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Introduction: Type 2 diabetes mellitus (T2DM) accelerates brain aging and 
disrupts brain functional network connectivity, though the specific mechanisms 
remain unclear. This study aimed to investigate T2DM-driven alterations in brain 
functional network connectivity and topology.

Methods: Eighty-five T2DM patients and 67 healthy controls (HCs) were 
included. All participants underwent clinical, neuropsychological, and laboratory 
tests, followed by MRI examinations, including resting-state functional magnetic 
resonance imaging (rs-fMRI) and three-dimensional high-resolution T1-
weighted imaging (3D-T1WI) on a 3.0 T MRI scanner. Post-image preprocessing, 
brain functional networks were constructed using the Dosenbach atlas and 
analyzed with the DPABI-NET toolkit through graph theory.

Results: In T2DM patients, functional connectivity within and between the 
default mode network (DMN), frontal parietal network (FPN), subcortical network 
(SCN), ventral attention network (VAN), somatosensory network (SMN), and 
visual network (VN) was significantly reduced compared to HCs. Conversely, 
two functional connections within the VN and between the DMN and SMN were 
significantly increased. Global network topology analysis showed an increased 
shortest path length and decreased clustering coefficient, global efficiency, and 
local efficiency in the T2DM group. MoCA scores were negatively correlated 
with the shortest path length and positively correlated with global and local 
efficiency in the T2DM group. Node network topology analysis indicated 
reduced clustering coefficient, degree centrality, eigenvector centrality, and 
nodal efficiency in multiple nodes in the T2DM group. MoCA scores positively 
correlated with clustering coefficient and nodal efficiency in the bilateral 
precentral gyrus in the T2DM group.

Discussion: This study demonstrated significant abnormalities in connectivity 
and topology of large-scale brain functional networks in T2DM patients. These 
findings suggest that brain functional network connectivity and topology 
could serve as imaging biomarkers, providing insights into the underlying 
neuropathological processes associated with T2DM-related cognitive 
impairment.
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1 Introduction

Type 2 diabetes mellitus (T2DM) affects approximately 450 
million adults worldwide (American Diabetes Association 
Professional Practice, 2024), leading to systemic complications. This 
chronic metabolic disease accelerates brain aging (Biessels et al., 2020) 
and nerve damage, resulting in cognitive impairment. T2DM 
facilitates the progression from mild cognitive impairment (MCI) to 
dementia, significantly diminishing quality of life. Understanding the 
mechanisms underlying cognitive impairment in T2DM is crucial for 
early detection and treatment (Srikanth et al., 2020).

Neurodegenerative and neuropsychological disorders, including 
T2DM, often have a prolonged preclinical phase lasting a decade or 
more. Subtle changes in brain function frequently precede overt 
structural neuropathology and behavioral symptoms. T2DM is 
characterized by hyperinsulinemia as reduced insulin receptor 
expression and receptor-activating enzymes, leading to the deposition 
of amyloid beta (Aβ) and Tau proteins (Arnold et al., 2018). Chronic 
hyperglycemia and insulin resistance disrupt neuronal function, 
synaptic plasticity and neurovascular integrity, contributing to 
neuroinflammation and oxidative stress exacerbate damage (van 
Sloten et al., 2020). The brain volume reduction and cognitive decline 
in associated brain regions (Zhang et  al., 2014; Cao et  al., 2024). 
Advancements in neuroimaging, particularly resting-state functional 
magnetic resonance imaging (rs-fMRI), have enabled the identification 
of numerous neuroimaging biomarkers. This non-invasive, repeatable, 
and straightforward technique has revealed alterations in blood 
oxygenation level-dependent (BOLD) signals in T2DM patients 
(Marquez and Yassa, 2019; Van Bussel et al., 2017; Zackova et al., 2021; 
Franke and Gaser, 2019). Post-processing of BOLD images facilitates 
the classification and mapping of brain functional networks, offering 
new insights into the pathophysiological mechanisms of T2DM-
related cognitive disorders (Wang et al., 2016; Lv et al., 2018; Cole 
et al., 2010).

Significant progress has been made in understanding T2DM-
driven brain functional networks. Both reduced and increased 
functional connectivity between various brain regions in T2DM 
patients have been observed (Cui et al., 2016; Liu et al., 2018; Li et al., 
2020; Liu et  al., 2017; Tan et  al., 2019). Earlier studies primarily 
focused on local brain region connections, but it is now recognized 
that most cognitive functions involve multiple brain regions working 
together. Consequently, initial changes in brain regions were often 
overlooked (Fuster, 2006). The focus has shifted toward systematically 
identifying and understanding the functional organization of large-
scale brain networks and their roles in cognitive and emotional 
processing (Bressler and Menon, 2010). Few studies, however, have 
examined changes in T2DM-related large-scale networks, with the 
default mode network (DMN) receiving more attention (Chen et al., 
2015; Liu et al., 2019; Chen et al., 2016; Deng et al., 2021; Cui et al., 
2015) while other large-scale networks are not fully understood. At 
present, the mechanism between changes in large-scale network 
functional connectivity and cognitive dysfunction is still not clearly 
understood. Graph theory analysis can elucidate important topological 

features of the whole brain, including small-world attributes, 
modulators, and hub nodes (Farahani et al., 2019). Several studies 
have reported differences in graph theory-derived parameters of brain 
functional networks between T2DM patients and healthy individuals. 
However, these studies often included small sample sizes and did not 
simultaneously analyze large-scale brain network connectivity and 
topological changes in T2DM patients (van Bussel et al., 2016; Xin 
et al., 2024; Zhou et al., 2022; Zhang et al., 2021). Differences in graph 
theory-derived parameters of brain functional networks between 
T2DM patients and healthy individuals are reported based on small 
cohorts without analyzing large-scale brain network connectivity and 
topological changes.

This study aimed to construct large-scale network connections in 
T2DM patients using BOLD-based rs-fMRI data and to display 
whole-brain and nodal topological features through graph theory 
analysis. This approach seeks to enhance the understanding of the 
mechanisms underlying cognitive dysfunction in T2DM and provide 
further ideas for the delay or prevention of brain disease in 
T2DM patients.

2 Materials and methods

2.1 Participants

This study was approved by the ethics committee of our hospital. 
Participants, all right-handed Han Chinese native speakers, attended 
the endocrinology department and health examination center 
between November 2022 and January 2024. Written informed consent 
was secured from all participants prior to enrollment. Inclusion 
criteria for T2DM group: 1. diagnoses of type 2 diabetes were 
established by an endocrinologist following the American Diabetes 
Association guidelines, and inclusion criteria for T2DM group were: 
1. hyperglycemia was diagnosed with typical diabetic symptoms plus 
glycated hemoglobin A1C (HbA1c) ≥6.5% or fasting blood glucose 
(FBG) ≥7.0 mmol/L or fasting two-hour blood glucose (OGTT2h) 
≥11.1 mmol/L or random FBG ≥ 11.1 mmol/L. Fasting was defined 
as no energy intake for at least 8 h prior to the examination; OGTT 
uses 75 g of anhydrous glucose dissolved in 300 mL of warm water 
(American Diabetes Association Professional Practice, 2024); 2. aged 
18–65, Han nationality, right-handed; 3. blood pressure is normal; 4. 
complete cognitive function assessment and MRI examination. The 
inclusion criteria for the healthy controls (HCs) group were as follows: 
1. those with matched gender, age and years of education to the T2DM 
group; 2. no history of diabetes and normal blood pressure; 3. 
complete cognitive function assessment and MRI examination. 
Exclusion criteria included individuals younger than 18 or older than 
65 years, those with organic central nervous system diseases, a history 
of mental illness or familial mental illness, severe head trauma, severe 
hypoglycemia, significant vascular complications, alcohol dependence 
or substance abuse, noticeable hearing or visual impairments, women 
who were pregnant, breastfeeding, or using contraceptives, and those 
with contraindications for MRI. In total, 85 T2DM patients and 67 
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HCs were enrolled. Demographic data, including gender, age, and 
education, were self-reported by all participants.

2.2 Laboratory analysis and cognition 
testing

Blood samples were obtained from all subjects to measure 
glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), 
triglyceride (TG), total cholesterol (TC), and low-density lipoprotein 
(LDL) levels. All participants underwent neuropsychological 
assessments, including the Montreal cognitive assessment (MoCA) (Li 
et  al., 2018), the digital span test (DST, comprising forward and 
backward tasks) (Diamond, 2013), and the clock drawing test (CDT) 
(Zhou et al., 2010), with each test lasting 5–10 min.

2.3 MRI acquisition

All participants were subjected to MRI examinations on a 3.0 T 
MRI scanner (SIGNA Pioneer, GE Healthcare) with a 16-channel 
phased-array head coil. Routine imaging included T1-weighted, 
T2-weighted, and T2-fluid attenuated inversion recovery (T2-FLAIR) 
sequences to rule out organic brain lesions. Blood oxygenation level-
dependent (BOLD) imaging was then conducted with the following 
parameters: flip angle = 90.0°, bandwidth = 250.0 kHz, TR = 2000 ms, 
TE = 30.0 ms, slices = 48, thickness = 3.0 mm, pixel size = 3.0 × 3.0  
× 3.0 mm3, FOV = 256 × 256 mm2, and NEX = 1. Additionally, three-
dimensional high-resolution T1-weighted brain volume imaging 
(3D-T1WI BRAVO) was performed with these parameters: flip 
angle = 12.0°, bandwidth = 31.25 kHz, TR = 7.8 ms, TE = 3.1 ms, 
slices = 1,024, thickness = 1.0 mm, pixel size = 1.0 × 1.0 × 1.0 mm3, 
FOV = 25.6 × 25.6 cm2, and NEX = 1.

2.4 Assessment of small-vessel disease

White matter degeneration and lacunar infarction in five brain 
regions (bilateral frontal lobes, parietal and occipital lobes, temporal 
lobes, cerebellum and brainstem, and basal ganglia) were quantitatively 
assessed on T2-FLAIR images using the age-related white matter 
changes (ARWMC) Wahlund score (Wahlund et al., 2001). These 
assessments were conducted by two experienced radiologists who 
were blinded to the group assignments. Discrepancies were resolved 
through joint discussion to reach consensus. Participants with ratings 
above 2 were excluded from the study.

2.5 Image processing

All rs-fMRI data were processed using SPM12 and DPABI 
(version 8.1) toolkits in MATLAB (Yan et al., 2016). The preprocessing 
steps were as follows: 1. DICOM-NIFTI data format conversion. 2. 
Removal of the first 10 time points. 3. Temporal correction. 4. Head 
movement correction: ensure that the head motion displacement of 
all enrolled subjects is <2 mm and the head motion rotation is <2 °, 
and the mean FD_Jenkinson is obtained as the covariate for the 
subsequent comparison between the groups. 5. Nuisnace covariate 

regression: to remove the nuisance signals, the Friston 24-parameter 
model was utilized to regress out head motion effects from the 
realigned data. The signals from WM and CSF were regressed out to 
reduce respiratory and cardiac effects. 6. Spatial normalization: 
We  first registered the 3D-T1WI images to the fMRI images. 
We selected the “New Segment + Dartel” option. The “New Segment 
+ Dartel” option performs the New Segment operation on the 
3D-T1WI structural images to obtain tissue maps for gray matter, 
white matter, and cerebrospinal fluid. Additionally, DARTEL 
transforms the structural and tissue images into MNI space and 
generates transformation matrices. Finally, we chose the “Normalize 
by DARTEL” option, which uses the transformation matrices to 
convert the functional images into MNI space. 7. Filtering: select 
signals in the frequency band of 0.01 Hz to 0.08 Hz. These procedures 
were applied to enhance image data quality, reduce confounding 
factors, and prepare the data for further analysis.

2.6 Construction of brain function 
networks

A total of 142 ROIs from the Dosenbach atlas were used as nodes 
and classified into seven large-scale networks (Dosenbach et al., 2010; 
Yeo et al., 2011). Seven large-scale networks include: default mode 
network (DMN), frontal parietal network (FPN), subcortical network 
(SCN), ventral attention network (VAN), somatosensory network 
(SMN), visual network (VN), and dorsal attention network (DAN). 
The BOLD signals for each node were averaged, and Pearson 
correlation coefficients were calculated to determine the correlation 
between BOLD signals across nodes. Functional connectivity (FC) 
between nodes was then computed using Z transformation, with these 
connections represented as edges within the brain functional network. 
Since the current negative functional connection is still controversial, 
we  set the negative functional connection to 0 and keep only the 
positive functional connection, so as to obtain the undirected 
weighted positive resting state functional connection matrix (Pang 
et al., 2022). The details, including node names, networks, and MNI 
coordinates, are listed in Supplementary Table S1.

2.7 Graph theory analysis of brain 
functional networks

The topological attributes of the brain functional network were 
computed across sparsity levels ranging from 0.1 to 0.34, with a step 
size of 0.01 (Yang et  al., 2021), using the DPABI-NET toolkit in 
MATLAB. Global topological attributes assessed included sigma, 
gamma, lambda, shortest path length, clustering coefficient, global 
efficiency, and local efficiency. Node-specific attributes evaluated 
comprised clustering coefficient, degree centrality, eigenvector 
centrality, and nodal efficiency.

2.8 Statistics

Statistical analyses were performed using SPSS (IBM, SPSS, 
version 25). Differences in demographic data and neurocognitive test 
scores between groups were assessed using either independent 
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two-sample t-tests or Mann–Whitney U tests, based on the 
distribution normality and variance equality of the data. Chi-square 
tests were used to evaluate gender differences between groups. 
Connectivity between functional network nodes was compared with 
two-sample t-tests, adjusting for gender, age, education level, and 
average head motion. Results were  
corrected for false discovery rate (FDR) using the Benjamini-
Hochberg (B-H) procedure, with statistical significance set at p < 0.05.

Network topology attributes were analyzed using analysis of 
covariance (ANCOVA), incorporating gender, age, education level, 
and average head motion as covariates. The significance threshold for 
global network topology attributes was set at p < 0.05. For node-
specific attributes, FDR correction was applied, with significance 
defined as Q < 0.05 after adjustment. Gender, age, education level and 
average head movement were used as covariables to conduct partial 
correlation analysis of MoCA scores, clinical measurements, and brain 
network topological parameters in the T2DM group, with statistical 
significance determined as p < 0.05.

3 Results

3.1 Demographic data, clinical 
measurements, and cognitive testing

Gender, age, and education were not comparable between the 
T2DM and HC groups. However, the T2DM group exhibited 
significantly lower MoCA scores than the HC group (Table 1).

3.2 Changes in connectivity of large-scale 
functional networks

The T2DM group showed significantly reduced functional 
connections within and between the DMN, FPN, SCN, VAN, DAN, 
SMN, and VN compared to the HC group. However, two functional 
connections were significantly increased within the VN and between 
the DMN and SMN (Figure 1).

3.3 Group differences in global network 
metrics

In the global network topology analysis, the T2DM group 
showed a lower clustering coefficient, global efficiency, and local 
efficiency, along with a higher shortest path length compared to 
the HC group. No significant differences were observed in sigma, 
gamma, and lambda between the groups (Table 2; Figure 2).

3.4 Group differences in node-level 
network metrics

In the node network topology analysis, the clustering coefficient was 
lower in the left basal ganglia and bilateral precentral gyrus in the T2DM 
group compared to the HC group. Degree and eigenvector centrality were 
reduced in the bilateral thalamus, and degree centrality alone was 
decreased in the right basal ganglia. Nodal efficiency was also lower in 
several brain regions (Table 3; Figure 3).

3.5 Correlation between network theory 
parameters and MoCA scores

In the global network topology analysis, MoCA scores negatively 
correlated with shortest path length and positively correlated with both 
global and local efficiency in the T2DM group. Node network topology 
analysis revealed that MoCA scores positively correlated with the 
clustering coefficient of the right precentral gyrus and with nodal 
efficiency in the right frontal cortex, left ventromedial frontal cortex, and 
both the right and left precentral gyri (Figure 4).

3.6 Correlation between network 
parameters and laboratory indicators

Global network graph analysis revealed no significant correlations 
between network parameters and laboratory indicators in T2DM 

TABLE 1 Demographic data, clinical biochemical indicators and neuropsychological result of all subjects.

T2DM (n = 85) HC (n = 67) Statistics p-value

Age (years) 50.29 ± 9.62 47.88 ± 8.05 t = 1.648 0.101

Sex (female/male) 30/55 31/36 χ2 = 1.878 0.171

Education (years) 12.00 (9.00;15.00) 12 (9.00;16.00) z = −0.087 0.930

HbA1c (%) 8.91 ± 2.06 N/A N/A N/A

FBG (mmol/L) 7.88 (6.77;10.63) N/A N/A N/A

TG (mmol/L) 1.89 (1.11;2.52) N/A N/A N/A

TC (mmol/L) 5.16 ± 1.27 N/A N/A N/A

LDL (mmol/L) 3.13 (2.58;3.84) N/A N/A N/A

CDT 3.00 (3.00;4.00) 3.00 (3.00;4.00) z = −0.355 0.722

MoCA 26.00 (24.00;27.00) 27.00 (27.00;29.00) z = −5.831 <0.001*

DST(forward) 8.00 (7.00;9.00) 8.00 (8.00;9.00) z = −1.105 0.269

DST(inverse) 4.00 (3.00;5.00) 4.00 (3.00;4.00) z = −0.276 0.783

FBG, fasting blood glucose; TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein; DST, the digital span test; CDT, the clock drawing test; MoCA, Montreal cognitive assessment. 
*P < 0.05.
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patients compared to the HC group. However, node network topology 
analysis showed that FBG negatively correlated with nodal efficiency 
in the left ventromedial frontal cortex and left thalamus, as well as 
with eigenvector centrality in the left thalamus. Additionally, TG 
negatively correlated with both eigenvector and degree centrality in 
the left thalamus (Figure 5).

4 Discussion

This study identifies significant alterations in brain functional 
connectivity in T2DM patients compared to healthy controls, 
suggesting that cognitive impairment in T2DM is influenced by 
interactions among different brain regions and networks.

The DMN plays a critical role in cognition-related functions 
such as memory, future planning, and social planning (Yeshurun 
et al., 2021). Consistent with previous findings, connectivity within 
the DMN network as well as connectivity between the DMN and 
other networks, particularly involving the posterior cingulate gyrus, 

prefrontal cortex, precuneus, and angular gyrus reduced in T2DM 
patients (Deng et  al., 2021; Chen et  al., 2016). Meng et  al. 
demonstrated large-scale network damage centered on DMN in 
T2DM patients through a meta-analysis, which provides key insights 
into the neural mechanisms of diabetes-related cognitive decline 
(Meng et al., 2022). Significantly decreased connectivity between the 
DMN and the FPN was also observed (Meng et al., 2022), suggesting 
deficits in execution, attention and emotional regulation in T2DM 
patients (Nielsen et  al., 2017). Previous report about increased 
connectivity in the pre-DMN and decreased connectivity in the 
post-DMN (Cui et  al., 2015), both increased and decreased 
connections between DMN and SMN networks were also found in 
our study, dissociative patterns in the DMN likely triggered the 
T2DM-related cognition decline.

Additionally, our results reveal reduced functional connectivity 
between the SCN and several other networks, including the VN, 
DMN, and SMN. This suggests that diminished connectivity in T2DM 
affects both cognitive regions and integration centers. Significant 
connectivity reductions were also found in the three sensory 

FIGURE 1

The T2DM group showed significantly reduced functional connections within and between the DMN, FPN, SCN, VAN, DAN, SMN, and VN compared to 
the HC group. However, two functional connections were significantly increased within the VN and between the DMN and SMN (A). Maps show the 
number of significant edges for each pair of networks for each of the two contrasts (B). DMN, default mode network; FPN, frontal parietal network; 
SCN, subcortical network; VAN, ventral attention network; SMN, somatosensory network; VN, visual network; DAN, dorsal attention network.

TABLE 2 Global network metrics of all subjects.

T2DM (n = 85) HC (n = 67) Statistics(F) P-value

Lp 1.059 ± 0.185 0.992 ± 0.158 5.991 0.016*

Cp 0.039 ± 0.009 0.042 ± 0.008 4.651 0.033*

Eg 0.056 ± 0.009 0.060 ± 0.009 6.131 0.014*

Eloc 0.082 ± 0.017 0.088 ± 0.016 5.858 0.017*

Sigma 1.195 ± 0.229 1.202 ± 0.229 0.021 0.884

Gamma 0.409 ± 0.066 0.417 ± 0.069 0.113 0.737

Lambda 0.089 ± 0.004 0.090 ± 0.004 1.428 0.234

Lp, shortest path length; Cp, clustering coefficient; Eg, global efficiency; Eloc, local efficiency. *P < 0.05.
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networks—the VAN, SMN, and VN—correlating with abnormalities 
in attention, sensation, and vision reported in T2DM patients (Zhang 
et  al., 2015; Xia et  al., 2015; Faskowitz et  al., 2022). The VN, in 
particular, is highly susceptible and often shows disruptions in T2DM 
(Ni et al., 2024; Kaewput et al., 2019). While T2DM is commonly 
associated with disconnections in the DAN (Meng et al., 2022), our 
study found only a slight abnormality in the connection between DAN 
and DMN. Possibly due to the relatively short duration of diabetes in 
our study cohort.

T2DM impairs brain functional network connectivity through 
several mechanisms. It leads to neuron loss, disrupts cell proliferation 
in the dentate gyrus, and damages synaptic plasticity, as evidenced by 
both human and animal studies (Jackson-Guilford et al., 2000; Li et al., 
2002; Stranahan et  al., 2008). Neuroplasticity, which involves 
structural and functional adjustments in response to stimuli or 
damage (Cramer et  al., 2011; Fu and Zuo, 2011), is crucial here. 
Enhanced functional connectivity often reflects compensatory 
mechanisms that the nervous system employs to preserve normal 
function and optimize between-network interactions (Jing et al., 2023; 
Fang et  al., 2019). Additionally, treatments such as blood glucose 
reduction and improved perfusion of small blood vessels can enhance 

network connectivity. For example, intranasal insulin has been found 
to improve resting-state functional connectivity in the hippocampus 
(Zhang et  al., 2015), potentially explaining our observations of 
increased connectivity within the VN and between the DMN and the 
SMN. This is consistent with previous findings of increased 
connectivity between the thalamus and VN in pre-T2DM patients 
(Jing et al., 2023).

We compared 7 global indicators between the two groups. 
We believed that these 7 indicators were independent of each other, so 
we did not conduct multiple contrast correction for these 7 indicators, 
which is similar to most relevant studies (Shang et al., 2023; Xin et al., 
2024). Whole-brain network analysis revealed that T2DM is associated 
with decreased global network connectivity, characterized by lower 
clustering coefficient, global efficiency, and local efficiency, as well as 
increased shortest path length (Farahani et al., 2019; van Bussel et al., 
2016; Yang et al., 2020). The clustering coefficient, which measures the 
interconnection among adjacent nodes, decreased in T2DM, 
indicating reduced information processing within clustered brain 
regions. Our results also show diminished global and local efficiency, 
suggesting less effective network processing, and an increased shortest 
path length, reflecting slower information transmission between brain 

FIGURE 2

In the global network topology analysis, the T2DM group showed a higher shortest path length (A), along with a lower clustering coefficient (B), global 
efficiency (C) and local efficiency (D) compared to the HC group.
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TABLE 3 Node-level network metrics of all subjects.

Node name MNI coordinates Statistics(F) P-value Q-value

X Y Z

Clustering coefficient

Basal ganglia (L) (ROI 30) −6 17 34 12.729 0.000 0.035*

Precentral gyrus (R) (ROI 51) 46 −8 24 13.748 0.000 0.042*

Precentral gyrus (L) (ROI 52) −54 −9 23 11.730 0.001 0.038*

Degree centrality

Thalamus (L) (ROI 57) −12 −12 6 21.270 0.000 0.001*

Thalamus (R) (ROI 58) 11 −12 6 15.468 0.000 0.009*

Basal ganglia (R) (ROI 71) 11 −24 2 11.579 0.001 0.041*

Eigenvector centrality

Thalamus (L) (ROI 57) −12 −12 6 14.025 0.000 0.037*

Thalamus (R) (ROI 58) 11 −12 6 13.172 0.000 0.028*

Nodal efficiency

vPFC (L) (ROI 23) −52 28 17 9.454 0.003 0.045*

Basal ganglia (L) (ROI 30) −6 17 34 11.681 0.001 0.039*

Frontal (R) (ROI 32) 58 11 14 8.176 0.005 0.049*

Basal ganglia (L) (ROI 38) −20 6 7 9.923 0.002 0.047*

Basal ganglia (R) (ROI 39) 14 6 7 8.120 0.005 0.047*

vFC (L) (ROI 40) −48 6 1 12.170 0.001 0.046*

Precentral gyrus (R) (ROI 51) 46 −8 24 9.755 0.002 0.044*

Precentral gyrus (L) (ROI 52) −54 −9 23 9.308 0.003 0.043*

Parietal (L) (ROI 54) −47 −12 36 8.739 0.004 0.043*

Thalamus (L) (ROI 57) −12 −12 6 11.574 0.001 0.031*

basal ganglia (R) (ROI 71) 11 −24 2 8.832 0.003 0.045*

Angular gyrus (L) (ROI 101) −41 −47 29 10.189 0.002 0.049*

Temporal (L) (ROI 102) −59 −47 11 9.122 0.003 0.042*

Occipital (R) (ROI 120) 19 −66 −1 8.658 0.004 0.041*

Post occipital (L) (ROI 135) −5 −80 9 8.097 0.005 0.045*

vPFC, ventromedial prefrontal cortex; vFC, ventral frontal cortex; *Q < 0.05.

https://doi.org/10.3389/fnins.2025.1472010
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ni et al. 10.3389/fnins.2025.1472010

Frontiers in Neuroscience 08 frontiersin.org

FIGURE 3

In the node network topology analysis, the clustering coefficient was lower in the left basal ganglia and bilateral precentral gyrus in the T2DM group 
compared to the HC group (A). Degree centrality and eigenvector centrality were reduced in the bilateral thalamus, and degree centrality alone was 
decreased in the right basal ganglia (B,C). Nodal efficiency was also lower in several brain regions (D).

FIGURE 4

In the global network topology analysis, MoCA scores negatively correlated with shortest path length and positively correlated with both global and 
local efficiency in the T2DM group (A–C). Node network topology analysis revealed that MoCA scores positively correlated with the clustering 
coefficient of the right precentral gyrus and with nodal efficiency in the right frontal cortex, left ventromedial frontal cortex, and both the right and left 
precentral gyri (D–H). MoCA, Montreal cognitive assessment.
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regions. Although some studies have reported increased clustering 
coefficient, global efficiency, and local efficiency with a decreased 
shortest path length in T2DM (van Bussel et al., 2016; Xin et al., 2024; 
Zhou et al., 2022; Zhang et al., 2021), our findings are consistent with 
observations in dementia, where functional connectivity is notably 
reduced and information processing efficiency is compromised 
(delEtoile and Adeli, 2017). The increased connectivity seen in early 
T2DM may be a compensatory response, yet it results in reduced 
between-network efficacy. These similar topological changes in T2DM 
and dementia suggest that T2DM may be  a risk factor for 
developing dementia.

In nodal brain network analysis, T2DM is associated with a 
decreased clustering coefficients of the left basal ganglia and 
bilateral anterior central gyrus, indicating reduced connectivity 
between any one of three brain regions and adjacent brain 
regions, which would reduce the speed of information processing 
between adjacent node brain regions. The study of degree 
centrality helps to identify important nodes, and the reduced 
degree centrality in the bilateral thalamus and right basal ganglia 
suggests these areas are less synchronized in the network, 
resulting in a lower degree of integration of the entire brain 
network. Eigenvector centrality is a hierarchical measure as the 
sum of the centrality for any one node adjacent one and 
represents the “hub” in the functional brain network (Lorenzini 
et  al., 2023). Decreased eigenvector centrality in the bilateral 
thalamus represents a weakened role as a “transit station” 
connecting to other essential brain regions. Overall, reduced 
nodal efficiency across multiple brain regions in T2DM signifies 
diminished information processing capability (Yang et al., 2020; 
delEtoile and Adeli, 2017; Jacob et  al., 2022), supporting our 

study of a damaged state in T2DM patients. Some previous 
studies have concluded that the topology of T2DM networks with 
different states is mainly characterized by reduced efficiency (van 
Bussel et al., 2016; Xin et al., 2024). Our study results also support 
this view, indicating that the node network of T2DM patients 
included in our study is in a damaged state. The observed 
reduction in eigenvector centrality, an aspect infrequently 
highlighted in previous studies, indicates a notable alterations in 
network connectivity as a “hub” region in brain networks. 
Comprehensive brain and nodal graph theory analyses reveal a 
reduction in information processing efficiency in both nodes and 
connections across extensive brain networks.

Insulin, a growth factor with neurotrophic properties, is 
essential for regulating learning and memory (Rachdaoui, 2020). 
In T2DM, characterized by hyperinsulinemia, insulin resistance 
in the brain can arise from reduced insulin receptor expression 
and receptor-activating enzymes. This resistance can lead to the 
accumulation of amyloid β-protein (Aβ) and Tau proteins, 
contributing to cognitive decline (Arnold et  al., 2018). The 
MoCA effectively detects mild cognitive impairment (Li et al., 
2018), and lower MoCA scores in T2DM patients are linked to 
decreased efficiency in large-scale brain network connections. 
Poor glycemic control is associated with reduced global and local 
network efficiency and increased shortest path length, 
exacerbating cognitive decline. Node analysis reveals that 
elevated FBG further diminishes node performance. Specifically, 
decreased performance in the precentral gyrus (PreCG), which 
is crucial for verbal motor memory tasks (Sakurai et al., 2018), 
correlates with declining MoCA scores. This decline may impair 
speech motor functions, affecting MoCA outcomes. Previous 

FIGURE 5

Node network topology analysis showed that FBG negatively correlated with nodal efficiency in the left ventromedial frontal cortex and left thalamus, 
as well as with eigenvector centrality in the left thalamus in T2DM patients (A–C). Additionally, TG negatively correlated with both eigenvector and 
degree centrality in the left thalamus (D,E). FBG, fasting blood glucose; TG, triglyceride.
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studies have also connected MoCA scores in T2DM with PreCG 
volume and noted that increased centrality in PreCG is linked to 
abnormalities in brain tissue connections (Roy et  al., 2020). 
Additionally, elevated TG levels are associated with reduced 
efficacy in the left thalamus. Elevated lipids not only affect the 
brain functional network in T2DM patients, but also further 
aggravate the decreased brain functional network caused by 
elevated blood glucose (Kassab et al., 2023; Yang et al., 2023). 
These findings highlight the necessity of controlling both blood 
glucose and lipid levels to reduce brain damage in T2DM patients.

This study has several limitations. First, being cross-sectional, it 
does not capture the effects of T2DM duration on brain connectivity. 
Future research should address this by incorporating longitudinal 
follow-up. Second, incomplete data on medication use limits our 
ability to control for their potential effects on brain functional  
networks.

In summary, our study identified abnormalities in large-scale 
brain networks in T2DM patients, suggesting that cognition 
decline is caused by large-scale DMN-centered networks instead 
of one single region. Graph theory analysis revealed reduced 
efficacy in T2DM brain topology, with cognitive decline linked 
to diminished efficiency in both global and node-specific 
networks. These findings suggest that brain functional 
connectivity and topology could serve as valuable imaging 
biomarkers for understanding the biological mechanisms 
underlying cognitive impairment in T2DM.
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