and that the acquisition software correctly receives 
data from the five channels.

 (3) Before the actual data acquisition, subjects are asked to close 
their eyes and listen to a 90-s piece of instrumental music. This 
music aims to stabilize the emotional state of the subjects, 
equalizing the mood among all subjects as much as possible to 
minimize its impact on data acquisition.

After the preparation phase, subjects open their eyes and undergo 
the formal EEG data acquisition process. This process is divided into 
six stages, each featuring a different emotional music piece. The 
procedure for each stage, as shown in Figure 2, begins with a prompt 
played by the acquisition software before the music starts, instructing 
subjects that they will listen to a piece of music and reminding them 
to read textual material at the 40-s mark. This reduces the risk of 
subjects not completing the experiment steps due to unclear 
objectives, thereby ensuring the quality of the data and the smooth 
progression of the acquisition process. After the prompt, there is a 3-s 
period of silence during which no sensory stimulation occurs. At the 
40-s mark of the music playback, subjects are required to read the text 
that appears on the screen, while the music continues to play. After the 
music ends, there is another 3-s period of silence before moving to the 
next stage of data acquisition.

2.3 EEG data acquisition

In this study, a total of 120 subjects were recruited, including 38 
males and 82 females, all of whom were students aged between 19 and 
26 years. The final dataset comprises 720 min of EEG data and 720 min 
of audio data. The music selected as stimuli comprised classical, pop, 
and film scores expressing six different emotions. EEG data acquisition 
took place in a quiet indoor environment, with subjects wearing 
headphones and an EEG cap throughout to minimize environmental 
noise disturbances. The acquisition process is as follows:

 (1) Experiment personnel assist each subject in wearing the EEG 
cap and headphones. This ensures good contact between the 
electrodes and the skin, reducing signal interference. The 
headphones isolate external noise while playing the 
selected music.

 (2) Experiment personnel operate specialized EEG acquisition 
software to start the acquisition process. Before starting data 
acquisition, personnel guide subjects in filling out basic 
information and adjusting the equipment to ensure the 
appropriateness and comfort of the EEG cap and headphones.

 (3) Subjects begin EEG data acquisition under voice prompts from 
the software. During this phase, subjects sit quietly, relax, and 
listen to the music being played. To minimize the interference of 
physical movements with the EEG signals, subjects are instructed 

FIGURE 1

EEG cap. (A) PLC materials of cap from OpenBCI. (B) Cotton fabric cap this study used. (C) The complete EEG signal acquisition device.

https://doi.org/10.3389/fnins.2025.1461654
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2025.1461654

Frontiers in Neuroscience 04 frontiersin.org

to remain as still as possible. Meanwhile, experiment personnel 
monitor the entire process to ensure smooth data acquisition.

 (4) After hearing the voice prompt that the test has concluded, the 
entire acquisition process ends. At this point, experiment 
personnel assist subjects in removing the EEG cap and headphones.

2.4 Data alignment and segmentation

The EEG data collected through the acquisition software are not 
time-aligned. In the data acquisition for each stimulus, the start time 
of the data acquisition precedes the start time of the stimulus 
playback, and the end time of data acquisition is later than the end 
time of the stimulus playback, with a time difference of approximately 
0.3 s. Therefore, recorded data timestamps do not correspond to the 
stimulus playback times. Data needs to be trimmed to align with the 
stimulus playback times to prevent out-of-bound data from affecting 
the analysis. The software records timestamps for each sampling 
point as well as the start and end timestamps of the stimulus playback. 
Therefore, time alignment can be based on these timestamps. After 
alignment, the data are segmented into 5-s slices. Since human 
emotional changes are dynamic, segmenting the long-duration EEG 
signals allows for a more detailed analysis of the emotional 
change process.

2.5 EEG preprocessing workflow

Common EEG frequency bands include delta (δ), theta (θ), alpha 
(α), beta (β), and gamma (γ), thus, during the preprocessing of EEG 
data, it is essential to extract EEG waveforms from these five bands 
and remove waveforms from other frequency bands.

The original EEG signals from five channels had a sampling rate of 
1,000 Hz. For EEG research, this sampling rate is excessively high; 
hence it was downsampled to 256 Hz to reduce the computational load 
in subsequent analyses. Centering each channel’s EEG signals to have 
a zero mean value minimizes baseline shifts caused by noise. A notch 
filter was primarily used to remove the influence of the 50 Hz power 
line frequency, retaining useful frequency bands. These bands were 
filtered using Butterworth filters with frequency ranges of 0.5–4, 4–8, 
8–14, 14–30, and 30–44 Hz, ultimately yielding five frequency bands 
of EEG signals for each channel. Figure 3 shows the EEG signals across 
these five bands for a subject in a sad music setting.

2.6 Feature extraction

For the extraction of statistical features, the study identified the 
following characteristics from the collected EEG signals, where X  
represents the EEG signals:

Mean: The mean is used to measure the average potential of EEG 
signals over a period, as shown in Equation 1.
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Variance and Standard Deviation: These two features are used to 
assess the stability and variability of the amplitude of EEG signals, as 
shown in Equations 2, 3.
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Skewness: Skewness measures the symmetry of the distribution of 
EEG signal amplitudes, as indicated in Equation 4.
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Kurtosis: Indicates the fluctuation of outliers in EEG signals, as 
shown in Equation 5.

 

( ) ( )
( )( )( )

[ ]
( )
( )

( )
( )( )

2

1

1 3 1
1 2 3 2 3−

 −
 + − = − − − − − −
  
 

∑
N

i

X i
N N E X N

K X
N N N D X N N

 

(5)

This study also extracted features from the frequency domain, 
specifically the power spectral density and average power of the EEG 

FIGURE 2

The formal acquisition process. Begins with a prompt played by the acquisition software before the music starts, instructing subjects that they will 
listen to a piece of music and reminding them to read textual material at the 40-s mark. This reduces the risk of subjects not completing the 
experiment steps due to unclear objectives, thereby ensuring the quality of the data and the smooth progression of the acquisition process. After the 
prompt, there is a 3-s period of silence during which no sensory stimulation occurs. At the 40-s mark of the music playback, subjects are required to 
read the text that appears on the screen, while the music continues to play. After the music ends, there is another 3-s period of silence before moving 
to the next stage of data acquisition.
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signals. The calculation of the power spectrum involves Fourier 
transforming the EEG signal as shown in Equation 6:
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where N  is the total number of EEG signal sampling points.
From Equation 6, the formula for calculating the power spectral 

density is given by Equation 7:
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where [ ]X k  is the modulus of [ ]X k  (i.e., the absolute value of 
the complex number), representing the amplitude of the 
frequency component.

In EEG signal processing, Wavelet Transform is widely used for 
feature extraction, denoising, and signal classification (Rioul and 
Vetterli, 1991). Since EEG signals are non-stationary with features 
that vary over time, traditional Fourier Transform may not effectively 
capture all time-frequency information when processing EEG data. 
The introduction of Wavelet Transform allows researchers to more 

precisely analyze the time-frequency characteristics of EEG signals. 
For instance, in denoising, Wavelet Transform can effectively 
separate noise from useful signal components (Alyasseri et al., 2020). 
By selecting appropriate wavelet bases and decomposition levels, 
EEG signals can be  decomposed into sub-bands of different 
frequencies. Noise typically appears in specific frequency sub-bands, 
and by thresholding and reconstructing, noise can be  effectively 
removed while retaining key signal information.

In terms of feature extraction, Wavelet Transform can extract 
time and frequency-related features from EEG signals, which are 
crucial for the classification and analysis of EEG signals. For example, 
in the analysis of sleep stages, detection of epileptic seizures, and 
recognition of brain activity patterns, Wavelet Transform plays a 
significant role. Additionally, Wavelet Transform is used to study the 
dynamic properties of brain functional connectivity and neural 
networks. By analyzing the time-frequency relationships between 
different brain regions, researchers can gain deeper insights into 
brain mechanisms and the characteristics of various 
neurological disorders.

Wavelet Transform extracts both approximate and detailed 
coefficients from EEG signals, representing the low-frequency and 
high-frequency characteristics of the signal, respectively. In this study, 
db4 wavelets are used to process EEG signals. Assuming low-pass filter 
[ ]h n  and high-pass filter [ ]g n  filter the EEG signal x , the formulas for 

FIGURE 3

EEG waveforms across five frequency bands.
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calculating approximate and detailed coefficients are shown in 
Equation 8 and Equation 9:
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k
a n h k x n k
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In practical applications, [ ]h n  and [ ]g n  are pre-computed 
sequences, and 1a  and 1d  can be iteratively decomposed further using 
the Equation 10 and Equation 11:
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where i is the iteration level of wavelet packets. In this study, EEG 
signals are decomposed using wavelet packets, resulting in wavelet 
packet coefficients corresponding to five types of waveforms, with the 
decomposition level set to eight layers.

2.7 Dimensionality reduction using linear 
discriminant analysis

Prior to constructing the classification models, it was necessary to 
perform dimensionality reduction on the extracted features to 
minimize redundancy, thereby facilitating the establishment of 
subsequent classification models. Linear Discriminant Analysis (LDA) 
was employed for this purpose. LDA is a classical linear learning 
method aimed at reducing dimensions while preserving the 
distinction between categories. It is a supervised learning technique 
for dimensionality reduction that maintains maximum separability 
among the classes.

The concept of LDA involves projecting data into a lower-
dimensional space to maximize the aggregation of data within the 
same class and maximize the dispersion among different classes. 
Suppose there is an EEG dataset X , the within-class scatter matrix wS  
for X  measures the dispersion of data points within a class relative to 
its class center (mean). The within-class scatter matrix for each class 
can be defined by Equation 12:
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where iX  is the sample set of class i and im  is the mean of class i. 
The total within-class scatter matrix wS  is the sum of the scatter 
matrices of all classes which can be defined by the Equation 13:
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The between-class scatter matrix bS , which measures the 
dispersion between the centers (means) of different classes, is 
calculated using Equation 14:
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where iN  is the number of samples in class i and m is the mean of 
all samples. The goal of LDA is to find the optimal projection direction 
w that maximizes the between-class scatter while minimizing the 
within-class scatter. This is achieved by maximizing the Fisher 
criterion function in Equation 15:
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Maximizing ( )J w  allows the projected data points to be as 
separate as possible between different classes (high between-class 

FIGURE 4

LDA dimension reduction effect diagram of three types of EEG features. (A) The dimension reduction of statistical measures. (B) The dimension 
reduction of power spectral density. (C) The dimension reduction of wavelet decomposition coefficient.
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scatter) and as close as possible within the same class (low 
within-class scatter). The LDA algorithm’s effectiveness was 
demonstrated in Figure  4, where the dimensionality 
reduction effects of EEG statistical measures, power spectrum, and 
wavelet coefficients are shown. Figure 4A shows that most data 
points are not well-separated, clustering together. Thus, LDA’s 
dimensionality reduction for statistical measures was not very 
effective. Figure 4B shows a more dispersed data cluster, suggesting 
a better outcome, while Figure  4C shows that EEG data were 
roughly divided into six clusters, corresponding to six 
emotional categories.

2.8 Construction of fully connected neural 
network

This study primarily establishes a classification model for EEG 
data using fully connected neural network (FCNN) and compares its 
performance with other machine learning algorithms. A FCNN, also 
known as a Multilayer Perceptron (MLP), is a type of deep learning 
model that is commonly employed to address a variety of machine 
learning challenges, including both classification and regression tasks. 
It consists of multiple layers including an input layer, several hidden 
layers, and an output layer.

The input layer x  primarily serves to receive data, with each input 
feature corresponding to a neuron in the input layer. The hidden layer 
z acts as the network’s intermediate layer, responsible for learning 
abstract representations of the data. A typical multilayer perceptron 
may have multiple hidden layers, each containing several neurons. 
Every neuron is connected to all neurons in the preceding layer, hence 
termed “fully connected.”

In the FCNN, each connection is assigned a weight that adjusts 
the strength of the input signal, and the weights between each pair 
of layers can be represented by a matrix W . Each neuron also has a 
bias, represented by a vector b, which helps control the neuron’s 
activation threshold. Weights and biases are parameters that the 
network learns to adjust during training, allowing the network to 
better fit the data.

Activation functions are used at each neuron in the hidden and 
output layers. These functions introduce non-linearity, enabling the 
neural network to learn complex function mappings. Common 
activation functions include the Sigmoid and ReLU (Rectified 
Linear Unit).

Prediction of data in neural networks is carried out through 
forward propagation. Starting with the input layer x , the inputs to the 
hidden layer z are computed using weights W  and biases b, as shown 
in Equation 16, where j  represents the j-th element of hidden layer z
, and n is the number of elements in hidden layer z.

 1

n
j ji i j

i
z w x b

=
= +∑

 
(16)

Equation 16 can be  represented in matrix form to 
simplify expression:

 z Wx b= +  (17)

Assuming the activation function for the hidden layer z is σ , the 
output a of the hidden layer z is given by:

 ( )a zσ=  (18)

The computation from hidden layer z to the output layer o also 
utilizes Equations 17, 18. The neural network depicted in Figure 6 has 
two outputs, representing two classification categories. During the 
training of the model, loss functions are used to assess the discrepancy 
between model predictions and actual values, including mean squared 
error as shown in Equation 19 and cross-entropy as in Equation 20. 
Here, it  represents the true values, and iy  represents the predicted 
values by the neural network.
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The architecture of the EEG emotion classification network 
constructed in this study is shown in Figure 5. This neural network 
consists of 7 layers: one input layer, five hidden layers, and one output 
layer. The neuron counts for each hidden layer are 512, 1,024, 512, 512, 
and 256, respectively. The dimension of the input layer is 5, representing 
the number of dimensions of EEG features reduced by the LDA algorithm. 
The dimension of the output layer is 6, corresponding to 6 emotions.

3 Results and discussion

3.1 Speech duration analysis

This study initially set a 20-s speech duration, but in practice, 
subjects did not require the full 20 s to read the text, necessitating an 
analysis of the actual speech duration. The EEG segments selected 
corresponded to the duration of the material read aloud by the 
subjects. The designated speaking interval was between the 40th and 
60th seconds of a music piece being played, thus, a dual-threshold 

FIGURE 5

EEG emotion classification network structure. The dimension of the input layer is 5, representing the number of dimensions of EEG features reduced 
by the LDA algorithm. The dimension of the output layer is 6, corresponding to 6 emotions.
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method was employed to detect speech endpoints during this interval, 
and to calculate the speech duration, yielding results as shown in 
Figure  6. In Figure  6A, the duration of speech primarily ranged 
between 6 and 14 s. In Figures  6B,C, the starting time of speech 
mainly occurred between the 2nd and 4th seconds of the recorded 
speech, and the end times were primarily between the 6th and 14th 
seconds. Therefore, the EEG segments used in this study were taken 
from the 40th to 45th seconds and the 45th to 50th seconds post-
music stimulus, ensuring that the selected EEG signals corresponded 
to when the subjects were speaking.

3.2 Analysis of significant differences

This study employed ANOVA and independent samples t-test to 
analyze the significant differences in EEG signals. These statistical 
methods were used to examine the differences in EEG signals under 
the stimulation of different emotional music, as well as the distinctions 
between the speaking and quiet states. ANOVA was used to assess the 
overall differences in EEG signals across the different emotional music 
stimuli, while the independent samples t-test was employed to 
compare the differences between the groups.

3.2.1 ANOVA of EEG
An ANOVA was performed on the standard deviations of δ, α, β, 

θ, and γ brainwaves, collected from five channels of 120 subjects while 
they listened to six types of emotional music. This analysis reflects the 
overall differences in the data during time intervals between the 30th 
to 40th seconds and 40th to 50th seconds, corresponding to quiet and 
speaking conditions, respectively. As indicated in Table 1, significant 
differences during the speaking condition were primarily observed 
in the EEG acquisition regions of Fp1, Fz, and Fp2, especially within 
the α, β, and γ bands. This suggests that these areas and frequency 
bands are more sensitive to identifying responses to music under 
different emotional states. The regions F7 and F8 showed no 
significant statistical differences across most bands, which may imply 
that these areas are less sensitive to emotional musical stimuli or that 
the differences are not pronounced enough. The standard deviation 
is a statistical measure used to assess the variability or dispersion of 
data, and changes in EEG standard deviations indicate fluctuations 
in brain electrical activity.

In contrast, the quiet condition’s ANOVA results differed 
markedly. Under quiet conditions, the δ and θ bands showed no 
significant differences in response to the various emotional music 

stimuli. However, significant differences were observed in the β and γ 
bands within the F8 acquisition region.

Table 2 presents the results after applying Bonferroni correction 
to the data from Table  1. In the α frequency band, although no 
significant differences were observed in the Fp2 and Fz regions during 
the quiet state, significant changes were still evident in the Fp1, Fp2, 
and Fz regions during the speaking state. The p-values for these 

FIGURE 6

(A) The duration of speech primarily ranged between 6 and 14 s. (B,C) The starting time of speech mainly occurred between the 2nd and 4th seconds 
of the recorded speech, and the end times were primarily between the 6th and 14th seconds.

TABLE 1 ANOVA results of δ, α, β, θ, and γ brainwaves, collected from five 
channels of 120 subjects.

Band Acquisition 
area

p-value 
(Speaking)

p-value 
(Quiet)

α F8 0.2026 0.1337

Fp2 <0.0001 0.0046

Fz <0.0001 0.0207

Fp1 <0.0001 0.0005

F7 0.3640 0.7387

β F8 0.1518 0.0093

Fp2 <0.0001 <0.0001

Fz <0.0001 <0.0001

Fp1 <0.0001 <0.0001

F7 0.1481 0.7372

θ F8 0.5637 0.3205

Fp2 <0.0001 0.3821

Fz 0.0217 0.8137

Fp1 <0.0001 0.1843

F7 0.7788 0.5492

δ F8 0.7450 0.4685

Fp2 0.0005 0.3710

Fz 0.7058 0.9556

Fp1 <0.0001 0.4700

F7 0.7445 0.5418

γ F8 0.0517 0.0256

Fp2 <0.0001 <0.0001

Fz <0.0001 <0.0001

Fp1 <0.0001 <0.0001

F7 0.1549 0.6314

The p-values less than 0.05 are highlighted in bold, indicating a significant difference.
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regions during speaking were significantly lower than 0.05, and after 
Bonferroni correction, they remained below 0.05. This suggests that 
the impact of emotional music stimuli on α waves is more pronounced 
during speech, whereas its effect diminishes in the quiet state.

In the β frequency band, similar significant differences were found 
in the speaking state. The p-values for the Fp1, Fp2, and Fz regions in the 
speaking state demonstrated significant differences, and after Bonferroni 
correction, the p-values remained <0.05. In contrast, these regions 
showed weaker significant differences during the quiet state, with the 
corrected p-values significantly increased. Notably, the F7 and F8 regions 
did not exhibit significant differences. This indicates that the influence 
of emotional music stimuli on β waves is more prominent during speech.

In the θ and δ frequency bands, although significant differences 
were observed in the Fp2 and Fp1 regions during the speaking state, 
these effects almost disappeared during the quiet state. In the analysis 
of θ waves, significant differences were found in the Fp2 and Fp1 
regions during speaking, and these differences remained significant 
after Bonferroni correction, while they were no longer significant in 
the quiet state, indicating that the effect of speaking on θ waves is more 
pronounced. Similarly, δ waves showed significant differences in the 
Fp1 and Fp2 regions during speech, with the influence greatly 
diminished in the quiet state.

In the γ frequency band, significant differences were observed in 
both the speaking and quiet states, particularly in the Fp2, Fz, and Fp1 
regions. This suggests that the impact of different emotional music 
stimuli on γ waves in the Fp2, Fz, and Fp1 regions demonstrates 
significant differences in both speaking and quiet states.

3.2.2 Independent sample t-tests of EEG
Independent sample t-tests were conducted on the standard 

deviations of δ, α, β, θ, and γ waves collected from five channels of 120 
subjects while they spoke under different emotional music 
environments. The results, depicted in Figure  7A, consist of 25 
matrices representing the five channels across five frequency bands. 
Each matrix contains 36 cells, corresponding to pairwise comparisons 

TABLE 2 Bonferroni corrected of the ANOVA results.

Band Acquisition 
area

p-value 
(Speaking)

p-value 
(Quiet)

α F8 1 1

Fp2 <0.0001 0.23

Fz <0.0001 1

Fp1 <0.0001 0.025

F7 1 1

β F8 1 0.465

Fp2 <0.0001 <0.0001

Fz <0.0001 0.0006

Fp1 <0.0001 <0.0001

F7 1 1

θ F8 1 1

Fp2 0.0003 1

Fz 1 1

Fp1 <0.0001 1

F7 1 1

δ F8 1 1

Fp2 0.025 1

Fz 1 1

Fp1 0.0001 1

F7 1 1

γ F8 1 1

Fp2 <0.0001 0.0002

Fz <0.0001 0.0002

Fp1 <0.0001 0.0001

F7 1 1

The p-values less than 0.05 are highlighted in bold, indicating a significant difference.

FIGURE 7

(A) Differences in EEG frequency bands during speaking. (B) Differences in EEG frequency bands under quiet conditions.
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FIGURE 8

Test results based on statistical measures. (A) The trend of speaking test set accuracy. (B) The trend of quiet test set accuracy. (C) The confusion matrix 
of speaking test results. (D) The confusion matrix of quiet test results. (E) The ROC curve of speaking test results. (F) The ROC curve of quiet test results.

between the six emotions: fear, sadness, anger, calmness, happiness, 
and tension. Black cells indicate significant differences (p-value <0.05), 
while white cells indicate no significant differences (p-value ≥0.05).

From Figure 7A, it is evident that fear significantly differs from the 
other five emotions across all EEG acquisition areas and frequency bands. 
Sadness primarily shows significant differences with calmness, happiness, 
and tension, particularly in the regions of Fp1, Fz, and Fp2. In contrast, 
calmness, happiness, and tension show no significant differences, 
suggesting similar EEG activity under these emotional stimuli during the 
experimental music exposure. Additionally, α waves exhibit greater 
variability between emotions compared to other EEG waveforms.

The analysis results of EEG differences under different emotional 
music stimuli in a quiet state are shown in Figure  7B. Fear shows 
significant differences with calmness, happiness, and tension, mainly in 

the β and γ frequency bands. Similarly, tension exhibits significant 
differences in the β and γ frequency bands compared to fear, sadness, 
and anger. Among them, the δ and θ frequency bands of the EEG do not 
show significant differences under different emotional music stimuli, 
which is also reflected in the ANOVA analysis of the EEG signals. The 
differences in other frequency bands are also less pronounced compared 
to the differences observed during speaking. This may indicate that EEG 
activity is more active during speaking than in a quiet state.

3.3 Pattern recognition of EEG

Pattern recognition in EEG mainly involves classifying EEG 
signals to construct classification models. Based on the differential 
analysis of EEG signals in Session 3.2, there are certain differences 
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in brain activity between quiet states and speaking states. By 
comparing the data in Table 2, significant differences in the θ and δ 
frequency bands were observed between the Fz1 and Fz2 regions 
during speech, whereas no significant differences were found 
between these two channels in the quiet state. In the α band, 
significant differences were found between the Fz2 and Fz regions 
during speech, but no significant differences were observed in the 
quiet state. According to Figure  7, there are more significant 
differences in EEG under different musical stimuli during speech 
than in the quiet state, with these differences being more 
pronounced in the δ, θ, and α bands. Consequently, this study 
separately modeled EEG classification for quiet and speaking states. 
Additionally, this research compared the classification performance 
of a FCNN with other machine learning algorithms such as 
AdaBoost (Al-Hadeethi et al., 2021), GaussianNB (Escobar-Ipuz 
et  al., 2023), GradientBoost, KNN (Murariu et  al., 2023), 
RandomForest (Chaibi et al., 2024), and SVM (Boddu and Kodali, 
2023) in classifying EEG signals under various musical 
environments. The comparison also included the effectiveness of 
different features used and the performance differences between the 
FCNN and other machine learning algorithms. In the speaking 
state, the dataset consists of EEG data recorded from subjects under 
different emotional music stimuli for 40–50 s. Each sample 
corresponding to 5 s of extracted EEG features. The dataset is split 
into training and testing sets in an 8:2 ratio, with 1,152 samples in 
the training set and 288 samples in the testing set. In the quiet state, 
the dataset contains EEG data recorded from subjects under 
different music stimuli for 30–40 s, and is similarly divided into 
training and testing sets.

3.3.1 Classification experiments based on 
statistical measures

In this study, the mean, variance, standard deviation, kurtosis, 
skewness, and average power of EEG signals across five channels and 
five frequency bands were used to classify EEG signals under speaking 
and calmness states. After dimension reduction using the LDA 
algorithm, the EEG feature data was input into a neural network for 
50 training epochs. The highest accuracy for the EEG classification 
model in the speaking state was 40.13%, occurring in the model from 
the 41st training epoch. Figure 8A shows the training process for the 
speaking state EEG classification model, where accuracy fluctuated 
around 39% after the 10th training epoch, indicating poor model 
performance. Figure 8B shows the training results for the calmness 
state EEG classification model, where accuracy exhibited significant 
fluctuations and began to rise after 30 training epochs, but overall 
performance was similarly poor, with the highest accuracy reaching 
38.62% in the 47th training epoch.

Following the testing on the test set, the confusion matrix of the 
model is shown in Figures 8C,D. The indices in the matrix correspond 
to the sequence numbers of emotion-evoking music samples used 
during the EEG data acquisition process. Figure  8C depicts the 
confusion matrix for the EEG classification model during the speaking 
state, whereas Figure 8D illustrates the matrix for the quiet state. From 
the confusion matrices in Figures 8C,D, it can be observed that the 
quiet state classification model exhibits higher accuracy for the labels 
of sadness and tension, but lower accuracy for anger. In the diagrams, 
5.19% of the data under the fearful label were misclassified as sadness, 
suggesting that the EEG signals induced by fear-evoking music share 

certain similarities in mean, variance, standard deviation, kurtosis, 
skewness, and average power with those induced by sadness, making 
it challenging for the model to distinguish between these two emotions. 
Similarly, 4.15% of the angry labels were classified as tension, indicating 
that the EEG signals triggered by anger-evoking music show similarities 
in five statistical measures with those associated with tension. In 
contrast, under the quiet state, the highest correct classification rate 
was for tension at 9.66%, followed by anger and happiness each at 
6.21%, and sadness at 5.86%, which is a notable decrease compared to 
the speaking state model. Notably, 4.15% of the angry labels were also 
misclassified as tension, similar to the speaking state confusion matrix.

The Area Under Curve (AUC) is a metric used to evaluate 
classification performance; higher AUC values indicate better 
performance. According to the ROC (Receiver Operating 
Characteristic Curve) graph in Figure 8E and the AUC values for each 
category, the model in the speaking state performs best in classifying 
the calm category with an AUC of 0.77, while the sad category shows 
the lowest performance, with an AUC of 0.69. Figure 8F reveals that 
in the quiet state, the model achieves the best classification 
performance for the angry category with an AUC of 0.75, whereas the 
performance for calmness is the lowest, with an AUC of 0.65.

Table 3 compares the classification results of the FCNN model 
against six other machine learning algorithms using the speaking 
state dataset. The GaussianNB model showed the highest accuracy on 
the test set at 41.52%, while the KNN model performed the poorest 
with an accuracy of 32.87%. It is noted that the RandomForest model 
exhibits a perfect accuracy of 100% on the training set, but a 
significant drop to 36.33% on the test set, indicating a clear overfitting 
issue. Similarly, the GradientBoost also shows signs of overfitting. For 
models trained with the quiet state dataset, the FCNN model 
displayed the best classification performance on the test set, with an 
accuracy of 38.62%, while the KNN model showed the lowest 
accuracy at 32.87%. Both the RandomForest and GradientBoost 
models exhibited overfitting in this scenario as well.

TABLE 3 The comparison of classification models based on statistical 
measures.

Experimental 
model

Training set 
accuracy (%)

Test set 
accuracy (%)

AdaBoost_speak 42.12 38.06

AdaBoost_quiet 43.16 32.75

FCNN_speak 44.63 40.13

FCNN_quiet 44.98 38.62

GaussianNB_speak 43.07 41.52

GaussianNB_quiet 40.22 34.13

GradientBoost_speak 84.68 37.02

GradientBoost_quiet 84.08 35.86

KNN_speak 56.14 32.87

KNN_quiet 55.79 30.34

RandomForest_speak 100.00 36.33

RandomForest_quiet 100.00 33.44

SVM_speak 53.02 39.10

SVM_quiet 52.24 36.20

The models with the best classification performance for speaking and quiet states have been 
highlighted in bold.
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FIGURE 9

Test results based on spectral density. (A) The trend of speaking test set accuracy. (B) The trend of quiet test set accuracy. (C) The confusion matrix of 
speaking test results. (D) The confusion matrix of quiet test results. (E) The ROC curve of speaking test results. (F) The ROC curve of quiet test results.

3.3.2 Classification experiments based on power 
spectral density

In this section, power spectral densities were extracted from EEG 
signals across five channels to construct FCNN classification models 
for both speaking and quiet states. After dimension reduction using 
the LDA algorithm, the power spectral data was input into the FCNN 
network for 50 training epochs. The trend in classification accuracy 
for the speaking state EEG model is shown in Figure 9A, with the 
highest accuracy of 59.16% occurring in the model from the 41st 
training epoch. The classification accuracy using the power spectral 
density was 19.03% higher than using statistical measures. Figure 9B 
illustrates the trend in classification accuracy for the quiet state EEG 
model, reaching a peak accuracy of 61.72% in the 50th training 
epoch, showing higher accuracy compared to the speaking state 

model and a 23.10% improvement over statistics-based classification. 
The accuracy trend in this figure shows noticeable fluctuations but an 
overall upward trend.

After training the classification model using power spectral 
density, the confusion matrix for the test set is shown in 
Figures 9C,D. Compared to Figures 8C,D, the diagonal elements of the 
categories in Figures 9C,D are significantly darker, indicating reduced 
confusion between different emotions. From the confusion matrix in 
Figure  9C for the speaking state, improvements in distinguishing 
between anger and tension are evident, with correct classification 
percentages of 12.61 and 11.67%, respectively, indicating that power 
spectral density features can better differentiate emotional states in 
EEG during speaking. In Figures 4, 9C. 15% of the test dataset’s sad 
category was classified as tension compared to 2.77% in Figure 9C, 
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suggesting a higher similarity between EEG signals during sad and 
tense musical stimuli in this model compared to the one based on 
statistical measures. Additionally, the percentage of fear labeled as 
sadness decreased from 5.19 to 0.69%, showing a significant reduction. 
For the quiet state confusion matrix in Figure 9D, the best classification 
was for the tense emotion, with a correct classification percentage of 
12.76%. The angry category, representing 3.10% of the test dataset, was 
classified as tension, making up the largest proportion of classification 
errors. Compared to Figure  8D, the model showed significant 
improvement in classifying the calm category, while the percentage of 
fear classified as sadness increased, with other misclassification 
percentages either decreasing or remaining unchanged.

Figures 9E,F show the ROC curve based on the test results for 
power spectral density, indicating the highest classification performance 
for the angry category in the speaking state EEG model, with an AUC 
value of 0.92, significantly higher than for other categories, suggesting 
that the power spectral density of EEG signals during anger is distinctly 
different from that of other emotional states, making it easier for the 
FCNN algorithm to distinguish. The AUC values for sadness and 
happiness are both 0.83; the model’s classification ability for the calm 
category was the lowest, with an AUC of 0.79. In the quiet state, the 
EEG classification model showed the highest classification performance 
for the calm category, with an AUC of 0.89, and the lowest for the anger 
category, with an AUC of 0.81, contrasting with the speaking state 
model’s classification effects. These results indicate that the brain’s 
electrical activity reflects emotional responses differently in different 
states. This outcome suggests that EEG power spectral density features 
provide more information about EEG signals, potentially reflecting 
changes in brain activity across different emotional states more 
accurately, thereby achieving better results in classification tasks.

Table 4 compares the effects of different classification models based 
on power spectral density. The FCNN models performed best in both 
speaking and quiet states in the test dataset, with accuracies of 59.16 and 

61.72%, respectively. Compared to Table 3, the classification effects of 
different models using power spectral density as a feature varied 
significantly. In the speaking state models, the lowest performing classifier 
was the KNN algorithm, with an accuracy of 29.06%, indicating 
overfitting as its training set accuracy was 54.67%. The GradientBoost and 
RandomForest models also showed signs of overfitting. In quiet state 
models, the lowest performing classifiers were GradientBoost and 
AdaBoost, with accuracies of 30.00%. Tables 3, 4 demonstrate the 
significant impact of different features on model performance. Power 
spectral density as a feature performed better in some models (such as 
FCNN), indicating its effective representation of EEG signal characteristics.

3.3.3 Classification experiments based on wavelet 
decomposition coefficient

Prior to wavelet packet decomposition, the EEG signals underwent 
band-pass filtering between 0.5 and 44 Hz and a notch filtering at 50 Hz. 
After obtaining the approximate and detailed coefficients at various 
levels, the coefficients corresponding to five EEG bands and the 
low-frequency bands were extracted as features for constructing the 
FCNN models for classifying speaking and quiet states. Power spectral 
data were dimensionally reduced using the LDA algorithm and input 
into the FCNN for 50 training epochs. As seen in Figures 10A,B, the 
classification performance based on wavelet packet decomposition 
significantly outperformed that based on power spectra. Figure 10A 
shows the accuracy trend of the model for speaking states on the test set, 
with the highest accuracy reaching 95.84% in the 36th training epoch. 
Figure 10B shows the accuracy trend for the quiet state model, where 
the highest accuracy was 96.55%, achieved after two training epochs. 
Notably, the accuracy in the quiet model training displayed significant 
fluctuations and a downward trend, indicating potential overfitting.

Confusion matrices of Figures 10C,D reveal high classification 
accuracy for both models across all categories. However, in the 
speaking state model’s confusion matrix (Figure 10C), a significant 
misclassification rate of 1.04% of the sadness labels was misclassified 
as tension. In the quiet state model’s confusion matrix (Figure 10D), 
the classification performance for sadness labels was notably poorer 
compared to other categories, with 0.69% of the test set data 
misclassified as happiness.

Figure 10E shows the ROC curve of the speaking state model, 
highlighting optimal classification performance for fearful and calm 
categories, both achieving an AUC value of 1.0. The category with the 
lowest performance was sadness, with an AUC value of 0.95. In 
Figure 10F, the speaking state model showed the best classification 
performance for the categories of fear and tension, both with an AUC 
value of 1.0.

Table  5 compares the performance of different classification 
models based on wavelet packet decomposition coefficients. The 
AdaBoost algorithm showed significantly lower classification 
performance on the training set compared to other algorithms, and 
also achieved lower accuracy on the test set. Conversely, the FCNN 
algorithm displayed the highest accuracies, 95.84% for speaking 
states and 96.55% for quiet states. Both GradientBoost and 
RandomForest algorithms achieved 100% accuracy on the training 
set. The superior performance of using wavelet packet decomposition 
features for classification over those based on statistical measures and 
power spectral density is evident when comparing Table  5 with 
Tables 3, 4.

TABLE 4 The comparison of the performance of different classification 
models based on power spectral density.

Experimental 
model

Training set 
accuracy (%)

Test set 
accuracy (%)

AdaBoost_speak 35.38 33.91

AdaBoost_quiet 37.62 30.00

FCNN_speak 57.43 59.16

FCNN_quiet 61.72 61.72

GaussianNB_speak 39.53 41.17

GaussianNB_quiet 40.22 34.13

GradientBoost_speak 85.98 34.60

GradientBoost_quiet 84.42 30.00

KNN_speak 54.67 29.06

KNN_quiet 55.01 31.37

RandomForest_speak 100.00 38.75

RandomForest_quiet 100.00 31.37

SVM_speak 46.71 38.40

SVM_quiet 48.44 34.82

The models with the best classification performance for speaking and quiet states have been 
highlighted in bold.
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FIGURE 10

Test results based on wavelet decomposition coefficients. (A) The trend of speaking test set accuracy. (B) The trend of quiet test set accuracy. (C) The 
confusion matrix of speaking test results. (D) The confusion matrix of quiet test results. (E) The ROC curve of speaking test results. (F) The ROC curve 
of quiet test results.

4 Discussion

This study primarily investigated the EEG signals of individuals 
while speaking and at quiet under the stimulation of different 
emotional music, and modeled the classification of these EEG signals. 
Analysis of the differences in EEG signals revealed that brain activity 
under different emotional music stimuli varies, and there are also 
distinctions between EEG signals when individuals are speaking 
versus at quiet.

The data analysis in this study indicated that EEG responses differ 
under various emotional music stimuli. As shown in Table 1, ANOVA 
analysis of different EEG frequency bands and acquisition areas 
revealed more pronounced differences between different frequency 
bands and acquisition areas when individuals were speaking. In the 
quiet state, the θ and δ frequency bands did not show significant 
differences. Notably, the EEG signals collected from electrodes Fp1, 

Fz, and Fp2 exhibited significant differences, indicating more 
pronounced fluctuations in these areas.

In the EEG analysis under different emotional music stimuli, 
Figure 7A shows that during the speaking period, the standard deviation 
of EEG induced by fear-inducing music differs from that induced by 
other emotional music. However, the standard deviations of EEG induced 
by calmness, happiness, and tension music do not exhibit significant 
differences across various acquisition regions. Therefore, the EEG 
volatility under calmness, happiness, and tense states might share certain 
similarities. Furthermore, Figure 7B demonstrates that EEG induced by 
fear mainly shows significant differences in the β and γ bands compared 
to other emotions. This indicates that the impact of different emotional 
music on EEG is more pronounced during speaking. This conclusion has 
applications in various fields. In music therapy, therapists can select 
appropriate types of music based on the patient’s emotional state and 
response to maximize therapeutic effects (Raglio, 2023). For example, for 
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patients with anxiety, music that induces happiness can be chosen to 
enhance the therapeutic effect when combined with communication and 
dialog (Huang et al., 2021). In psychological counseling and therapy, this 
approach can help patients better express their emotions, promoting open 
and in-depth communication through music (Huang and Li, 2022).

In establishing classification models for EEG, this study extracted 
statistical measures, power spectral densities, and wavelet coefficients 
from EEG signals as features. LDA was employed for feature 
dimensionality reduction, facilitating easier classification of the data. 
The EEG features were used to build classification models with 
FCNN and six other machine learning algorithms. Comparative 
analysis revealed that the FCNN model achieved the best 
performance in classifying wavelet coefficients. Specifically, the 
accuracy reached 95.84% for the speaking state and 96.55% for the 
quiet state. EEG classification can aid therapists in music therapy by 
monitoring changes in patients’ emotions and determining the 
progress of the treatment (Vijay Sanker et  al., 2022). Besides the 
algorithm used in this study, Dynamic Bayesian Networks (DBNs) 
are also well-suited for processing EEG data (Michalopoulos and 
Bourbakis, 2014). DBNs are capable of extracting biologically 
meaningful information from neural data (Das et al., 2024). However, 
due to the inability of the LDA algorithm to directly perform 
dimensionality reduction on time-series data, it was not employed in 
this study. Exploring methods to combine the LDA and DBNs 
algorithms is the next step of our research.

From Table 1 and Figure 7, it can be observed that under the 
stimulation of different emotional music, there is a more 
significant difference in the speaking state compared to the quiet 
state. When constructing classification models using statistical 
metrics, it is found that the classification accuracy for the 
speaking state is higher than that for the quiet state across all 
algorithms in the test set. When using power spectral density to 
build classification models, except for the FCNN and KNN 
models, the classification accuracy for the speaking state is also 

higher than that for the quiet state in all other models in the test 
set. When constructing classification models using wavelet 
coefficients, all algorithms, except for AdaBoost, achieved 
accuracy rates above 90%. This result suggests that the key to 
classification performance lies not only in the size of the EEG 
differences but also in the complexity of the model and the 
method of feature extraction. Proper feature selection and data 
processing enable the model to effectively recognize different 
EEG patterns, even achieving good performance despite 
considerable differences. For classification models with strong 
generalization capabilities, such as FCNN, their ability to handle 
EEG fluctuations under different stimuli leads to similar 
classification results between the two states.

5 Conclusion

This study investigates the EEG characteristics of individuals 
in both speech and quiet states under different emotional music 
stimuli, based on EEG data collected from 120 subjects. The 
results reveal that the EEG differences under different emotional 
music stimuli are more pronounced during speech states compared 
to quiet states. In addition, the study extracts three types of 
features from the EEG: statistical measures, power spectral 
density, and wavelet coefficients. These features are then 
dimensionally reduced using the LDA algorithm, and classification 
models is established. We found that the classification performance 
was best when training the FCNN network using wavelet 
coefficients. However, this study also has certain limitations. It 
focuses solely on EEG signal analysis without incorporating audio 
signals for a comprehensive analysis. Additionally, the use of the 
LDA algorithm restricts our ability to effectively apply algorithms 
designed for time series processing, such as DBNs. Therefore, in 
future research, we aim to explore methods that combine LDA 
with DBNs and other algorithms to conduct a more in-depth 
investigation of EEG signals.
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