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Introduction: Postoperative neurocognitive dysfunction (PND) is a common and 
serious complication following surgery. Neostigmine, an acetylcholinesterase 
inhibitor commonly administered during anesthesia to reverse residual 
neuromuscular blockade, has been suggested in recent studies to potentially 
reduce the incidence of PND. However, findings have been inconsistent across 
studies. Therefore, this study conducts a systematic review and meta-analysis to 
evaluate the effect of neostigmine on PND.

Methods: We conducted a comprehensive literature search across multiple 
databases, including PubMed, EmBase, Web of Science, Cochrane Library, 
Scopus, SinoMed, and CNKI, to identify all relevant studies for inclusion. 
We  included randomized controlled trials and cohort studies in our analysis. 
The risk of bias was assessed using the Risk of Bias 2 tool for randomized trials 
and the ROBINS-I tool for cohort studies.

Results: A total of 11 studies were included in this analysis, consisting of 8 randomized 
controlled trials and 3 cohort studies. The incidence of PND was significantly lower 
in the neostigmine group compared to the control group (log(OR): −0.54, 95% 
CI [−1.04, −0. 05]; OR: 0.58, 95% CI: [0.35, 0.95], p = 0.03, I2 = 81.95%). Sensitivity 
analysis led to the exclusion of one cohort study. Consequently, the final meta-
analysis comprised 10 studies, encompassing a total of 50,881 participants. The 
results indicate that the incidence of PND was significantly lower in the neostigmine 
group compared to the control group (log(OR):−0. 27, 95% CI [−0.47, −0. 08]; OR: 
0.76, 95% CI: [0.62, 0.91], p = 0.01, I2 = 2.50%). However, Meta-analysis of RCTs and 
cohort studies showed no significant difference. Subgroup analysis indicated that 
neostigmine reduced the incidence of delayed neurocognitive recovery (dNCR), 
but its impact on POD was unclear, with no significant association to nausea and 
vomiting. These findings suggest that neostigmine may reduce the risk of PND, but 
caution is needed in interpretation.

Conclusion: Neostigmine may have a potential positive effect in reducing the 
incidence of PND. However, no statistical difference was observed when meta-
analyses were performed separately for randomized controlled trials (RCTs) and 
cohort studies. Given the limited number of studies available and the limitations 
of the current research, further investigation is needed to clarify the impact of 
neostigmine on PND.

Systematic review registration: The Systematic Review Registration details: 
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024537647, Identifier 
CRD42024537647.
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1 Introduction

Globally, approximately 310 million surgeries are performed 
annually to address the needs of patients with surgical diseases (Rose 
et al., 2015), and this demand continues to rise (Perera et al., 2021). 
However, postoperative complications affect approximately 16 million 
individuals each year, posing a significant threat to patient health and 
substantially increasing the burden on healthcare systems (Dobson, 
2020). One of the most common postoperative complications is 
postoperative neurocognitive dysfunction (PND), which includes 
postoperative delirium (POD), delayed neurocognitive recovery 
(dNCR), and postoperative neurocognitive disorder (Evered et al., 
2018). The incidence of PND ranges from 11 to 51% (Inouye et al., 
2014; Mahanna-Gabrielli et al., 2019). Postoperative neurocognitive 
dysfunction is associated with a higher occurrence of postoperative 
complications, increased mortality, decreased quality of life, prolonged 
hospital stays, and increased healthcare costs (Inouye et al., 2014; 
Pandharipande et al., 2017; Wilson et al., 2020). POD is defined as a 
transient neuropsychiatric syndrome that occurs within 7 days after 
surgery, characterized by fluctuating disturbances in cognition, 
consciousness, and attention (Evered et al., 2018). In contrast, dNCR 
refers to the emergence of new cognitive impairments within 30 days 
after complete recovery of consciousness postoperatively (Evered 
et al., 2018).

Recent studies indicate that implementing appropriate 
perioperative measures to prevent PND is vital for improving patient 
outcomes (Strøm et al., 2014; Liu et al., 2022; Swarbrick and Partridge, 
2022). Multiple studies have indicated that a decrease in acetylcholine 
levels and an increase in cholinesterase activity are closely associated 
with the onset of PND, suggesting a potential underlying pathological 
mechanism (Adam et al., 2020; Downes and Granato, 2004; Cerejeira 
et al., 2011; John et al., 2017; Cerejeira et al., 2012; Cheng et al., 2022). 
Acetylcholinesterase breaks down acetylcholine in the synaptic cleft, 
playing an indispensable role in neurotransmission. If its function is 
compromised, neurotransmission may be  disrupted, potentially 
leading to PND (Downes and Granato, 2004). Previous research has 
found that anticholinergic drugs can induce delirium by antagonizing 
cholinergic neurotransmission (Adam et al., 2020). Recent studies 
have also discovered that cholinesterase inhibitors can prevent PND 
by mitigating inflammatory responses and oxidative stress (Deng 
et al., 2019; Zhang et al., 2019; Umholtz and Nader, 2017).

Neostigmine, an acetylcholinesterase inhibitor, is commonly used 
during anesthesia to reverse residual neuromuscular blockade. While 
previously thought unable to penetrate the blood–brain barrier, recent 
research suggests that surgical procedures and anesthesia can increase 
blood–brain barrier permeability through the induction of systemic 
inflammation and stress responses (Saxena and Maze, 2018). This 
phenomenon may facilitate the passage of these compounds (Taylor 
et  al., 2022). Hence, acetylcholinesterase inhibitors may serve as 
potential agents for preventing PND (Swarbrick and Partridge, 2022). 
However, current clinical studies present conflicting findings. This 
study aims to evaluate, through the integration of existing literature 
data, the impact of postoperative neostigmine administration on the 
incidence of PND compared to placebo, sugammadex, and natural 

drug metabolism in control groups. The outcomes of this research are 
anticipated to offer crucial insights for the clinical management of 
PND. Moreover, this study aims to provide new perspectives on the 
role of neostigmine in PND, potentially influencing overall treatment 
outcomes and enhancing the quality of life for surgical patients.

2 Methods

2.1 Study design

This study rigorously follows the guidelines of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement (Page et al., 2021). As our data are exclusively 
derived from published literature, ethical review is not applicable. 
Additionally, our study is registered in the international prospective 
register of systematic reviews (PROSPERO) under registration 
identifier CRD42024537647.

2.2 Literature search

XZ conducted a systematic search of PubMed, Embase, Web of 
Science, Cochrane Library, Scopus, SinoMed, and CNKI to 
comprehensively include relevant literature. Our search strategy 
utilized a combination of free-text and MeSH terms, encompassing 
perioperative neurocognitive disorders, postoperative delirium, 
cognitive function, delayed neurocognitive recovery, postoperative 
cognitive dysfunction, and neostigmine (Supplementary Figure 1 for 
detailed search strategy).

2.3 Study selection

Two researchers LC and WM, independently assessed and 
reviewed the titles, abstracts, and full texts of the papers to select those 
that met the inclusion criteria. Any discrepancies that arose during 
this process were resolved through discussion. If a consensus could 
not be reached, a third researcher, LZ was involved in the decision-
making. Given the limited number of randomized controlled trials 
(RCTs) on this topic, and the evidence indicating that well-designed 
cohort studies are comparable to RCTs in assessing treatment effects 
(Concato et al., 2000; Golder et al., 2011; Schwingshackl et al., 2021), 
cohort studies were also included in this research. The inclusion 
criteria for the studies were as follows:

Patients undergoing surgery.
The intervention group will receive neostigmine treatment.
The control group includes patients receiving sugammadex, those 

using a placebo (such as saline), and patients awaiting the natural 
metabolism of neuromuscular blocking agents (NMBAs).

Assessments will be  conducted for postoperative 
neurocognitive dysfunction.

The exclusion criteria for the studies were as follows:
Literature classified as case reports.
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Review articles.
Trial protocols.
Literature with insufficient or unclear data.
Full texts that were inaccessible or where the authors could not 

be contacted.

2.4 Data extraction and integration

We initially created a data extraction form and conducted a 
pilot test to refine it. Subsequently, two independent researchers 
performed the data extraction, and any discrepancies were 
discussed. If the two researchers could not reach a consensus, a 
third researcher made the final decision. The data extraction form 
included the following information: author, publication year, 
study design, participants’ age, number of participants, type of 
surgery, neuromuscular blocking agent, neostigmine usage and 
dosage, and the incidence of nausea and vomiting (POVN). 
We  employed WebPlotDigitizer (version 5; WebPlotDigitizer, 
A. Rohatgi, Pacifica, CA, USA) to extract data from graphical 
representations, only after unsuccessful attempts to contact the 
original study authors for additional data. To estimate the mean 
and standard deviation for data described by the median and 
interquartile range, we applied the equations provided by Wan 
et al. (2014).

2.5 Bias risk assessment

We used the Cochrane Collaboration’s Risk of Bias 2 tool (Sterne 
et  al., 2019), to assess RCTs for random sequence generation, 
allocation concealment, blinding of participants, blinding of 
healthcare providers, blinding of data collectors, blinding of outcome 
assessors, incomplete outcome data, selective outcome reporting, and 
other sources of bias. For cohort studies, we used the ROBINS-I tool 
to evaluate the risk of bias and visualized the results using the platform 
available at https://mcguinlu.shinyapps.io/robvis (Sterne et al., 2016; 
McGuinness and Higgins, 2020). Bias risk assessment was conducted 
independently by researchers LC and XZ, with any discrepancies 
discussed until consensus was achieved. This process will ensure the 
reliability and accuracy of the assessment results.

2.6 Data analysis methods

We utilized Stata 17.0 and Review Manager 5.4 software for data 
analysis. To evaluate heterogeneity among the studies, we employed 
τ2 (Tau squared) and I2 (I-squared) statistics. These measures help 
quantify the level of heterogeneity in the data, facilitating a more 
accurate interpretation of the results. To minimize the impact of 
confounding factors and better reflect real-world conditions, 
we  adopted a random-effects model (Borenstein et  al., 2010). 
Moreover, in cases of very low heterogeneity, the random-effects 
model produces results similar to those of the fixed-effects model 
(Borenstein et al., 2010). Therefore, our analysis consistently applied 
the random-effects model to calculate and aggregate the log odds 
ratios [log(OR)] and their 95% confidence intervals (CI) for binary 
outcomes. Lastly, we used funnel plots and Egger’s test to assess and 

detect publication bias for each evaluated outcome (Cumpston 
et al., 2019).

3 Results

3.1 Inclusion of studies

Researchers conducted searches in the following databases: 
PubMed (n = 125), EMBASE (n = 377), Cochrane Library (n = 69), 
Web of Science (n = 56), Scopus (n = 158), SinoMed (n = 9), and 
CNKI (n = 10), resulting in a total of 804 articles. We excluded 182 
duplicate articles. During the study selection process, the two 
researchers initially screened 622 articles based on their titles and 
abstracts, excluding 556. Subsequently, a full-text review of the 
remaining 66 articles was conducted, with 53 articles being excluded. 
It was noted that two articles, although assessing cognitive function, 
did not provide the incidence of PND, and were therefore excluded 
(Cao et al., 2023; Piskin et al., 2016). After rigorous screening, 11 
articles were ultimately included, consisting of 8 RCTs and 3 cohort 
studies (Figure 1). During the literature review, we  identified two 
studies that conducted neurocognitive function assessments but did 
not report the incidence of dNCR. Attempts to contact the authors for 
further data were unfortunately unsuccessful, leading to the exclusion 
of these studies from our analysis. Additionally, both studies compared 
the effects of neostigmine and sugammadex on dNCR and found no 
statistically significant difference between the two (Cao et al., 2023; 
Piskin et al., 2016).

3.2 Study characteristics

The detailed characteristics of the included studies are presented 
in Table 1. These studies were published between 2015 and 2024. Four 
studies compared the effects of neostigmine with a placebo (Deng 
et al., 2024; Purohit et al., 2022; Zhu et al., 2020; Shuai and Guan Yun, 
2015); four studies compared neostigmine with sugammadex 
(Batistaki et al., 2017; Brueckmann et al., 2015; Rössler et al., 2024; Oh 
et al., 2016); and three studies included control groups that received 
no treatment (Hang et al., 2023; Jing et al., 2016; Zhu, 2017). The types 
of surgeries varied: three studies focused on laparoscopic surgeries; 
two on hip fracture and hip replacement surgeries; two on non-cardiac 
surgeries; two on gastrointestinal tumor surgeries; one study excluded 
patients undergoing neurosurgery, cardiac, vascular, or orthopedic 
surgeries; and one study did not specify the type of surgery.

Various methods were employed to diagnose PND in the included 
studies, including the Confusion Assessment Method (CAM), Mini-
Mental State Examination (MMSE), Montreal Cognitive Assessment 
(MOCA), and Memorial Delirium Assessment Scale (MDAS) (Wong 
et al., 2010; Adamis et al., 2010). In the studies we reviewed, seven 
articles reported the overall incidence of PND (Purohit et al., 2022; Zhu 
et al., 2020; Shuai and Guan Yun, 2015; Batistaki et al., 2017; Brueckmann 
et al., 2015; Oh et al., 2016; Zhu, 2017). Unfortunately, some of these 
studies did not specify the time of PND diagnosis (Purohit et al., 2022; 
Shuai and Guan Yun, 2015; Batistaki et al., 2017; Brueckmann et al., 
2015). Four studies documented the incidence of PND on the first 
postoperative day (Deng et al., 2024; Rössler et al., 2024; Hang et al., 
2023; Jing et al., 2016), while two studies reported PND incidence on the 
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third postoperative day (Deng et al., 2024; Jing et al., 2016). Due to the 
variability in the timing of PND assessments across studies, we included 
data from studies that either reported the overall incidence of PND or 
the incidence on the first postoperative day for further analysis.

3.3 Risk of bias

Among the randomized controlled trials included, two were 
assessed as having a low risk of bias (Deng et al., 2024; Batistaki et al., 
2017), four were identified as having a moderate risk (Purohit et al., 
2022; Zhu et al., 2020; Shuai and Guan Yun, 2015; Brueckmann et al., 
2015), and two were judged to have a high risk of bias (Brueckmann 
et al., 2015; Hang et al., 2023) (Figure 2). The quality assessment of 
cohort studies shows that Rössler et al. (2024) and Oh et al. (2016) 
have a low to moderate risk of bias, while Zhu (2017) has a higher risk 
of bias and should be interpreted with caution (Figure 3).

3.3.1 The impact of neostigmine on PND
In the analysis of PND, a total of 11 studies were included, 

consisting of eight randomized controlled trials and three cohort 

studies. The findings demonstrated that the incidence of PND in the 
neostigmine group was significantly lower compared to the control 
group (log(OR): −0. 54, 95% CI [−1.04, −0. 05]; OR: 0.58, 95% CI: 
[0.35, 0.95], p = 0.03, I2 = 81.95%), as depicted in Figure 4. However, 
the I2 value of 81.95% indicates substantial heterogeneity among the 
included studies. To elucidate the sources of this heterogeneity, 
we employed a Galbraith plot (Figure 5) and performed an influence 
analysis of individual studies on the overall outcomes (Figure 6).

To enhance the robustness and external validity of our findings, a 
sensitivity analysis was conducted. Zhu (2017) was excluded due to 
significant deviation in Figures 5 and a confidence interval in Figure 6 
that did not align with the overall effect estimate. The revised analysis 
incorporated 8 randomized controlled trials (Deng et  al., 2024; 
Purohit et  al., 2022; Zhu et  al., 2020; Shuai and Guan Yun, 2015; 
Batistaki et al., 2017; Brueckmann et al., 2015; Hang et al., 2023; Jing 
et al., 2016) and 2 cohort studies (Rössler et al., 2024; Oh et al., 2016), 
encompassing a total of 50,881 participants. The results continued to 
demonstrate a significantly lower incidence of PND in the neostigmine 
group compared to the control group (log(OR): −0. 27, 95% CI 
[−0.47, −0. 08]; OR: 0.76, 95% CI: [0.62, 0.91], p = 0.01, I2 = 2.50%), 
as illustrated in (Figure  7). The markedly reduced heterogeneity 

FIGURE 1

Flow diagram of study selection.
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TABLE 1 The characteristics of included studies.

Source Study 
design

Surgery NMBAs Postoperative 
diagnostic 
criteria and 
timing

Experimental Control

Age 
(years)

Sample 
size

Drugs Dosage Age 
(years)

Sample 
size

Drugs Dosage

Deng et al. (2024) RCT Noncardiac surgery Cisatracurium CAM, MMSE and 

MoCA; Day 1

71 ± 6.09 56 Neostigmine 0.04 mg/kg 71.3 ± 6.84 56 NS /

Purohit et al. 

(2022)

RCT Colon carcinoma 

surgery

Cisatracurium CAM, MDAS;/ 64.19 ± 10.51 196 Neostigmine 0.04 mg/kg 63.34 ± 10.38 205 Placebo /

Zhu et al. (2020) RCT Radical section of 

gastrointestinal 

cancer

Cisatracurium MMSE; Day 7 72.9 ± 6.1 78 Neostigmine 0.04/0.02 mg/kg 72.9 ± 4.9 42 NS /

Batistaki et al. 

(2017)

RCT Non-neurosurgical, 

cardiac, vascular, or 

orthopedic surgery

Rocuronium MMSE; At Discharge 61.25 ± 1.09 82 Neostigmine 0.04 mg/kg 61.64 ± 1.37 78 Sugammadex 2 mg/kg

Brueckmann et al. 

(2015)

RCT Laparoscopic or open 

abdominal surgery

Rocuronium /; / 57.0 ± 12.7 77 Neostigmine 0.02–0.08 mg/kg 56.4 ± 12.8 74 Sugammadex 2–4 mg/kg

Hang et al. (2023) RCT Laparoscopic surgery Cisatracurium MMSE, MoCA; Day 1 70.2 ± 10.2 71 Neostigmine 0.04 mg/kg 75.2 ± 5.1 50 No treatment /

Jing et al. (2016) RCT Laparoscopic 

cholecystectomy

/ MMSE; Days 1 and 3 53.8 ± 2.71 44 Neostigmine 2 mg 54.22 ± 1.71 22 No treatment /

Shuai and Guan 

Yun (2015)

RCT / Cisatracurium /; / 17.56 ± 10.40 18 Neostigmine 0.02 mg/kg 18.14 ± 10.25 18 NS /

Rössler et al. (2024) Cohort 

study

Noncardiac surgery / CAM; Days 1 and 4 57.6 ± 15.4 42,578 Neostigmine / 59.8 ± 15.3 6,881 Sugammadex /

Zhu (2017) Cohort 

study

Hip replacement Cisatracurium MMSE; Day 7 73.5 ± 8.5 775 Neostigmine 1–2 mg 74.5 ± 7.5 597 No treatment /

Oh et al. (2016) Cohort 

study

Hip fracture surgery Rocuronium CAM; At Discharge 75 ± 9 96 Neostigmine 0.05 mg/kg 76 ± 7 78 Sugammadex 2 mg/kg

Age is presented as mean ± standard deviation; RCT, Randomized controlled study; NMBAs, Neuromuscular blocking agents; CAM, Confusion Assessment Method; MOCA, Montreal Cognitive Assessment; MDAS, Memorial Delirium Assessment Scale; MMSE, 
Mini-Mental State Examination; NS, Normal saline; /no available data.
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(I2 = 2.50%) was further validated using a Galbraith plot 
(Supplementary Figure 2). Additionally, to evaluate the potential for 
publication bias, a funnel plot was generated (Supplementary Figure 3), 
and Egger’s test was conducted (p = 0.664) (Supplementary Figure 4). 
The results from these analyses did not indicate significant evidence 
of publication bias. This comprehensive analysis strongly suggests that 
neostigmine is associated with a reduced risk of PND.

We performed separate meta-analyses for the RCTs and cohort 
studies, which showed no significant difference in postoperative PND 
incidence between the neostigmine and control groups. In the RCTs 
(log(OR): −0. 34, 95% CI [−0.73, 0.56]; OR: 0.71, 95% CI [0.48, 1.75], 
p = 0.09, I2 = 26.7%) (Supplementary Figure  5) and in the cohort 
studies (log(OR): −0. 78, 95% CI [−0.21, 0.56]; OR: 0.46, 95% CI 
[0.81, 1.75], p = 0.25, I2 = 96.6%) (Supplementary Figure  6), no 
significant differences were observed in the incidence of postoperative 
PND between the neostigmine and control groups.

3.3.2 Subgroup analysis
We conducted subgroup analyses, and the results showed that the 

neostigmine group significantly reduced the incidence of dNCR 
compared to the control group (log(OR): −0. 85, 95% CI [−1.58, 

−0.11]; OR: 0.43, 95% CI: [0.21, 0.89], p = 0.02) (Figure 8) (Deng 
et al., 2024; Zhu et al., 2020; Batistaki et al., 2017; Hang et al., 2023; 
Jing et al., 2016; Zhu, 2017). In contrast, the incidence of POD showed 
a (log(OR) of −0. 21, 95% CI [−0.46, 0.03]; OR: 0.81, 95% CI: [0.63, 
1.03], p = 0.09) (Purohit et  al., 2022; Shuai and Guan Yun, 2015; 
Brueckmann et  al., 2015; Rössler et  al., 2024; Oh et  al., 2016), 
compared with the control group (Supplementary Figure 7).

3.3.3 The impact of neostigmine on POVN
In evaluating the impact of neostigmine on the incidence of 

PONV, we included seven studies Deng et al. (2024), Zhu (2017), 
Batistaki et al. (2017), Hang et al. (2023), Jing et al. (2016), and Zhu 
et al. (2020), encompassing a total of 2,315 participants. The analysis 
revealed that the incidence of PONV was slightly higher in the 
neostigmine group compared to the control group; however, this 
difference was not statistically significant (log(OR): 0.25, 95% CI 
[−0.03, 0.54];OR: 1.28, 95% CI: [0.97, 1.72], p = 0.08, I2 = 0.00%), as 
illustrated in Figure 9. Thus, while the incidence of PONV was higher 
in the neostigmine group, the difference did not reach statistical 
significance. Heterogeneity test Galbraith plot (Supplementary Table 8). 
Furthermore, publication bias was assessed using a funnel plot 

FIGURE 2

Risk of bias summary for RCTs.

FIGURE 3

Risk of bias summary for cohort studies.
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(Supplementary Table  9) and Egger’s test (p = 0.768) 
(Supplementary Table  10), which did not reveal any significant 
evidence of publication bias. However, due to the limitations of the 

included studies, there is a need for more large-scale, multicenter 
randomized controlled trials to further elucidate the relationship 
between neostigmine and the incidence of POVN.

FIGURE 4

Forest map of the effects of neostigmine on PND.

FIGURE 5

Galbraith plot of PND.
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4 Discussion

This meta-analysis suggests that neostigmine may have a positive 
effect in reducing the incidence of PND. However, no significant effect 
of neostigmine on PND was found when RCTs and cohort studies 

were analyzed separately. Subgroup analysis further revealed that 
neostigmine effectively reduced the incidence of dNCR. However, its 
effects on POD and PONV remain inconclusive, warranting further 
investigation. Additionally, there is a degree of heterogeneity in the 
included studies, encompassing variations in disease types, surgical 

FIGURE 6

Plot of individual study effects of PND on results.

FIGURE 7

Forest map of the effect of neostigmine on PND after sensitivity analysis.
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procedures, patient ages, anesthesia protocols, and outcome measures. 
Consequently, the interpretation of these results should be approached 
with caution to ensure accuracy and reliability. Further high-quality, 
large-scale randomized controlled trials are necessary to confirm these 
findings and to better understand the potential benefits and risks 
associated with neostigmine use in the perioperative setting.

The initial meta-analysis included 11 studies: 8 RCTs and 3 cohort 
studies. The results indicated that the incidence of PND was 
significantly lower in the neostigmine group compared to the control 
group (log(OR): −0. 54, 95% CI [−1.04, −0. 05]; OR: 0.58, 95% CI: 
[0.35, 0.95], p = 0.03, I2  = 81.95%). The high I2 value of 81.95% 
suggests substantial heterogeneity, which could potentially bias the 

study results. Zhu (2017) were excluded because the results in Figure 4 
significantly deviated from the pooled effect estimate, and the 
confidence intervals in Figure 5 were not consistent with the overall 
effect. In our sensitivity analysis, after excluding this study, we found 
that the overall results remained largely unchanged, but heterogeneity 
was significantly reduced. This suggests that the inclusion of Zhu 
(2017) may have introduced additional variability into the analysis. 
We also discussed potential differences between this study and other 
findings, particularly in outcome measurement: the study did not 
perform preoperative neurocognitive assessments, but instead, 1 week 
postoperatively, the surgeons observed signs of cognitive impairment 
in patients before administering the MMSE. This approach may have 

FIGURE 8

Forest map of the effects of neostigmine on dNCR.

FIGURE 9

Forest map of effects of POVN.
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introduced bias. By excluding this study, our refined analysis included 
8 RCTs (Deng et al., 2024; Purohit et al., 2022; Zhu et al., 2020; Shuai 
and Guan Yun, 2015; Batistaki et al., 2017; Brueckmann et al., 2015; 
Hang et al., 2023; Jing et al., 2016) and 2 cohort studies (Rössler et al., 
2024; Oh et al., 2016). The adjusted meta-analysis results (log(OR): 
−0. 27, 95% CI [−0.47, −0.08]; OR: 0.76, 95% CI: [0.62, 0.91], p = 0.01, 
I2 = 2.50%) demonstrate that postoperative use of neostigmine may 
reduce the incidence of PND.

Neither the RCTs nor the cohort studies showed a significant 
association between neostigmine and a reduction in postoperative PND 
incidence in their respective meta-analyses. This may be attributed to 
factors such as the heterogeneity of study designs, insufficient sample 
size, the multifactorial nature of postoperative PND, and the potentially 
limited effect of neostigmine on PND. Our subgroup analysis indicates 
that while neostigmine reduces the overall incidence of PND, its impact 
on the incidence of POD remains unclear. Consequently, rigorously 
designed large-sample, multicenter studies are needed to further clarify 
the role of neostigmine in PND prevention.

Current research indicates that the pathogenesis of PND may 
involve multiple factors, including central cholinergic system 
dysfunction (Adam et al., 2020; Downes and Granato, 2004; Cerejeira 
et al., 2011; John et al., 2017; Cerejeira et al., 2012), abnormal stress 
responses (Swarbrick and Partridge, 2022), and systemic inflammatory 
responses induced by surgical trauma and anesthesia (Cheng et al., 
2022), among others. Risk factors for PND include the type of surgery, 
age, perioperative medication and management, pain, use of 
anticholinergic drugs, frailty, peripheral inflammatory response, 
pre-existing cognitive impairment (Swarbrick and Partridge, 2022; 
Cheng et al., 2022; Silbert et al., 2015; Kang et al., 2019; Li et al., 2021), 
etc. PND is associated with increased postoperative complications, 
higher mortality rates, reduced quality of life, prolonged hospital stays, 
and increased healthcare costs (Inouye et al., 2014; Pandharipande 
et al., 2017; Wilson et al., 2020). Therefore, implementing effective 
preventive and therapeutic strategies for PND is essential appropriate 
perioperative interventions serve as one of the primary means for 
preventing PND, helping to reduce the incidence of postoperative 
neurocognitive dysfunction (Liu et al., 2022). Previous studies have 
indicated that some cholinesterase inhibitors may prevent PND (Zhu 
et al., 2021; Spies et al., 2021) Although it was once believed that 
neostigmine could not easily cross the blood–brain barrier, recent 
research suggests that perioperative inflammatory responses and 
stress might facilitate its passage (Saxena and Maze, 2018; Taylor et al., 
2022). Consequently, neostigmine may reduce the incidence of PND 
by modulating central cholinergic system function (Adam et al., 2020; 
Downes and Granato, 2004; Cerejeira et al., 2011; John et al., 2017; 
Cerejeira et al., 2012; Cheng et al., 2022) and mitigating inflammatory 
responses and oxidative stress (Deng et al., 2019; Zhang et al., 2019; 
Umholtz and Nader, 2017).

Research on the effects of neostigmine on PONV has produced 
conflicting results (Ding et al., 1994; Hovorka et al., 1997). In our study, 
we conducted a meta-analysis of seven studies Deng et al. (2024), Purohit 
et al. (2022), Zhu et al. (2020), Shuai and Guan Yun (2015), Brueckmann 
et al. (2015), Hang et al. (2023), and Zhu (2017) to evaluate the impact of 
neostigmine on PONV incidence (log(OR): 0.25, 95% CI [−0.03, 0.54]; 
OR: 1.28, 95% CI: [0.97, 1.72], p = 0.08, I2  = 0.00%). Although the 
neostigmine group exhibited a higher incidence of PONV compared to 
the control group, the difference was not statistically significant. A 
previous meta-analysis by Cheng et al. (2005), which included 10 studies, 

similarly found that neostigmine did not increase the incidence of 
PONV. Given the variability in control group treatments, perioperative 
medication use, and types of surgery across the included studies, these 
results should be interpreted with caution.

When interpreting the results of this study, several limitations 
should be considered. Firstly, the included clinical studies vary in the 
types and diagnostic standards of PND, utilizing different 
neurocognitive assessment tools, such as MMSE, CAM, MoCA, and 
MDAS, with two studies not specifying their diagnostic methods. This 
inconsistency in assessment methods introduces considerable 
variability, affecting the reliability and comparability of the results. The 
lack of standardized diagnostic criteria highlights the need for caution 
in interpreting these findings, as differences in diagnostic tools could 
potentially impact the overall conclusions. Secondly, the types of 
surgeries and perioperative management and medication varied 
among the studies, which could affect the incidence of PND and 
introduce potential bias. Additionally, the control group treatments 
differed, including the use of Sugammadex and saline, with three 
studies not clearly describing the control measures, potentially 
confounding the results. Furthermore, the use of varying dosages of 
neostigmine across the included studies, combined with the 
heterogeneity in study design (including both RCTs and cohort 
studies), may have reduced the accuracy and statistical power of the 
analysis, potentially influencing the evaluation of neostigmine’s effect 
on PND. Therefore, these results should be interpreted with caution.

In summary, neostigmine shows a positive effect in reducing the 
incidence of PND. While it significantly lowers the occurrence of 
dNCR, its impact on POD remains uncertain. Given the limitations 
of this study, further large-scale and rigorously designed studies are 
required to more fully evaluate the potential role of neostigmine in 
PND prevention.
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