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Hearing spoken words can enhance the recognition of visual object

categories. Yet, the mechanisms that underpin this facilitation are incompletely

understood. Recent proposals suggest that words can alter visual processes

by activating category-specific representations in sensory regions. Here, we

tested the hypothesis that neural oscillations serve as a mechanism to activate

language-generated visual representations. Participants performed a cue-

picture matching task where cues were either spoken words, in their native or

second language, or natural sounds, while their EEG and reaction times were

recorded. Behaviorally, we found that images cued by words were recognized

faster than those cued by natural sounds. This indicates that language activates

more accurate semantic representations compared to natural sounds. A time-

frequency analysis of cue-target intervals revealed that this label-advantage

effect was associated with enhanced power in posterior alpha (9–11 Hz) and

beta oscillations (17–19 Hz), both of which were larger when the image was

preceded by a word compared to a natural sound. These results suggest that

alpha and beta rhythms may play distinct functional roles to support language-

mediated visual object recognition: alpha might function to amplify sensory

representations in posterior regions, while beta may (re)activate the network

states elicited by the auditory cue.

KEYWORDS

neural oscillations, concepts, categorization, object recognition, electrophysiology,
bilingualism

1 Introduction

Hearing certain natural sounds (e.g., the croak of a frog) appears to automatically
activate conceptual knowledge, enabling the perceptual system to quickly identify objects
in the surroundings (e.g., the presence of a frog). Learning such cross-modal associations
represents a crucial prerequisite for mediating interactions with the environment. In
humans, conceptual representations can also be activated via language (e.g., “frog”).
However, unlike natural sounds, linguistic symbols are categorical, making them more
suited to activate semantic information in a format that transcends within-category
differences. It remains unclear whether phylogenetically young systems like language exert

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1467249
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1467249&domain=pdf&date_stamp=2025-04-14
https://doi.org/10.3389/fnins.2025.1467249
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1467249/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1467249 April 9, 2025 Time: 17:49 # 2

Morucci et al. 10.3389/fnins.2025.1467249

effects on perception similar to natural sounds, and what brain
dynamics might support such effects.

Conceptual representations activated by auditory cues have
been shown to interact with the visual system in different ways.
For instance, hearing words and natural sounds can rapidly
drive visual attention toward specific entities in a scene (Huettig
and Altmann, 2007); facilitate the recognition and discrimination
of congruent object categories (Boutonnet and Lupyan, 2015;
Edmiston and Lupyan, 2015); lower the detection threshold for
ambiguous objects (Lupyan and Ward, 2013; Ostarek and Huettig,
2017); and even cause sensory illusions (Dils and Boroditsky, 2010).
While this body of evidence suggests that both linguistic and non-
linguistic cues activate content-specific representations, it is less
clear whether these cues activate the same representations. Studies
directly targeting this issue have often reported a “label-advantage”
effect, that is, a facilitation when object recognition is preceded
by words compared to non-linguistic cues (Edmiston and Lupyan,
2015; Lupyan and Thompson-Schill, 2012). This effect suggests that
language provides a particularly powerful tool to enhance visual
processing.

To achieve these facilitatory effects on visual perception,
linguistic categories could theoretically follow two possible
pathways (Simanova et al., 2016). Language might not bias
perceptual processes at early levels but rather interact at later
semantic or categorical decision-making stages (Firestone and
Scholl, 2014; Gleitman and Papafragou, 2005; Klemfuss et al.,
2012). On an alternative account, words could affect visual
processing by setting categorical priors that alter early perceptual
processing (Boutonnet and Lupyan, 2015; Kok et al., 2014;
Thierry et al., 2009). Support for the latter account comes
primarily from EEG studies showing that better recognition
of images preceded by congruent words was associated with
modulations of early event-related potentials (ERPs) such as
the P1 (Boutonnet and Lupyan, 2015; Noorman et al., 2018) –
putatively considered an electrophysiological index of low-level
visual processes (Spehlmann, 1965). Yet, these ERP experiments
targeted the perceptual consequences of language cues on visual
object recognition i.e., they focused on time interval following the
visual stimulus. The mechanisms that could explain prestimulus
effects of language on visual perception remain largely unknown1.

Analysis of oscillatory activity provides an excellent
opportunity to study language-driven prestimulus modulations
during visual object recognition. Based on previous human
and animal studies, candidate mechanisms to carry sensory
representations are low-frequency oscillations in the alpha/beta-
band (Arnal and Giraud, 2012; Bastos et al., 2012; Bastos et al.,
2015; Michalareas et al., 2016). Rhythmic brain activity in these
frequency bands has been suggested to play a large variety of
roles in top-down processing, which could be crucial to support
visual object recognition. For example, alpha synchrony has
been associated with filtering of task irrelevant information and
enhancement of neural representations during tasks involving
attention, prediction, mental imagery and working memory
(Hari et al., 1997; Jensen et al., 2002; Mayer et al., 2015;

1 Here and throughout the paper, we use the term “prestimulus” to refer
to the time interval between the end of the auditory cue and the onset of
the visual input.

Mo J. et al., 2011). This mechanism could be crucial to speed
up object recognition by silencing neural populations encoding
irrelevant object categories and activating those linked to the
target object. Similarly, beta oscillations have been implicated
in perceptual expectations (Arnal and Giraud, 2012), online
maintenance of cognitive states (Bressler and Richter, 2015;
Engel and Fries, 2010) and (re)activation of task-specific cortical
networks (Spitzer and Haegens, 2017). Within the context of visual
object recognition, this process can facilitate the activation of
network states associated with the target object, thereby speeding
up its recognition after the image is presented. Based on these
findings, we hypothesized that any object recognition advantage
for spoken words over natural sounds would be associated with a
difference in cortical alpha/beta dynamics.

In the present study, we used a cue-picture matching task to test
the hypothesis that language enhances visual object recognition by
setting categorical representations via the modulation of alpha/beta
oscillations. In contrast to previous studies, we (i) focused on the
time interval preceding the onset of the visual object, targeting top-
down signaling directly; and (ii) included words from participants’
first (L1) and second (L2) languages, to assess whether the
previously reported label advantage extends to language systems
acquired later in development. We hypothesized that, if the
label advantage arises because words provide refined categorical
representations to the visual system, then any differences in object
recognition cued by words vs. natural sounds should be associated
with modulations of oscillatory alpha/beta dynamics before the
onset of the target picture.

2 Materials and methods

2.1 Participants

We tested a total of 25 Basque-Spanish bilingual speakers.
Note that in earlier studies investigating the label advantage in
object recognition, a sample size of 15 participants was sufficient
to detect the behavioral label-advantage effect (Boutonnet and
Lupyan, 2015). Participants were native speakers of Basque who
began acquisition of Spanish after 3 years of age (13 female
participants; age range 18–33, mean = 25.66, SD = 5.45, age of
acquisition of Spanish = 4.23 y.o., SD = 1.33). All participants were
right-handed, with no history of neurological disorders and had
normal or corrected-to-normal vision. They received a payment
of 10€ per hour for their participation. Before taking part in the
experiment, all participants signed an informed consent form. The
study was approved by the Basque Center on Cognition, Brain
and Language (BCBL) Ethics Committee in compliance with the
Declaration of Helsinki. Participants completed several language
proficiency tests in both Spanish and Basque (see Table 1). First,
participants were asked to self-rate their language comprehension
(on a scale from 1 to 10, where 10 is a native-like level). All
participants rated themselves as highly proficient in both Basque
and Spanish. Participants also performed “LexTALE” (Izura et al.,
2014; Lemhöfer and Broersma, 2012), a lexical decision task that
tested their vocabulary knowledge. They obtained similarly high
scores in both Spanish and Basque. In addition, participants had to
name a series of pictures using vocabulary of increasing difficulty
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TABLE 1 Measures of linguistic proficiency in Basque (L1)
and Spanish (L2).

Measure Basque Spanish T-tests
results (t,

p)

Self-evaluation
(0–10)

9.04 (0.16) 9.39 (0.24) –4.7, 0.01

LexTALE
Basque (0–50);
Spanish (0–60)

46.04 (2.67) 54.09 (4.13) 0.86, 0.39

Picture naming
(0–65)

64.19 (1.47) 63.38 (1.62) 1.43, 0.16

Interview
(0–5)

5 (0) 4.95 (1.33) 0.15, 0.89

in both languages. Here as well, participants achieved native-range
scores in both languages. Finally, all participants were interviewed
by balanced bilingual linguists who rated them on a scale from 0 to
5: no participants had a score below four in either language.

2.2 Stimuli

The visual stimuli comprised 50 pictures representing 10
animate (e.g., bird) or inanimate (e.g., camera) object categories.
Each of these 10 categories was represented by five different
highly recognizable images (.png extension, white background,
2,000 × 2,000 pixels): three color photographs obtained from
online image collections, one normed color drawing (Rossion and
Pourtois, 2004), and one “cartoon” image (Thierry et al., 2009). We
selected different instances for each category in order to provide
visual heterogeneity.

The audio stimuli comprised 10 words in Basque (L1), 10
words in Spanish (L2) and 10 natural sounds, each referring
to one of the object categories. Both the Basque and Spanish
words were recorded by a balanced female Spanish-Basque
bilingual speaker to ensure that word comprehension was not
influenced by voice or pronunciation style. Natural sound stimuli
were downloaded from online libraries. Overall, the mean
length of the audio stimuli was 0.8 ± 0.05 s (Word in L2,
mean = 0.81 s, SD = 0.21; Word in L1, mean = 0.77 s,
SD = 0.23; Natural Sounds, mean = 0.84 s, SD = 0.2). Comparing
word durations pairwise across conditions using independent
sample t-test revealed no significant difference between conditions
(Word in L1 vs Word in L2: p = 0.46; Word in L1 vs
Natural Sounds: p = 0.11; Word in L2 vs Natural Sounds:
p = 0.63).

In order to test that sounds and images were unequivocally
identifiable, we asked a group of Basque-Spanish bilinguals
(N = 20), who did not take part in the main experiment, to view a
selection of images and listen to a selection of sounds. They were
told to name the visual and audio stimuli they perceived using
the first noun that came to mind. For the present experiment, we
only chose images and sounds that were identically named by all
20 participants. In total, experimental stimuli included 50 images
from 10 categories, 10 words in Basque, 10 words in Spanish, and
10 natural sounds.

2.3 Procedure

The EEG experiment was run in a soundproof electrically
shielded chamber with dim lighting. Participants sat on a chair,
about 60 centimeters in front of the computer screen. Stimuli were
delivered using PsychoPy software (Peirce, 2007). We followed
the procedure illustrated by Boutonnet and Lupyan (2015).
Participants completed a cued-picture recognition task composed
of 300 trials (see Figure 1). On each trial, a fixation point appeared
at the center of the screen for one second, then participants heard
an auditory cue: either a word in L1, (e.g., igela, “frog”), a word in
L2 (e.g., rana, “frog”) or a natural sound (e.g., a croak).

One second after cue offset, a picture appeared on the screen,
and participants had to indicate whether the picture did or did
not match the auditory cue at the category level by pressing one of
two buttons, “yes” or “no,” on the keyboard. The picture remained
on screen until the participant responded. The picture matched
the auditory cue in 50% of trials (congruent trials); in the other
50%, there was a mismatch (incongruent trials). In the case of
incongruent trials, the picture that appeared on screen belonged
to a different category. In total, participants were presented with
100 cue-picture pair trials for each condition (Word in L1, Word
in L2, Natural sounds), half having a congruent ending and the
other half having an incongruent ending. Stimuli presentation was
randomized for each participant. The entire experiment lasted
40 min on average.

2.4 EEG recording

Electrophysiological activity was recorded from 27 electrodes
(Fp1/2, F7/8, F3/4, FC5/6, FC1/2, T7/8, C3/4, CP1/2, CP5/6,
P3/4, P7/8, O1/2, F/C/Pz) positioned in an elastic cap (Easycap)
according to the extended 10–20 international system. All sites
were referenced online to the left mastoid (A1). Additional external
electrodes were placed on the right mastoid (A2) and around
the eyes (VEOL, VEOR, HEOL, HEOR) to detect blinks and eye
movements. Data were amplified (Brain Amp DC) with a filter
bandwidth of 0.01–100 Hz, at a sampling rate of 250 Hz. The
impedance of the scalp electrodes was kept below 5 k�; eye
electrode impedance was kept below 10 k�.

2.5 EEG preprocessing

All EEG data analysis was performed using Matlab 2014 with
the Fieldtrip toolbox (Oostenveld et al., 2011)2 and R (R Core Team,
2015)3. For data visualization, we used Matlab or FieldTrip plotting
functions, R and the RainCloud plots tool (Allen et al., 2019). The
recordings were re-referenced off-line to the average activity of the
two mastoids. Epochs of interest were selected based on cue type
(words in L1, words in L2, natural sounds) and congruency (match,
mismatch), resulting in six different sets of epochs, computed
from –3 to 1.5 s with respect to image onset.

2 http://www.fieldtriptoolbox.org

3 http://www.r-project.org
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FIGURE 1

Cue-picture matching task. Participants were presented with auditory cues (words in L1, words in L2, natural sounds) and asked to evaluate whether
the subsequent visual target did or did not match the auditory cue.

Trials in which subjects provided incorrect responses in the
behavioral task were removed from the analysis. Spatial-temporal
components of the data containing eye and heart artifacts were
identified using independent component analysis and subsequently
removed. Overall, we removed an average of 2.14 components per
subject. We then identified epochs containing additional “muscle”
and “eye blink” artifacts using an automatic artifact detection
procedure (z-value threshold = 12). Trials selected as possibly
contaminated by artifacts were visually inspected and removed
(∼8%). Finally, we removed a few additional trials containing
artifacts using a visual inspection procedure (∼0.11%). Three of
the 25 initial participants were excluded from the analysis because
more than 25% of their trials were rejected, leaving a final sample
of 22 participants for the subsequent analysis. After preprocessing,
the mean number of trials over participants for the natural sounds,
words in L2 and words in L1 conditions was 90.4 (SD = 4.06), 92.18
(SD = 4.28) and 91.04 (SD = 3.95), respectively.

2.6 Statistical analysis

2.6.1 Behavior
We used the R environment (version 4.0.0; R Core Team, 2020)

and lme4 package (Bates et al., 2014) to perform mixed effect
regression on reaction time data, following a procedure similar
to that illustrated in Boutonnet and Lupyan (2015). Predicted
reaction times (calculated from the onset of the target image
until the participant’s response) were computed by fitting the
model with cue-type (words in L1, words in L2, natural sounds),
congruency (match, mismatch), and their interaction as fixed
factors, and by adding by-subject random slopes for the effect of
cue type and congruency. Subsequent pairwise comparisons were
performed using estimated marginal means (Bonferroni-corrected
for multiple comparisons) with emmeans (Lenth et al., 2018).
Because no reliable interaction was detected, post hoc comparisons
were based on a model with the same syntax as the one presented

above but excluded the interaction term, in order to facilitate the
interpretability of post hoc analysis. Accuracy was not analyzed
statistically because it was near ceiling (98%). For the analysis
of behavioral data, we excluded the same three participants that
were excluded from the EEG analysis. Moreover, we excluded all
incorrect trials (1.88%), as well as a few trials in which participants’
responses exceeded 3 s (0.28%). These trials were also excluded
from the EEG analysis. Reaction times were log-transformed to
improve normality.

2.6.2 Spectral power
A time-frequency analysis of artifact-free EEG trials was

performed. Before applying spectral decomposition, the latency of
each epoch was reduced to –1.5 to 0.5 s with respect to image onset.
The time-varying power spectrum of single trials was obtained
using a Hann sliding window approach (0.5 s window, 0.05 s
time steps) for the frequency range between 0 and 30 Hz, zero-
padded to 1 s for a frequency resolution of 1 Hz. We focused
on oscillatory activity up to 30 Hz because top-down processes
are often associated with oscillations in this frequency band, while
higher frequencies are linked to bottom-up processing (Bosman
et al., 2012). For the statistical analysis, we computed a single power
spectral density estimate for each participant, channel, frequency,
and epoch by averaging the spectral estimates centered on the –
0.75 to –0.25 s time interval. We selected this time-interval to
obtain more accurate spectral estimates, as activity here is largely
uncontaminated by activity evoked by the preceding auditory event
or subsequent visual stimulus.

2.6.3 Grand-average power spectrum
In order to compute the power spectrum, we combined

spectral estimates for congruent and incongruent trials for each
cue-type condition, resulting in three different data sets (words
in L1, words in L2, natural sounds). Note that time-frequency
representations for congruent and incongruent conditions should
be indistinguishable during the prestimulus time window since
subjects had no way of anticipating the trial type. Spectral estimates
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FIGURE 2

Time-frequency peaks and topographies. (A) Alpha and beta peaks in the grand-average raw power spectrum of all epochs across conditions,
during the –0.75 to 0.25 s pre-target time interval. The blues lines indicate the raw power peaks as local maxima. (B) Time-frequency representation
of grand-averaged data for the alpha and beta-band, in the 1 s time window between the offset of the auditory cue (–1 s) and the onset of the image
(0 s). The black rectangle denotes the time-frequency interval selected for the statistical analysis. (C) Topography of the time-frequency interval of
interest.

were then averaged over trials, participants, channels, and cue-type
conditions, resulting in a single value for each of the 30 frequency
bins (i.e., the grand-average power spectrum). A peak-finding
algorithm was used to identify spectral peaks as local maxima in the
grand-averaged power spectrum. Two peaks, one at 10 Hz and one
at 18 Hz emerged from this analysis (Figure 2A). Based on these
peaks, frequencies of interest (FOI) were obtained as the average
of the frequency peaks ± 1 Hz: that is, 9–11 Hz and 17–19 Hz,
respectively (Figure 2B). We refer to these band estimates as alpha
and beta band power, respectively. The topographical distribution
indicates that these frequency peaks were larger over posterior
electrodes for both the alpha (electrodes showing the greater effect:
O1, O2, P8; mean = 9.91 µV2, SD = 1.88) and beta (electrodes
showing the greater effect: O1, O2, P7; mean = 2.39 µV2, SD = 0.1)
frequency bands (Figure 2C).

2.6.4 Prestimulus spectral differences between
cues

Spectral estimates for each cue-type (words in L1, words
in L2, natural sounds) were averaged over trials. To reduce
individual differences in overall EEG power, normalization was
applied by converting the time-frequency power for each condition
into percent signal change relative to the average power over
all three conditions and channels, as performed by Bogaerts
et al. (2020). This procedure removes individual differences in
signal power, without distorting the relative magnitudes of the
conditions, i.e., it functions as a baseline correction when an
appropriate baseline interval is not available. To test whether
time-frequency representations in the prestimulus time window
differed across cue types, a non-parametric approach (Maris and
Oostenveld, 2007) was selected. For each FOI, we implemented
a cluster-based permutation test based on a dependent sample

F-test with the spectral data for each type of cue (words in L1,
words in L2, natural sounds) as the dependent variable. This
approach is equivalent to a one-way ANOVA but allowed us to
account for the spatial correlation between electrodes (i.e., no
a priori region of interest needs to be defined). The minimum
number of neighboring electrodes required for a sample to be
included in the clustering algorithm was set at 2. The cluster
threshold F-value (or t-value) was set at an alpha value at the
85th percentile of their respective distributions. Note that this
parameter does not impact the false alarm rate of the test.
Rather, it sets a cluster threshold for determining when a sample
should be considered as a candidate member of a cluster. Small
cluster thresholds usually favor the detection of highly localized
clusters with larger effect sizes, while larger cluster thresholds favor
clusters with larger spatio-temporal extents but exhibit greater
diffusion of the effect (Maris and Oostenveld, 2007). Because
alpha and beta rhythms usually emerge at the network level, we
selected a relatively large cluster threshold, i.e., capturing what
appears to be a more globally distributed effect. The number
of permutations for the randomization procedure was set at
100,000. The critical alpha-level to control the false alarm rate
was the standard α = 0.05. All resulting p-values were Bonferroni
corrected for the number of FOIs. For each FOI, one significant
cluster was detected. In order to assess the directionality of
the effect, post hoc non-parametric pairwise comparisons were
applied. Specifically, power values for each cue-type condition
were averaged over all electrodes belonging to the significant
cluster and compared pairwise using paired t-tests. The alpha-
level for the three post hoc t-tests was Bonferroni corrected for
the number of comparisons. This procedure was applied to each
FOI separately.
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3 Results

3.1 Effect of cues on visual object
recognition

We first analyzed accuracy. Overall, accuracy was high (98%)
and similarly distributed across the three conditions (words in
L1 = 98%; words in L2 = 99%, natural sounds = 97%). Participants
were clearly at ceiling, so we focused on the analysis of reaction
times. Analysis of reaction time responses showed a main effect
of Cue-Type [χ2(2) = 31.9500, p < 0.001] (Figure 3). This
was subsequently unpacked via post hoc comparisons. Pairwise
comparisons using estimated marginal means showed that object
images preceded by symbolic cues in both L1 and L2 were identified
faster than images preceded by natural sounds (words in L1 –
natural sounds: 1 = –0.08, SE = 0.01, p < 0.001; natural sounds –
words in L2: 1 = 0.06, SE = 0.01, p< 0.001). On the other hand, the
pairwise effect between words in L1 and words in L2 did not reach
the significance threshold (words in L1 – words in L2: 1 = –0.02,
SE = 0.01, p = 0.06). As in previous studies, we also observed a main
effect Congruency [χ2(1) = 7.0329, p < 0.01], with matching cue-
picture pairs leading to faster responses than mismatching pairs.
No reliable Cue-Type by Congruency interaction was detected
[χ2(2) = 1.5310, p = 0.46].

3.2 Effect of cues on prestimulus alpha
rhythms

Differences between spectral power elicited by the three cue-
type conditions were assessed using a cluster-based F-test for alpha
and beta FOIs separately, focusing on the prestimulus interval.
From the analysis of the alpha rhythm, one significant cluster
was detected (p < 0.01, Bonferroni-corrected for the two FOIs)
including several electrodes across the entire scalp (Figure 4A,
top-right). The topographical distribution of the F-values is shown
in Figure 4A (top-right). To assess the directionality of the
effect, spectral power for each type of cue was averaged over all
the electrodes belonging to the significant cluster and compared
pairwise via t-tests. Pairwise comparisons showed that words in
L1 and L2 both led to increased alpha power compared to natural
sounds [t(21) = 4.57, p < 0.001 Bonferroni-corrected; t(21) = 5.48,
p < 0.001 Bonferroni-corrected, respectively] (Figure 4A). No
significant difference was detected between words in L1 and L2
[t(21) = –1.70, p = 1 Bonferroni-corrected). Figure 4C below shows
the topographical distribution of the normalized power values for
each condition, as well as the contrasts between conditions.

3.3 Effect of cues on prestimulus beta
rhythms

Beta band analysis revealed a pattern of results similar to
the alpha rhythm analysis. The cluster-based F-test detected one
cluster (p < 0.01, Bonferroni-corrected for the number of FOIs)
(Figure 4B). The topographical distribution of the F-values, as
well as the electrodes belonging to the significant cluster, are

shown in Figure 4B (top-right). Spectral power in the beta
frequency range was averaged over the electrodes of the significant
cluster for each type of cue separately and compared pairwise
via t-tests. Beta power was larger when images were preceded by
words in L1 and L2 compared to natural sounds [t(21) = 2.68,
p = 0.04 Bonferroni-corrected; t(21) = 4.68, p < 0.001 Bonferroni-
corrected, respectively], while no significant difference emerged
when comparing words in L1 and L2 [t(21) = –1.67, p = 0.33
Bonferroni-corrected] (see Figure 4B). Figure 4D below shows the
topographical distribution of the normalized power values for each
condition, as well as the contrasts between conditions.

4 Discussion

Several studies have reported that spoken words can boost
visual recognition of object categories, but the neural mechanisms
underlying such facilitation are not well established. It has been
suggested that effects of language on visual perception arise at early
stages of sensory processing; specifically, via the amplification of
category-specific representations in sensory regions. In the present
study, we investigated the prestimulus effect of language on visual
perception, testing the hypothesis that neural oscillations can serve
as mechanisms to carry language-generated representations about
incoming object categories.

To test this hypothesis, we used EEG to measure prestimulus
brain activity and characterize the oscillatory dynamics underlying
the label-advantage in object recognition. We reasoned that, if
objects are recognized faster because spoken words provide more
refined categorical representations than natural sounds, then these
cues should differentially modulate prestimulus oscillatory activity
in the alpha and beta bands.

We first replicated the previously reported label-advantage
and showed that this behavioral effect persisted even when words
were presented in a second language. This suggests that verbal
symbols deploy more accurate knowledge representations than
natural sounds against which incoming inputs can be compared.
Importantly, the reported behavioral advantage for spoken words
was associated with an increase in the power of alpha and beta
rhythms in the time interval between the offset of the cue and
the onset of the target object. Such synchronization points to a
possible functional role for alpha and beta neural rhythms in the
label advantage in object recognition.

While the widespread distribution of significant clusters –
including numerous electrodes across the whole scalp – might
suggest that the reported effect reflects global alpha/beta network
states, the contrasts between conditions indicate that the effect
was particularly pronounced over posterior electrodes. This was
particularly evident in the alpha frequency-band, suggesting that
alpha waves may reflect local oscillatory states originating in
occipital regions, in line with findings from the monkey literature
(Mo J. et al., 2011).

Enhancement of alpha oscillations in occipital regions has
been largely reported when top-down knowledge is directed
by a cue toward a specific feature (Bollimunta et al., 2008;
Mo J. et al., 2011) or direction (Snyder and Foxe, 2010; Worden
et al., 2000). At least two non-mutually exclusive theoretical
accounts have been advanced to explain this effect. Some recent
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FIGURE 3

Behavioral results. Mean reaction times (correct trials only) showing the main effect of cue-type on visual object recognition performance.
Raincloud plots show probability density. The center of the boxplot indicates the median, and the limits of the box define the interquartile range
(IQR = middle 50% of the data). The notches indicate the 95% confidence interval around the median. Dots reflect individual subjects. *** Signifies
p < 0.001, ns signifies p > 0.05.

proposals posit that enhancement of neural alpha synchronization
in task-relevant regions leads to excitatory effects reflecting
selective amplification of neural representations of object categories
(Klimesch, 2012; Mo J. et al., 2011; Palva and Palva, 2007; Van
Kerkoerle et al., 2014), which could in turn facilitate the recognition
of the incoming object. For instance, M/EEG studies have reported
that alpha power increases in grapheme-processing regions with
the predictability of letter identity (Mayer et al., 2015); and in the
posterior cortex when meaningful hints precede the discrimination
of ambiguous images (Samaha et al., 2018). Similarly, biophysical
models indicate that enhancement of prestimulus alpha waves can
improve detection performance by increasing the excitation of
pyramidal cells, rendering the network state less stable and thus
facilitating the activation of a stimulated assembly (Lundqvist et al.,
2013). One possibility is that the reported modulations on alpha
activity can serve as a mechanism to carry language-generated
representations about the structure of visual objects.

Another prominent view is that enhanced alpha power reflects
states of inhibition and filtering of task-irrelevant information
(Jensen and Mazaheri, 2010; Klimesch et al., 2007). For instance,
when attention is directed toward a target on one side of
space, posterior alpha-band power increases at electrodes over
the hemisphere ipsilateral to the target (Thut et al., 2006;
Worden et al., 2000). According to this view, increased alpha
oscillations reflect suppression of cortical areas not involved in
the task. The alpha effect in our study was right-lateralized and
might reflect the inhibition of right-posterior regions to gate
sensory information processing to the left-posterior network,
where language-perception interactions usually take place (Mo
L. et al., 2011). However, this interpretation would also predict
alpha desynchronization over left-posterior regions to increase
excitability and enhance stimulus processing (Jones et al., 2000;

Klimesch et al., 2007). Since we did not find any evidence for
the latter effect, we consider it unlikely that alpha synchronization
acted as an inhibitory filter in the current study.

A novel result of our study in contrast with similar earlier
studies was the differential beta-band modulations that resulted
from spoken word vs. natural sound cues. Recent proposals
suggest that beta oscillatory activity reflects endogenously driven
transitions from latent to active cortical representations of object
categories (Spitzer and Haegens, 2017), as well as the binding of
neurocognitive network elements associated with a given neural
representation (Bressler and Richter, 2015). Under these accounts,
beta synchronization provides “a flexible scaffolding that sets up
functional neuronal ensembles through temporary synchronization
of content-coding cell populations” (Spitzer and Haegens, 2017).
In the context of visual object recognition, language-driven beta
waves can reactivate neurocognitive networks associated with the
target object, enhancing recognition after the image is presented.
We speculate that the difference in beta modulations for spoken
words vs. natural sounds may reflect a difference in the content
of the (re)activated conceptual states – and more importantly, in
the amount of retrieved conceptual dimensions, e.g., the size of
the neurocognitive network state (Bressler and Tognoli, 2006).
Behavioral and eye-tracking experiments have indeed shown that
spoken words activate a rich network of features during lexical
processing (Huettig and Altmann, 2007). Consequently, processing
words might lead to the retrieval of knowledge dimensions that go
beyond the purely sensory features of objects, such as conceptual,
grammatical, and lexical information. This is partially in line with
human and monkey studies showing that beta synchronization
carries supramodal information about object categories
(Wutz et al., 2018).
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FIGURE 4

Effect of cues on pre-target alpha (A) and beta power (B) averaged over the electrodes belonging to the significant cluster and the time-window of
interest (–0.75 to 0.25 s pre-target). Conventions for the plot are the same as in Figure 3. Topoplots at the top-right of each figure show the
distributions of the F-values and the electrodes belonging to the cluster. At the bottom, topoplots of the normalized time-frequency power for the
alpha (C) and beta (D) bands are shown. The power for each condition is expressed as percent signal change relative to the average power over all
three conditions and channels in the time-window of interest (–0.75 to 0.25 s pre-target). The first row shows the topographies for each condition
in the time-frequency of interest (time: –0.75 to 0.25 s pre-target; frequencies: 9–11 Hz and 17–19 Hz, respectively). The second row shows the
topographical distribution of power differences between conditions. * Signifies p < 0.05, *** signifies p < 0.001, ns signifies p > 0.05.

We recognize that the interpretations above regarding the
role of alpha and beta oscillations should be considered with
caution, particularly in relation to specific frequency effects and the
distinct roles of alpha and beta rhythms. In fact, the similar power
dynamics observed for alpha and beta in this study suggest that
they may serve similar functions and support the same underlying
mechanisms. The coupling of these frequencies has been previously
reported during naturalistic language comprehension, where their
power has been shown to similarly encode high-level linguistic
computations, such as dependency-building (Zioga et al., 2023).
A similar pattern of alpha-beta power modulation has also
been observed during single-word production, where it has been
linked to the retrieval of lexical-semantic information (Piai et al.,
2020). Yet, whether these similar alpha-beta power dynamics
reflect a single vs distinct mechanism is currently debated, and
previous work has highlighted potential differences in functional
contribution (Zioga et al., 2024) and cortical origin (Cao et al.,
2022), despite similar activation profiles. In the context of our
experiment, and given the aforementioned theoretical accounts, we
speculate that alpha-beta power might conjunctively support the
top-down encoding of visual semantic categories and recruitment

of their respective networks, which is larger for cues activating more
precise visual representations. Yet, future studies are needed to
assess the specific roles of alpha and beta oscillations in supporting
language-mediated visual object recognition, and elucidate whether
these frequencies are acting in conjunction or reflecting different
mechanisms.

Despite the present findings remain inconclusive about the
specific functional roles of alpha and beta oscillations, as well as
their potential dissociation, they provide novel contributions to
debate on whether language shapes perception at the early or late
stages of perceptual processing. Evidence for the former account
comes primarily from EEG studies showing that language affects
visual processes by modulating early ERP components such as the
P1 (Boutonnet and Lupyan, 2015; Noorman et al., 2018) and N170
(Landau et al., 2010). However, studies focusing on post-stimulus
activity are also coherent with a later semantic or decision-making
account. Indeed, post-stimulus differences, even if very early, could
still emerge from rapid feed-forward integration of visual and
linguistic information (Thierry et al., 2009). By showing language-
induced modulations of alpha-beta power in posterior regions
before image presentation, our findings align with the idea that
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linguistic influences on visual perception arise at early stages and
in a top-down manner.

Finally, our study included a novel manipulation not
considered in previous studies on categorization: the inclusion of
L2 words as auditory cues. Our participants were highly proficient
Basque-Spanish bilinguals, with comparable levels of proficiency in
both languages, who had acquired their L2 later in development.
The effect of top-down processing in bilinguals is currently debated,
and largely dependent on factors like proficiency (Kaan, 2014) and
age of acquisition (Molinaro et al., 2017). Although it is commonly
believed that bilinguals access a semantic system common to
both languages (Caramazza and Brones, 1980), recent studies
have suggested that top-down processing may be reduced in a
second language because of reduced access to perceptual memory
resources (Hayakawa and Keysar, 2018), which are known to play
an important role in the generation of visual expectations (Hindy
et al., 2016). We found comparable behavioral and neural responses
after L1 and L2 words cuing visual object recognition. This result is
in line with the idea that both languages provide similar types of
top-down guidance to the visual system.

However, our results show that L1 and L2 words both affect
visual processing differently than natural sounds, challenging the
hypothesis that such cues provide similar top-down semantic
information to visual regions. Why do symbolic cues enhance
visual object recognition performance more than natural sounds?
It has been proposed that symbols are extremely effective in
compressing semantic information in a format that transcends
within-category differences, thus leading to the amplification of
those prototypical features that are relevant for distinguishing
between exemplars of different categories (Lupyan and Thompson-
Schill, 2012). By contrast, natural sounds are primarily linked
to context-specific sources (e.g., the barking of a dog may
trigger the representation of a specific exemplar of a dog), thus
being less effective at cueing categorical states (Edmiston and
Lupyan, 2015). Interestingly, ascribing labels to experiences has
also been shown to enhance other cognitive functions, such as
the retention of items in visual working memory (Souza and
Skóra, 2017), learning novel categories (Lupyan et al., 2007), and
perceptual categorization across sensory modalities (Miller et al.,
2018). These findings indicate that language acts as a powerful
tool for compressing information, facilitating different operations
important to a multitude of human cognitive processes (Clark and
Toribio, 2012). Future studies should investigate whether similar
oscillatory mechanisms are employed to support these language-
augmented cognitive functions.
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