
Frontiers in Neuroscience 01 frontiersin.org

Behavioral alterations in 
antibiotic-treated mice 
associated with gut microbiota 
dysbiosis: insights from 16S rRNA 
and metabolomics
Asma Bibi 1,2†, Famin Zhang 1,2†, Jilong Shen 1,2, Ahmad Ud Din 3 
and Yuanhong Xu 1,2*
1 The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The 
First Affiliated Hospital of Anhui Medical University, Hefei, China, 2 Department of Clinical Laboratory 
Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China, 3 Department of 
Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State 
University, Kannapolis, NC, United States

The gut and brain interact through various metabolic and signaling pathways, 
each of which influences mental health. Gut dysbiosis caused by antibiotics is a 
well-known phenomenon that has serious implications for gut microbiota-brain 
interactions. Although antibiotics disrupt the gut microbiota’s fundamental structure, 
the mechanisms that modulate the response and their impact on brain function 
are still unclear. It is imperative to comprehend and investigate crucial regulators 
and factors that play important roles. We aimed to study the effect of long-term 
antibiotic-induced disruption of gut microbiota, host metabolomes, and brain 
function and, particularly, to determine the basic interactions between them by 
treating the C57BL/6 mice with two different, most commonly used antibiotics, 
ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated 
plus-maze test and open field test. Gut microbes and their metabolite profiles in 
fecal, serum, and brain samples were determined by 16S rRNA sequencing and 
untargeted metabolomics. In our study, long-term antibiotic treatment exerted 
anxiety-like effects. The fecal microbiota and metabolite status revealed that the top 
five genera found were Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_
gnavus_group, and unclassified norank_f_Muribaculaceae. The concentration of 
serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 
5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, 
while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis 
of serum and brain samples showed that amino acid metabolism pathways, such as 
tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine 
metabolism, and neuroactive ligand-receptor interaction, were significantly 
decreased in antibiotic-treated mice. Our study demonstrates that long-term 
antibiotic use induces gut dysbiosis and alters metabolic responses, leading to 
the dysregulation of brain signaling molecules and anxiety-like behavior. These 
findings highlight the complex interactions between gut microbiota and metabolic 
functions, providing new insights into the influence of microbial communities 
on gut-brain communication.
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1 Introduction

Trillions of microbes, collectively called “gut microbiota,” colonize 
the digestive tract. Gastrointestinal physiology and the function of 
distant organs, as well as the susceptibility of the host to disease, are 
influenced by this extensive microbial community residing in the 
colon (Lozupone et al., 2012). Due to their complex, dynamic, and 
metabolically active nature, these commensal microorganisms play an 
essential role in the development of immune cells (Hooper et  al., 
2012), physiological processes including energy harvesting 
(Turnbaugh et al., 2006), and gut epithelial cell homeostasis (Wells 
et al., 2011). Studies published recently suggested that gut microbiota 
may also have neuroactive properties that are linked to neurological 
and psychiatric disorders, which has been referred to as the 
microbiota-gut-brain axis (Cryan et al., 2020). In the gut-brain axis, 
neuronal, humoral, and immune signaling pathways are involved in 
gut microbiota and brain bidirectional communication (Bienenstock 
et  al., 2015). Neuropsychiatric diseases are associated with 
disturbances of the gut microbiota, which regulates brain behavior 
and function (Morais et al., 2021). Metabolic, immune, endocrine, and 
neuronal pathways may all be affected by gut microbiota (Sharon 
et al., 2014).

Recent studies have revealed that chemical signals transported 
from the gastrointestinal lumen to the systemic circulation are 
synthesized or transformed by the microbiota. Their effects may 
impact the central nervous system (CNS) once they cross the blood–
brain barrier (BBB) (Ursell et al., 2014; Liu et al., 2021). Alterations in 
gut microbiota metabolites and chronic systemic inflammation can 
lead to neuroinflammation and neurodegeneration (Mou et al., 2022). 
In addition to regulating the immune response and physiological 
metabolism, these metabolites play a role in maintaining the 
connection between the brain and gut microbiota (Wang et al., 2020). 
Approximately 90% of mammalian gut bacteria belong to the 
Bacteroidetes and Firmicutes phyla (Eckburg et  al., 2005). The 
Firmicutes phylum has been shown to produce various 
neurotransmitters, including dopamine, which is related to the control 
of mood and emotional stability (Donthamsetti et  al., 2020). A 
significant correlation was found between Bacteroides species and 
amino acid and lipid metabolism, like glutamate metabolism 
(Cervenka et  al., 2017). The alteration of amino acid 
neurotransmitters, such as 5-hydroxytryptamine, by these bacteria 
may cause the onset of mental illness (Hamamah et  al., 2022). 
Neurotransmitters, like γ-aminobutyric acid (GABA), are produced 
in large quantities by Firmicutes and Actinobacteria, which impacts 
host neurophysiology (Bravo et  al., 2011). Firmicutes produce 
comparatively high levels of norepinephrine (Strandwitz, 2018), and 
they have an impact on behavior and cognitive processes, including 
learning, attention, and memory (Borodovitsyna et al., 2017). Recent 
studies have demonstrated that the gut microbiota actively controls 
these metabolic fluxes to influence either the distant central nervous 
system (CNS) or the local enteric nervous system (ENS) (Dinan and 
Cryan, 2017). Surprisingly, despite all this interest, the molecular 
foundations of this microbiota-gut-brain interplay remain poorly 
understood. It is not clear when and how microbiota initiate specific 
neurotransmitter production.

In the context of medicine, antibiotics are commonly prescribed 
(Swindells et  al., 2018). The use of antibiotics is associated with 
dysfunctional metabolism and dysbiosis of the gut microbiota (Zhang 

N. et  al., 2022). The symbiotic bacterial load and diversity in the 
gastrointestinal tract are rapidly reduced after broad-spectrum 
antibiotic use (Dethlefsen and Relman, 2011). Numerous 
opportunistic infections may arise from this disturbance as a result of 
diminished colonization resistance against different bacterial and 
fungal pathogens (Blaser, 2011; Mukherjee and Hooper, 2015). The 
disrupted microbiota leads to unwanted metabolite production, which 
influences brain health (De Luca and Shoenfeld, 2019). Moreover, 
several neuropsychiatric disorders have been linked to chronic 
dysbiosis of the microbiota, but so far, no direct evidence has ever 
been well documented.

This study aimed to establish whether gut dysbiosis leads to the 
alteration of gut microbiota-brain communication via microbial 
metabolites or the dysregulation of brain neuronal signaling 
systems. Considerable literature suggests the microbiota-gut-brain 
axis may be associated with mental health disorders. However, the 
effect of gut microbial alterations on metabolite production 
impairs cognitive behavior and mental health, and the mechanisms 
by which these effects occur remain inconclusive. First, there is a 
lack of knowledge about the association between gut dysbiosis and 
host systematic metabolomes and the long-term effects of antibiotic 
use on metabolite mediators. Second, little is known about the 
important roles that metabolites and associated metabolic 
pathways play in the brain’s primary cognitive processes and how 
disruption of these pathways might result in neuropsychiatric 
diseases. The diverse range of compounds produced by gut bacteria 
and their effects on the brain can lead to effective 
targeted interventions.

Most commonly used antibiotics, such as amoxicillin (a beta-
lactam) and ciprofloxacin (a fluoroquinolone), were chosen for this 
study to explore the function of the murine microbiota in shaping 
brain neurochemistry and function. Two different antibiotics were 
used to examine how intragastric antibiotic treatment affects gut 
microbial flora, metabolite profiles, circulating metabolites, and their 
related pathways in the brain of mice. A majority of species were 
reduced in abundance by amoxicillin, except for a few members of the 
Bacteroides genus. Contrary to its effects on Bacteroides, ciprofloxacin 
increased Firmicutes abundance (Desbonnet et al., 2015; Farzi et al., 
2018). Changing taxonomic structure results in changes in the relative 
abundance and metabolism of the gut microbiota (Cabral et al., 2019). 
A short-term administration of antibiotics, however, does not appear 
to cause significant metabolic changes (Yang et al., 2023). Given these 
considerations, disruption of gut microbiota (dysbiosis) due to long-
term antibiotic use is considered a model of intrusion to investigate 
the causality in microbiota-dependent effects. Cognitive and anxiety-
like behaviors were examined using the elevated plus-maze test 
(EMPT) and open-field test (OFT). To characterize the taxonomic 
profile of the gut microbiota, we used 16S rRNA gene sequencing of 
fecal samples to study both community-level and single-species 
variation across the groups. We  used untargeted metabolomics 
analyses to examine the chemical profiles of C57BL/6 mice feces 
samples, serum, and brain tissues to identify the metabolic responses 
in the gut, serum, and brain of three different research groups 
(Control, Amoxicillin, Ciprofloxacin group). Hence, prolonged use of 
broad-spectrum antibiotics disrupts the gut microbiota-brain 
relationship and the mental health of the host. These results will 
provide a foundation for understanding the clinical application of gut 
microbiota in human health and mental disorders.
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2 Materials and methods

2.1 Mice and antibiotic treatment

Male C57BL/6 mice (6 weeks old) were obtained and domesticated 
at Anhui Medical University for 1 week for assimilation. For each 
experiment, mice were housed in social housing conditions and fed 
the same diet. Subsequently, a random selection of mice was made 
into three groups (n = 7 per treatment group): the control group 
(n = 7), the amoxicillin-treated group (Amx) (n = 7), and the 
ciprofloxacin-treated group (Cip) (n = 7). The mice were grown in 
individually ventilated cages (IVC) and were kept under specific 
pathogen-free (SPF) settings under the following conditions: 22°C, 
40–70% humidity, and a 12:12 h light/dark cycle.

2.2 Ethics statement

Anhui Medical University’s experimental animal ethics committee 
approved the animal study (permit number 20,180,016), which 
included guidelines for the procedures used on the animals. 
Regulatory and institutional requirements were followed when 
conducting the study.

2.3 Antibiotics

The antibiotics ciprofloxacin (CAS 86393–32-0) and amoxicillin 
(CAS 61336–70-7) were purchased from Solarbio Beijing and Macklin 
(Shanghai), China, respectively. Antibiotics were dissolved in PBS (pH 
6.98–7.14) and were administered orally daily for 3 weeks. Dosages 
were based on those used in previous mouse studies (Hertz et al., 
2020; Stavroulaki et al., 2021). Control mice received PBS only. Each 
day, the mice were weighed before the oral administration of the 
antibiotics, and the volume was adjusted accordingly. We used the Lab 
Rat and Mouse Maintenance Diet (Xietong, China)1 when raising 
mice, which is designed as the standard diet for the maintenance 
phase of laboratory rats and mice. The main ingredients in the feed 
included corn, wheat, fish meal, chicken meat meal, sodium chloride, 
etc., which are rich in essential amino acids and vitamins and are 
sufficient to meet the needs of experimental mice. Autoclaved water 
and food were allowed ad libitum.

2.4 Behavioral tests

To assess the anxiety-like behavior of mice, the OFT and EPMT 
were conducted during the third week of antibiotic administration 
(Shentu et al., 2024). The same experimental settings were used in all 
the experiments. A minimum of 1 h was provided for the mice to 
acclimatize to the testing environment before each test. Following 
each experiment, the equipment was thoroughly rinsed with 75% 
alcohol to remove mouse feces and odors, and no further experiments 
were conducted until the ethanol had completely evaporated. For 

1 http://www.jsxtsw.com/en/345/

tracking, recording, and evaluating each mouse’s ambulatory 
trajectory, we used Pan Lab Technology for Bioresearch of Barcelona, 
Spain (version 3.0).

2.5 Open-field test

The OFT was conducted in a room measuring 
45 cm × 45 cm × 45 cm with black walls and white floors. The center 
of the chamber was determined as a 10-cm zone between each wall. 
For 5 min, the mice were placed down gently in the middle of the field 
and allowed to locomote about. There were fewer entries in the central 
region, and less time was spent there, indicating higher levels 
of anxiety.

2.6 Elevated plus-maze test

This test involved the mice walking through a cross maze with 2 
open arms (30 cm length x 6 cm width) and 2 closed arms (6 cm width 
× 30 cm length × 15 cm height). During the experiment, the mice 
were placed down facing an open arm in the center of the maze and 
allowed to navigate freely for 5 min. Anxiety levels were determined 
by the number of entries and duration of the maze.

2.7 Sample collection

All mice were euthanized after 3 weeks, and fecal, serum, and 
brain tissue samples were collected for targeted analysis of relevance 
to the gut-microbiota axis. Fecal samples were used for 16S rRNA 
amplicon sequencing to analyze the microbiota and quantify microbial 
metabolites. Serum and brain samples were used for untargeted 
metabolome analyses. Fecal samples were collected after defecation on 
sterilized paper within 24 h of the last administration (Yang et al., 
2023). Following the protocols described previously (Zhou et  al., 
2022), blood samples were collected after anesthetizing the mice, and 
serum was isolated via centrifugation and stored for further analysis. 
Following the protocols by Marquardt et al. (2018), immediately post-
sacrifice, the brain was isolated using ultra-fine forceps after perfusion 
with saline. The brain was collected as described previously (Dyar 
et al., 2018) and maintained on ice. The brain was then immediately 
cryopreserved in liquid nitrogen and then stored at −80°C until 
further use.

2.8 Bacterial DNA extraction and 
amplification

A fecal sample of 200 mg from each mouse was used for 16S 
rRNA analysis. From the mice feces for the extraction of total bacterial 
DNA, we used the E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, Norcross, 
GA, United Sates). DNA quality and concentration were assessed 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific; 
Wilmington, NC, United Sates). Amplification of 16S rRNA genes was 
carried out using bacterial primers 338F (5′-ACTCCTACGGGA 
GGCAGCAG-3′) and 806 R (5′-GGACTACHVGGGTWTCTAAT-3′), 
which span the hypervariable regions of V3-V4 on a Bio-Rad T100 
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system (Bio-Rad, Hercules, CA, United Sates). PCR reactions for each 
sample were performed in triplicate in 20 μL reaction solutions 
containing 0.4 μL of 5× FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL 
of each primer (5 μM), 0.4 μL of FastPfu polymerase, and 10 ng of 
template DNA. The following thermal cycler program was used for 
amplification: 3 min at 95°C, 27 cycles of 30 s at 95°C, 30 s at 55°C, 
and 45 s at 72°C, and a final extension at 72°C for 10 min. The next 
step was the sequencing of purified amplicons using an Illumina 
MiSeq platform (Illumina, San Diego, CA, United Sates) using the 
standard protocols of Majorbio Bio-Pharm Technology Co. Ltd., 
Shanghai, China.

2.9 16S rRNA gene sequencing analysis

To analyze and screen the quality, raw sequence reads were filtered 
and merged using Trimmomatic and FLASH software. Using the 
UPARSE pipeline (version 7.1), the OTUs were clustered after 
chimeric sequences were removed. The RDP Classifier2 was used to 
analyze all OTU representative sequences from the 16S rRNA gene 
database in Sliva 138 within the 0.7 confidence threshold. To conduct 
the correlation analysis, Omic Studio was used.3 For each library, the 
alpha diversity index, community diversity (Shannon and Simpson), 
and community richness (Ace and Chao) were calculated using 
Mothur v1.30.1 with OTU information. In addition, we used Mothur 
data to generate a rarefaction curve and species accumulation plots to 
confirm the sequencing depth (Schloss et al., 2009). The similarity 
among the samples was analyzed by PERMANOVA and principal 
coordinate analysis (PCoA) based on Bray–Curtis dissimilarity using 
the Vegan v2.5–3 package. The permutational multivariate analysis of 
variance (PERMANOVA) confirmed the difference using the 
Majorbio database. To identify significant taxa (phylum to genera) of 
bacteria among the different groups, we  used linear discriminant 
analysis (LDA score > 2 was employed and p < 0.05 was considered 
significant) effect size (LEfSe).4 Raw data from the entire sequencing 
have been uploaded to the NCBI Sequence Read Archive (SRA) under 
accession number PRJNA1063454.

2.10 Metagenomics sequencing analysis

To further study the functional ability of the microbiome, 
we randomly selected fecal samples from each group for metagenomic 
sequencing analysis on an Illumina sequencing HiSeq platform 
(Illumina, San Diego, CA, United States) using the standard protocols 
of Majorbio Bio pharm Co., Ltd., Shanghai, China. After sequencing, 
the raw reads were cleaned with Readfq (version 8), the data were 
filtered using Bowtie (version 2.2.4), and the data were subjected to a 
BLAST search against the host database. The metagenome was then 
assembled using a single or mixed assembly. Single-sample assembly 
was performed using SOAP denovo (ver. 2.04) (Luo et  al., 2012) 
for each sample. Using Bowtie 2 software, clean data from all samples 
were mapped to scaffolds, and unused paired-end reads were 

2 http://rdp.cme.msu.edu/

3 http://www.omicstudio.cn/tool

4 http://huttenhower.sph.harvard.edu/LEfSe

obtained. The mixed assemblies of all samples were performed using 
SOAP denovo and MEGAHIT (version 1.04-beta). Fragments below 
500 bp in the scaftigs generated from the single or mixed assembly 
were filtered out for statistical analysis. Next, MetaGeneMark (v 2.10) 
(Zhu et al., 2010) was used to predict non-redundant (Nr) genes in 
scaftigs, and CD-HIT software (v 4.5.8) was used to obtain the unique 
initial gene catalog (Li and Godzik, 2006). Clean data for each sample 
were mapped to the initial gene catalog using Bowtie to obtain the 
number of reads and statistical abundance of each gene in each sample.

2.11 Metabolome analysis

The metabolomics study was conducted by Majorbio Biotech 
(Shanghai, China) using liquid chromatography-mass spectrometry. 
In brief, a 50 mg fecal sample, a 50 mg brain tissue sample, and a 
100 μL serum sample were used, and methanol-based extraction was 
performed as per the protocols and methods established by Majorbio. 
After the mixture settled at −20°C, it was processed with a high-
throughput tissue crusher Wonbio-96c (Shanghai Wanbo 
Biotechnology Co., Ltd., Shanghai, China) at 50 Hz for 6 min, followed 
by a vortex for 30 s and ultrasound at 40 kHz for 30 min at 5°C. The 
samples were placed at −20°C for 30 min to precipitate proteins. To 
perform LC–MS analysis, the supernatant was transferred carefully 
into vials after centrifugation at 13,000 × g and 4°C for 15 min. A 
Thermo UHPLC system was used for the separation of the metabolites, 
equipped with an ACQUITY BEH C18 column (100 mm × 2.1 mm 
i.d., 1.7 m; Waters, Milford, United States). An Electrospray Ionization 
source, equipped with a positive or negative ionization source, was 
used to collect mass spectrometric data using a Thermo UHPLC-Q 
Exactive Mass Spectrometer. To detect and align peaks in the raw data, 
UPLC-TOF/MS analyses were performed using Progenesis QI 2.3 
(Nonlinear Dynamics, Waters, United States). A data matrix has been 
generated based on the preprocessing results, which contain retention 
time, mass-to-charge ratio values, and peak intensity values. A well-
founded biochemical database, i.e., the Human Metabolome Database5 
and the Metlin database,6 has been searched to obtain MS/MS 
fragment spectra and isotope ratio differences. An analysis of 
multivariate statistics was conducted using Bioconductor’s R package 
ropls (version 1.6.2)7 on Majorbio’s Cloud Platform8 (detailed in 
Supplementary material).

2.12 Correlation analysis network

We examined the effects of antibiotics on microbial species and 
their associated metabolites in fecal samples from mice. The data were 
visualized by using a multiscale network and heatmap. Pearson’s rank 
correlation was applied to display the parameter relations. Only 
correlations with Pearson’s correlation coefficient < −0.6 or > 0.6 and 
p < 0.05 (generated by Origin, version 2021b) were selected for 

5 http://www.hmdb.ca/

6 https://metlin.scripps.edu/

7 http://bioconductor.org/packages/release/bioc/html/ropls.html

8 https://cloud.majorbio.com
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network visualization. The network and heatmap were generated 
using Origin (version 2021b) and Cytoscape (version 3.6.1).

2.13 Microbiomic statistical analysis

Results were presented as mean ± standard error (SEM) for each 
group (n = 7). For 16S rRNA gene sequencing analysis (n = 7), to 
study the differential microbiota (95% confidence interval), the 
Wilcoxon rank-sum test or Kruskal-Wallis H test with Bonferroni 
correction was used (for two groups or multiple groups where 
appropriate). The similarity among the samples was analyzed by 
PERMANOVA and principal coordinate analysis (PCoA) based on 
Bray–Curtis dissimilarity using the Vegan v2.5–3 package. A Venn 
diagram was plotted using the Vegan package for distribution analysis 
and KEGG pathways among the different treated groups. The data 
were subjected to the Kolmogorov–Smirnov Test and Homogeneity 
Variances Test (K-S and H-V) to confirm normality and uniformity. 
The Student’s t-test was used to compare two groups, while one-way 
analysis of variance (ANOVA) with Tukey’s multiple comparison test 
was performed to compare multiple groups. p-value <0.05 was 
considered statistically significant. Statistical analysis of similarities 
(ANOSIM) carried out using the vegan package (v1.17–4) (Oksanen 
et al., 2013) and Circos (v0.69–3) was used to illustrate the abundance 
of functional genes (Kanehisa et al., 2019).

2.14 Metabolomics statistical analysis

The raw metabolite data were imported into the metabolomics 
processing software Progenesis QI (Waters Corporation) for peak 
identification, extraction, and alignment. A Venn diagram was plotted 
using the Vegan package to compare distribution, patterns, and KEGG 
pathways among the various treated groups. Moreover, Spearman’s 
correlation analysis was used to explore the correlation between the 
differential gut microbiome and differential metabolites (the 
significance threshold was FDR < 0.05). Metabolomics data were 
normalized and log-transformed. Metabolites with missing values 
>20% within each group were first excluded, and the preprocessed 
detail table was obtained using minima filling of all samples, sum 
normalization, RSD (QC) <30%, and log10 logarithmic 
transformation. A variable importance in projection (VIP) score of 
(orthogonal) partial least squares (OPLS) model was applied to rank 
the metabolites that best distinguished between the groups. The VIP 
threshold was set to one. Thus, p-values <0.05 and VI p-values >1 were 
chosen as common screening criteria for differential metabolites.

3 Results

3.1 Behavior test

We assessed anxiety-like behavior in the control, Cip, and Amx 
groups. The animals showed signs of anxiety and weight loss, and 
the body weights of the control, Cip, and Amx groups were 
20.84 ± 2.9, 17.45 ± 2.8, and 17.56 ± 3.1, respectively. The OFT and 
EPMT were used to analyze anxiety-like behaviors provoked by 
antibiotics. In OFT mice administered with ciprofloxacin and 

amoxicillin, the time in the center area was shorter, there were fewer 
entries, they exhibited a preference for the periphery or corners, and 
there was a decline in the range of activity compared to the control 
group (p < 0.05) (Figure  1A). The EPMT test indicated that 
antibiotics administered to mice markedly decreased the time spent 
in the open arms of the maze and the number of entries as well (p < 
0.05). A smaller number of entries and less time spent in the open 
arm were observed in the treatment group compared with the 
control group (Figure  1B). These results indicate that long-term 
antibiotic use alters the microbiota and induces anxiety-
like behaviors.

3.2 Gut microbiota composition, structure, 
and diversity

To assess microbial diversity, high-throughput sequencing was 
performed on 21 samples (n  = 7), obtaining a total of 986,567 
optimized sequences, 41,534,587 bases, and an average sequence 
length of 420 bases. A total of 640 OTUs were observed in 21 
samples. The Venn diagram represented that the control group had 
390 OTUs, the amoxicillin group  118, and the ciprofloxacin 
group 132. Of these, 48 OTUs (or 11.24% of the total) were shared 
across the 3 groups. The control and amoxicillin (Amx) groups 
shared 38 (8.90%) OTUs, the amoxicillin (Amx) and ciprofloxacin 
(Cip) groups shared 10 (2.34%) OTUs, and the ciprofloxacin and 
control groups shared 69 (16.16%) OTUs. Additionally, in the 
control, amoxicillin, and ciprofloxacin groups, 235, 22, and 5 OTUs 
were unique, respectively (Figure 2A). The Venn diagram for species 
composition analysis in the 3 groups showed that the control group 
had 166 bacterial species, amoxicillin had 63, and ciprofloxacin had 
74. A total of 31 species were found in all groups; 4 species were 
found in amoxicillin and ciprofloxacin, 36  in ciprofloxacin and 
control, and 16  in amoxicillin and control. In the amoxicillin, 
ciprofloxacin, and control groups, there were 12, 3, and 83 unique 
species, respectively (Figure 2B).

3.3 Alpha and beta diversity indices 
difference in various groups

The alpha diversity estimators of bacterial species exhibit 
discernible differences across all three groups. The results indicate a 
significant increase in the species richness metrics (sobs, ace, and 
chao) in the control group compared with both the amoxicillin and 
ciprofloxacin groups (p < 0.05). The species diversity estimators 
(Shannon, Simpson, and Coverage) revealed statistically significant 
differences, and amoxicillin exhibited less species richness than the 
other two groups. Compared with the other two groups, the 
Ciprofloxacin group had lower species diversity. The alpha diversity of 
microbial species was significantly different between the amoxicillin, 
ciprofloxacin, and control groups (Table 1).

Additionally, the beta diversity of all three groups showed that 
intestinal bacteria species were distinct based on PCoA (Bray–Curtis) 
(p = 0.001). The closer the R-value was to 1, the greater was the species 
difference between the groups (R = 0.9495) (Figure 2C). Additionally, 
the ANOSIM score was significantly different among all groups 
(Figure 2D).
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FIGURE 1

(A) OFT: (a) Road map of the open field experiment. (b) Number of line crossings. (c) Number of stand-ups. (d) Number of central area crossings. (e) 
Times in the central area. Each value represents the mean ± SEM. *p < 0.05. (B) EMPT: (a) Road map of the elevated plus maze. (b) Number of open-
arms entries. (c) Time in open arms. Each value represents the mean ± SEM. p-value < 0.01 is marked as **, and p-value < 0.05 are marked *.

FIGURE 2

(A) The Venn diagram shows the number of similar and unique OTUs between different groups (Con, Amx, and Cip). (B) Venn Diagram species 
composition in groups. (C) Principal coordinates (PCoA) analysis of intestinal microbiota among all three groups. (D) The ANOSIM test showed 
significant differences among all three groups.
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3.4 Phylum, genus, and species level 
diversity difference

In addition, OTUs were further classified at the phylum, genus, 
and species taxon level. In terms of phyla, the top five phyla included 
Bacteroidota, Firmicutes, Verrucomicrobiota, Proteobacteria, and 
Actinobacteriota. The top five genera were unclassified, Lactobacillus, 
Ruminococcus_gnavus_group, Akkermansia, and Bacteroides. The 
dominating species in intestinal microbiota were norank_f_
Muribaculaceae (unclassified) Lactobacillus, Ruminococcus_gnavus, 
Akkermansia_muciniphila, Dubosiella, Bacteroides_acidifaciens, 
Lactobacillus_reuteri, and other unknown less abundant species 
(Figure 3A). In the amoxicillin group, species abundance follows: 
norank_f_Muribaculaceae (29%) (unclassified), Lactobacillus 
(0.017%), Ruminococcus_gnavus (16%), Akkermansia_muciniphila 
(9.9%), Bacteroides_acidifaciens (9.5%), and others (25%). In the 
ciprofloxacin group, the species abundance was norank_f_
Muribaculaceae (64%) (unclassified), Lactobacillus (6.6%), 
Ruminococcus_gnavus (0.057%), Akkermansia_muciniphila (4.5%), 
Dubosiella (0.0092%), Lactobacillus_reuteri (0.70%), and others (15%). 
In the control group, species abundance was unclassified (31%), 
Lactobacillus (15%), Ruminococcus_gnavus (0.077%), Akkermansia_
muciniphila (0.24%), Dubosiella (11%), Lactobacillus_reuteri (4.7%), 
and others (26%) (Figure 3B).

Overall, this approach uses various statistical techniques in 
distinct groups to observe different species that are prevalent in the 
communities. These microorganisms could be  important species 
linked to the emergence and progression of neuropsychiatric 
disorders. The amoxicillin group exhibited lower abundance of 
Lactobacillus (Firmicutes) and Lactobacillus_reuteri species and 
higher abundance of Bacteroides_acidifaciens (Bacteroidota) and 
Akkermansia_muciniphila (Verrucomicrobiota) compared to the 
control group. The ciprofloxacin group had less abundance of 
Bacteroides_acidifaciens and Lactobacillus_reuteri and a higher 
abundance of Akkermansia_muciniphila and unclassified than the 
control group. The Lactobacillus species abundance in the 
ciprofloxacin group was higher than that of the amoxicillin group, but 
it was lower than that of the control group (Figure 3C).

3.5 Differential gut microbiota analysis in 
various treatment groups

The LEfSe multi-level species difference discriminant analysis 
analyzes differential species at multiple levels. The LEfSe analysis 

revealed considerable microbial alteration, as represented by the bar 
charts (LDA ≥ 2). The LDA score coincides with the impact of species 
abundance. Based on the Kruskal-Wallis H test, our results highlighted 
that the species-level-rich bacterial taxa were Bacteroidota, 
unclassified, and Firmicutes in amoxicillin, ciprofloxacin, and the 
control group (Figure 3D).

3.6 Fecal metabolome composition 
analysis

All three groups shared 4,650 metabolites. The control group had 
192 unique metabolites, including amoxicillin 300 and ciprofloxacin 
227. The ciprofloxacin and control groups shared 248 metabolites, the 
amoxicillin and control groups shared 227 metabolites, and the 
amoxicillin and ciprofloxacin groups shared 318 metabolites. The 
control, ciprofloxacin, and amoxicillin groups had 5,317, 5,443, and 
5,495 metabolites, respectively (Figure 4A).

3.7 Effects of antibiotics on the 
metabolome in the feces of mice

An LC–MS analysis of the fecal metabolome was performed to 
investigate the effects of antibiotics. PCA (Principal Component 
Analysis) plots demonstrated a clear separation of groups in positive 
and negative mode (Figure 4B). In addition, metabolic patterns were 
estimated using PLS-DA (Partial Least Squares Discriminant Analysis) 
analysis, which demonstrated a strong group separation in positive 
and negative modes as well, suggesting that the developed approach 
had high stability and repeatability. In comparison to the control 
group, the amoxicillin and ciprofloxacin groups showed significant 
dysregulation of metabolites (Figure  4C). Ciprofloxacin groups 
showed 553 upregulated metabolites and 764 downregulated 
metabolites. The amoxicillin group had 523 upregulated and 699 
downregulated metabolites (Figures 4D,E). The KEGG enrichment 
analysis revealed that antibiotic ingestion significantly altered the 
levels of metabolites. The amoxicillin group exhibited decreased 
amino acid, lysine, histidine, tyrosine, and tryptophan metabolisms. 
The KEGG enrichment analysis of the ciprofloxacin group revealed a 
reduction in the metabolism of arginine, tyrosine, dopaminergic 
synapsis, pyrimidine, and arginine. This decrease in metabolism is 
associated with symptoms such as psychosis, depression, anxiety, 
irritability, insomnia, and fatigue (Figures 5A,B). The findings of this 
study indicate a strong correlation between the use of antibiotics and 

TABLE 1 Intestinal bacterial diversity and richness estimators in the control and treated groups.

Mean ± SEM p-value

Estimators Con Amx Cip Amx-Cip Con-Amx Cip-Con

Ace 273 ± 9.76 93.17 ± 7.24 105.7 ± 4.42 > 0.1 < 0.001 < 0.001

Chao 275.8 ± 10.16 91.48 ± 8.53 104.0 ± 3.54 >0.1 < 0.001 < 0.001

Sobs 237.7 ± 11.03 85.71 ± 6.29 91.14 ± 6.25 > 0.1 < 0.001 < 0.001

Shannon 3.55 ± 0.29 3.095 ± 0.30 2.95 ± 0.12 > 0.1 < 0.01 < 0.01

Simpson 0.06 ± 0.01 0.095 ± 0.06 0.09 ± 0.01 > 0.1 < 0.01 < 0.01

Coverage 0.99 ± 0.002 0.99 ± 4.30 0.99 ± 0.01 > 0.1 < 0.001 < 0.001
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FIGURE 3

(A) Ternary phase diagram Visualize the composition and distribution ratio of dominant species in three different groups. The three corners represent 
three groups of samples. The solid circles in the figure represent species at a certain taxonomic level. The size of the circle represents the average 
relative abundance of species. (B) In the Circos sample and phylum relationship diagram, the small semi-circle (left half circle) represents the 
composition of phylum in the sample, the color of the outer ribbon represents which group it comes from, the color of the inner ribbon represents the 
phylum, and the length represents the phylum’s relative abundance in the corresponding sample; the large semicircle (right half circle) represents the 
distribution ratio of phylum in different samples at the taxonomic Level. (C) Comparison and relative abundances of intestinal bacterial species in the 
samples of each group. The columns of different colors represent different species, and the column length represents the proportion of the species. 
(D) The comparison and analysis of the relative differential abundance of bacterial taxa based on LDA score.

FIGURE 4

(A) The Venn diagram shows the number of similar and unique fecal metabolites between different (con, Amx, and Cip) groups. (B) PCA score plot. 
(C) PLS-DA score chart. (D) Amx vs. con: (E) Cip vs. con, volcano scatter plots of DEGs.
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the alteration of the gut metabolome produced by the gut bacteria in 
individuals with neuropsychosis.

3.8 Brain metabolome composition

In brain tissue, 2,930 metabolites were common to all 3 groups. 
Amoxicillin had 17 unique metabolites, ciprofloxacin had 5, and the 
control group had 15 unique metabolites. The control and 
ciprofloxacin groups shared 31 metabolites, the amoxicillin and 
control groups shared 42 metabolites, and the ciprofloxacin and 
amoxicillin groups shared 33 metabolites. The control group had 3,018 
metabolites, the ciprofloxacin group had 2,999, and the amoxicillin 
group had 3,022 metabolites in the brain tissue samples (Figure 6A).

3.9 Brain metabolites analysis

After amoxicillin and ciprofloxacin exposure, the expression of 
brain metabolites was examined. PLS-DA and PCA provided effective 
differentiation between the three metabolic groups (Figures 6B,C). 
The volcano plots show the upregulation and downregulation of 
metabolites in the groups. In comparison with the control group, brain 
tissue samples treated with amoxicillin exhibited upregulation of 178 
metabolites and downregulation of 115 metabolites (Figure 6D). In 
comparison with the control group, 101 metabolites were upregulated 
and 112 were downregulated in brain tissue samples treated with 
ciprofloxacin (Figure 6E). The KEGG enrichment analysis revealed 
the distribution of metabolites across several pathways. In comparison 
with the control group, significant reductions in metabolic pathways 
and metabolite expressions were seen in the group administered with 
amoxicillin, i.e., a decrease in cysteine and methionine metabolism, 
serotonergic synaptic transmission, amino acid metabolism, 
tryptophan metabolism, and neuroactive ligand-receptor interactions 
was observed. There was a noticeable decrease in metabolic 

enrichment of beta-alanine metabolism in the control vs. Amx group 
as well. The metabolite enrichment in glutamate metabolism, arginine 
and proline metabolism, and serotonergic synapsis was significantly 
reduced in the ciprofloxacin vs. control group (Figures 7A,B). The heat 
map illustrates the top 38 metabolites related to the nervous system 
that differ noticeably between ciprofloxacin, amoxicillin, and control 
(Supplementary Figure S1). By comparing the control group, 
amoxicillin, and ciprofloxacin groups, the antibiotic-treated group had 
significantly lower levels of L-glutamate, L-tyrosine, L-tryptophan, 
L-glutamic acid, Serotonin, and Dopamine. Results from these studies 
demonstrate that antibiotic stress alters the metabolic profile of 
brain tissue.

3.10 Serum metabolome composition 
analyses

All 3 groups shared 3,143 metabolites in the serum sample. There 
were 47 unique serum metabolites in the ciprofloxacin group, 51 in 
the amoxicillin group, and 52 in the control group. The amoxicillin 
and ciprofloxacin groups shared 86 serum metabolites, the control and 
ciprofloxacin groups shared 107, and the control and amoxicillin 
groups shared 47 metabolites. The amoxicillin group had a total of 
3,327 serum metabolites, the ciprofloxacin group had 3,383 serum 
metabolites, and the control group had 3,349 serum metabolites 
(Figure 8A).

3.11 Alteration in serum metabolite profile 
after antibiotic treatment

After exposure to amoxicillin and ciprofloxacin, serum metabolic 
changes were examined. PCA analysis confirmed the robustness of the 
models (Supplementary Figure S2A). Significant metabolic differences 
were found across the groups according to PLS-DA analysis 

FIGURE 5

(A) Amx vs. con: (B) Cip vs. con. In the KEGG enrichment analysis graph, the abscissa represents the pathway name, and the ordinate represents the 
enrichment rate, which represents the ratio of the number of metabolites enriched in the pathway. p-value or FDR < 0.001 is marked as ***p-value or 
FDR < 0.01 is marked as **, and p-value or those with FDR < 0.05 are marked *.
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(Supplementary Figure S2B). Volcano plots showed the upregulation 
and downregulation of metabolites in the serum samples of the 
antibiotic-treated vs. control group. The serum samples from the 
amoxicillin vs. control group downregulated 156 and upregulated 113 
metabolites (Figure 8B). In the serum samples, 87 metabolites were 
upregulated and 225 were downregulated in the ciprofloxacin group 
compared with the control group (Figure  8C). Based on KEGG 
enrichment analysis, the metabolite enrichment in amino acid 
metabolism was significantly decreased, resulting in altered pathways 

related to amino acids. In the serum samples of the amoxicillin-treated 
vs. control group, the lysine degradation pathway was notably reduced. 
In the ciprofloxacin vs. control groups, tryptophan metabolism, 
serotonergic synapses, glycine, serine, and threonine metabolism were 
markedly reduced (Supplementary Figures S3A,B). The heat map 
represents 42 significantly different metabolites among the serum 
samples of the three groups related to the nervous system 
(Supplementary Figure S3C). These changes in the amino acid 
pathways related to the nervous system might lead to the alteration of 

FIGURE 6

(A) The Venn diagram shows the number of similar and unique brain metabolites between different (con, Amx, and Cip) groups. (B) Principal 
component analysis (PCA) diagram of brain metabolites. (C) PLS-DA score chart. (D) Amx vs. con: (E) Cip vs. con, volcano scatter plots of brain 
metabolites.

FIGURE 7

(A) Amx vs. con: (B) Cip vs. con, KEGG enrichment analysis graph of brain metabolic pathways in antibiotic-treated vs. control group. *p < 0.05, 
**p < 0.01, and ***p < 0.001.
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normal brain functions. Considering these results, we conclude that 
antibiotic stress induces changes in serum metabolites.

3.12 Antibiotic treatment correlates with 
gut microbiota dysbiosis and differential 
metabolome profiles

Based on Pearson correlation analysis, the relationship between 
gut microbiota and differential metabolome after antibiotic treatment 
was examined. An analysis of 21 differential metabolites related to gut 
microbiota was conducted and presented as a heatmap (Figures 9A,B). 
Microbial alteration in the gut is linked to metabolites in the nervous 
system. The amoxicillin group exhibited lower abundance of the 
phylum Firmicutes (Lactobacillus) and greater abundance of the 
phylum Bacteroidota (Bacteroides acidifaciens). Compared with the 
amoxicillin group, the ciprofloxacin group had a lower abundance of 
Bacteroidota (Bacteroides acidifaciens) and a higher abundance of 
Firmicutes (Lactobacillus). Compared with the treatment groups, the 
control group had a higher abundance of Lactobacillus and a lower 
abundance of Bacteroides acidifaciens. The ciprofloxacin and 
amoxicillin groups exhibited a higher abundance of Akkermansia_
muciniphila (Verrucomicrobiota) and a lower abundance of 
Lactobacillus_reuteri compared to the control group. A significant 
correlation was found between amino acid and lipid metabolism in 
the Bacteroidota phylum, such as glutamate and tryptophan 
metabolism. The phylum Firmicutes participates in dopamine 
production. Dopamine production was significantly reduced due to a 
decrease in phylum Firmicutes after antibiotic treatment. Lactobacillus 
reuteri is known to be able to produce γ-aminobutyric acid (GABA) 
in the antibiotic-treated group, and the expression of GABA activity 
notably decreased. The levels of L-Tyrosine, serotonin, and L-glutamic 
acid 5-Hydroxy-L-tryptophan, L-Glutamate, and 5-Hydroxyindole 
acetic acid were relatively low. In contrast to the control group, the 
amoxicillin and ciprofloxacin groups had higher levels of adenosine. 
In particular, due to a decrease in the microbial species, the levels of 
the short-chain fatty acids (SCFA) propionate, acetate, trimethylamine, 
butyrate, uracil, and adenine were significantly decreased. Several 
pathways of the study were strongly correlated with brain and serum 

metabolites in the downstream analysis. In fecal metabolites, a 
reduction in amino acid metabolism, including the lysine, histidine, 
tyrosine, tryptophan, and arginine pathways, along with pyrimidine 
metabolism and dopaminergic synapse function, can severely affect 
neurological and physiological health. Mood disorders, cognitive 
decline, and fatigue can be caused by impaired lysine and histidine 
metabolism, as well as decreased tyrosine and tryptophan metabolism. 
Vascular and immune dysfunction is caused by impaired arginine 
metabolism. The brain’s function and overall health are profoundly 
affected when key neurotransmitters and precursors, such as 
glutamate, tyrosine, tryptophan, and L-glutamic acid, are at low levels. 
L-glutamate and L-glutamic acid are critical excitatory 
neurotransmitters in the brain, and their reduction impairs cognitive 
function, memory, and learning. These changes in pathways related to 
the nervous system may lead to the altered normal brain functions. In 
light of these results, we conclude that antibiotic stress leads to changes 
in serum metabolites (Supplementary Figure S4; Supplementary Table 1). 
This alteration of the gut microbiota resulting from antibiotic stress 
disturbs the expression of metabolites.

4 Discussion

Recent studies have shown that the gut microbiota and the brain 
communicate bidirectionally and that gut dysbiosis is strongly linked 
to the development of psychiatric disorders, such as Alzheimer’s 
disease (Rieder et al., 2017). A clear understanding of the biochemical 
basis for such microbial effects remains elusive concerning the 
gut-brain axis. To efficiently develop the host body and brain 
functions, the colonization of gut bacteria at birth and their evolution 
and development after birth is more essential (Wang et al., 2022). A 
steady neurological state is maintained by the gut microbiota, which 
constantly provides appropriate signals to the brain. The consumption 
of antibiotics, particularly oral ones, reduces bacterial diversity and 
increases antibiotic resistance, gut dysbiosis, and psychiatric disorders 
in humans and animals. Oral antibiotic administration often has a 
more pronounced impact on the gut microbiota (Modi et al., 2014; Yu 
et al., 2020). Numerous studies have demonstrated the gut microbiota’s 
diversity, functional capability, and age-related changes have been 

FIGURE 8

(A) The Venn diagram shows the number of similar and unique serum metabolites between different (con, Amx, and Cip) groups. (B) Amx vs. con. 
(C) Cip vs. con. Volcano scatter plots of serum metabolites.
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extensively linked to a wide range of diseases, including localized 
gastroenterological problems and systemic autoimmune diseases 
(Vatanen et al., 2016) and diabetes (Qin et al., 2012). The fundamental 
mechanisms underlying changes in gut microbes and their 
metabolomes are, however, not well studied. Therefore, we developed 
a long-term antibiotic-treated mice model and conducted an 
investigative study of the effects of long-term antibiotic treatment on 
microbial communities and metabolism in the intestinal tract, as well 
as their effects on psychological well-being.

Accordingly, we observed in this study that mice treated with 
amoxicillin and ciprofloxacin experienced a change in the diversity 
of gut bacteria and their metabolites. However, there were differences 
in the type and degree of change among the groups. We found that 
long-term antibiotic use affected the composition of the murine gut 
microbiota; e.g., amoxicillin enhanced Bacteroidetes species, whereas 
ciprofloxacin increased Firmicutes, compared with the control. The 
long-term administration of these antibiotics resulted in disruption 
of the gut microbiota and impairment of metabolic pathways 
associated with cognitive dysfunction, anxiety, and depression-like 
behavior in mice. All animals treated with antibiotics exhibited 
altered flora diversity and richness, as examined by 16S rRNA gene 
sequencing. The amoxicillin group had a lower abundance of the 
phylum Firmicutes (Lactobacillus) and a higher abundance of 
Bacteroidota (Bacteroides_acidifaciens). The same findings were 
reported by Cabral et  al. (2019), who found that amoxicillin 
significantly decreased the relative abundance of almost all species, 
with the notable exception of a few Bacteroides genus members 
(Jalili-Firoozinezhad et al., 2019). In our study, we observed a greater 
abundance of Firmicutes (Lactobacillus) in the ciprofloxacin group, 
consistent with the findings of Xu et  al. (2020), who reported a 
significant abundance of Lactobacillus species in the ciprofloxacin-
treated groups. This may be attributed to the inherent resistance that 
Lactobacilli possess toward ciprofloxacin, as suggested by Abriouel 
et  al. (2015). Previous studies have indicated that the Firmicutes 
phylum produces various neurotransmitters, including dopamine 
and neurotransmitters like γ-aminobutyric acid (GABA), which are 

related to the control of mood and emotional stability (Donthamsetti 
et  al., 2020). Our results indicate that long-term treatment with 
antibiotics decreases phylum Firmicutes, and hence, there was less 
dopamine and GABA production. Similarly, Bacteroides species are 
significantly correlated with amino acid and lipid metabolism, such 
as glutamate, which has a strong impact on host neurophysiology 
(Cervenka et al., 2017). As per our findings, there was less abundance 
of the phylum Bacteroidota after antibiotic treatment, which can lead 
to impairment of cognitive behavior. The ciprofloxacin and 
amoxicillin group had a higher abundance of Akkermansia_
muciniphila (Verrucomicrobiota) compared with the control group. 
Previous studies have highlighted the strong correlation between 
severe anxiety symptoms and the high abundance of A. muciniphila 
(Zhang X. et al., 2022). However, our results indicate that the richness 
of Lactobacillus reuteri species was noticeably reduced in antibiotic-
treated mice. Researchers have demonstrated that reductions in 
Lactobacillus reuteri increase stress hormone levels and decrease the 
expression of GABA receptors, resulting in anxiety-like behavior in 
animals (Mackos et al., 2013). It was enlightened by our results that 
alterations in gut microbial composition adversely affect metabolite 
expression due to long-term antibiotic stress, which can contribute 
to neurological disorders such as insomnia, psychosis, anxiety, 
and depression.

Our findings demonstrated that the changes observed in 
community dynamics during antibiotic treatment are the outcomes 
of a particular xenobiotic due to the multiplex connection between 
host and inter-microbial metabolism. Thus, noticeable changes could 
be the outcomes of indirect fluctuations reflecting host physiology or 
alterations in microbiota makeup. Studies have shown that broad-
spectrum antibiotics induce rapid but typically brief depletion of 
bacterial counts and diversity within the gut microbiota (Dethlefsen 
and Relman, 2011). These alterations, commonly called dysbiosis, 
may impair colonization resistance to fungal and bacterial pathogens, 
resulting in opportunistic infections (Blaser, 2011; Mukherjee et al., 
2022). Moreover, long-term gut microbe dysbiosis has been correlated 
with several chronic conditions, including asthma, inflammatory 

FIGURE 9

(A) Hierarchical clustering of correlation between gut microbiota and metabolome amoxicillin vs. control. (B) Hierarchical clustering of correlation 
between gut microbiota and metabolome ciprofloxacin vs. control.
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bowel disease, obesity, diabetes mellitus, autoimmune diseases, and 
neuropsychiatric conditions (Dickerson et  al., 2017; Leong et  al., 
2018; De Luca and Shoenfeld, 2019).

To gain additional insight into the microbiota’s functional role in 
neuropsychiatric disorders by modulating the brain axis, we explored 
the production of related metabolites. Microbial metabolites are 
involved in the regulation of various metabolic pathways and can diffuse 
into the circulation as well (Fröhlich et  al., 2016; Lee et  al., 2020). 
Neurotransmitters are also metabolites that hamper neurological 
conditions (Chen et  al., 2022). To understand the metabolite role, 
we  analyzed and investigated fecal, serum, and brain tissue and 
correlated the alteration in microbial diversity with metabolic 
expression. An analysis of untargeted metabolites from fecal samples 
explains the upregulation and downregulation of metabolites related to 
gut microbiota and their enrichment in metabolic pathways. A 
significant difference in the metabolic status of mice treated with 
amoxicillin or ciprofloxacin was observed, consistent with the findings 
of bacterial makeup and high abundance. Different amino acid 
metabolisms, such as lysine, histidine metabolism, tyrosine, and 
tryptophan alteration or degradation, are related to mood swings, 
sleeping behavior (i.e., insomnia), and other behavior changes 
(Schopman et al., 2021). KEGG enrichment analysis in the amoxicillin 
group showed that amino acid metabolism, lysine degradation, histidine 
metabolism, tyrosine, and tryptophan metabolism were decreased. In 
the ciprofloxacin group, amino acid metabolism, arginine, tyrosine, 
dopaminergic synapsis, and pyrimidine metabolism were decreased, 
which is also explained well in previous scientific research studies 
(Puiman et al., 2013; Knoll et al., 2021).

Alterations in the levels of various chemicals circulating in the 
body due to gut dysbiosis may serve as signals to the brain, potentially 
altering its functioning (Fröhlich et al., 2016). The untargeted analysis 
of serum metabolomes revealed significant disruptions in the 
metabolism of metabolites and their related pathways. A significant 
decrease in tryptophan metabolism, a major mediator of depression, 
was observed in serum samples treated with ciprofloxacin. Caspani 
and Swann (2019) proposed that these circulating metabolites act as 
messengers between gut dysbiosis and the brain. The findings of this 
study contribute to the search for specialized metabolites of the gut 
microbiota affecting brain function in both health and disease.

Through the analysis of brain metabolites via untargeted 
metabolome analysis, we discovered that their related functions had 
changed significantly. Compared with the control, 178 metabolites 
were upregulated in the brain tissues of the amoxicillin group, 
whereas 115 metabolites were downregulated. A comparison of the 
ciprofloxacin and control groups showed that 101 metabolites were 
upregulated and 112 were downregulated. Metabolite enrichment 
and related pathways were seriously disrupted. In the amoxicillin 
group, the levels of cysteine and methionine metabolism, tryptophan 
metabolism, serotonergic synaptic transmission, neuroactive ligand-
receptor interactions, and other amino acid metabolism pathways 
were markedly reduced, similar to the findings in Ma et al. (2023) 
used antibiotics to explore metabolic reprogramming in the intestine 
and concluded that downregulation of microbial metabolic events 
may serve as biomarkers that can modulate body homeostasis. 
Ciprofloxacin considerably decreased the metabolism of glutamate, 
arginine, proline, aspartate, beta-alanine, and serotonergic synaptic 
transmission. Similarly, Lubitz and Wendisch (2016) examined the 
metabolic changes in response to ciprofloxacin stress and highlighted 

that a decline in glutamate metabolism results in neurological 
disorders. Depression-like behavior may result from this alteration in 
tryptophan metabolism (Songtachalert et al., 2018). The serotonin 
and kynurenine pathways are two pathways through which 
tryptophan is metabolized, and the formation of kynurenine 
metabolites, neuroactive serotonin, and melatonin occurs. These 
pathways help in maintaining healthy homeostasis and brain 
functions (Richler and Gauthier, 2014).

Consistent with prior findings (Ozden et al., 2020), the current 
KEGG pathway analysis showed that alterations in the metabolic 
pathways are linked with mental illness, depression, anxiety, moodiness, 
trouble sleeping, tiredness, and psychosis in the antibiotic treatment 
groups. Zhang N. et al. (2022) and Zhang X. et al. (2022) reported that 
metabolic changes occur more slowly than microbial changes; our 
results also aligned with this study, suggesting that the metabolic 
alteration may have been caused by long-term antibiotic stress (Zhang 
N. et al., 2022). Previous studies have indicated that a decrease in the 
levels of the neurotransmitters serotonin and norepinephrine may lead 
to depression, anxiety, chronic pain, and difficulty sleeping (Zangrossi 
and Graeff, 2014), which is also observed in our research. Further, our 
results showed that due to the long-term use of antibiotics, there is an 
alteration in the gut microbiota that leads to a decrease in synaptic 
connections and less dopamine production. Likewise, previous research 
has shown that dopamine neurotransmitter deprivation may cause 
insomnia, impaired cognitive behavior, and stress (Zarrindast and 
Khakpai, 2015). Similarly, in rats, the amino acid alanine can modulate 
anxiety-like behaviors (Hoffman et al., 2019). According to our research, 
alanine metabolism is significantly reduced in the brain after antibiotic 
treatment, which is the major factor causing anxiety-like behavior. 
Additionally, previous studies have highlighted that the amino acid 
glycine sends slowing signals to the brain and sends excitatory signals 
to other cell types to maintain the right balance and improve mood (Li 
et al., 2019). However, in our study, glycine metabolism was remarkably 
reduced in the antibiotic-treated groups, which is likely to cause anxiety 
and other mood disorders. Scientific studies have shown that glutamate 
is one of the most important neurotransmitters in the brain (Balkhi 
et al., 2020); in GABAergic neurons, glutamate prepares for the synthesis 
of inhibitory gamma-aminobutyric acid (GABA). Neuropsychiatric 
disorders are associated with glutamate metabolism deficits (McGrath 
et al., 2022). In our research study, we found that glutamate metabolism-
associated pathways were significantly decreased with the antibiotic 
regime, and GABA activity was reduced, which is associated with the 
development of anxiety and mood disorders.

5 Conclusion and future perspectives

The altered gut microbiota and circulating metabolites disturb brain 
functions and induce impaired cognitive behavior, anxiety, depression, 
and other neuropsychiatric disorders by modulating the gut-brain axis. 
These findings will uncover a theoretical framework related to a complex 
network that incorporates the different connections between gut 
microbiota and metabolites, which have a comprehensive effect on brain 
functions after long-term antibiotic treatment. New therapies, especially 
fecal microbiota transplants, show promise in preventing or reversing 
these adverse effects. Nevertheless, to reduce the dual threat of resistance- 
and antibiotic-induced dysbiosis, strategies need to be developed to 
improve drug efficacy while also reducing treatment-associated 
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disruption of the microbiota. To achieve this, we must improve our 
understanding of antibiotic activity in vivo and identify the strategies 
bacteria use to survive treatment. Considering the aforementioned 
elements collectively, the long-term use of broad-spectrum antibiotics 
appears to induce significant alterations in the composition of 
metabolites and the gut microbiota, in addition to pathways that might 
be associated with brain-gut communication. By integrating the various 
interactions between gut microbiota metabolic functions that contribute 
to severe mental illness and neuropsychiatric disorders via gut 
microbiota-related metabolism, our study offers a novel perspective on 
a complex network. In this study, we investigated the microbiota-gut-
brain axis and highlighted that antibiotic-induced gut dysbiosis can 
be used as a model system to examine causality between gut microbiota 
and the brain.

Taking all together, we  conclude that long-term intragastric 
antibiotic treatment is directly linked to neuropsychiatric diseases, 
such as anxiety and depression, by adversely affecting the gut 
microbial community, metabolite profiles in fecal samples, circulating 
metabolites in serum, metabolic profile expression, and related brain 
pathways. The microbiota-gut-brain axis is highlighted by variations 
in the structure and function of gut microbes, which may also 
contribute to interindividual variance in the metabolic responses for 
microbial activation in the host. Alteration of metabolic status and its 
effect on neurosignaling pathways could only be a way to address the 
concerns and find a related mechanism that emphasizes the impact 
of antibiotics on the gut-brain axis, mental health, and cognitive 
impairment. Hence, these data support that gut microbiota regulate 
mammalian brain function, opening doors to targeting microbiota 
for neuroprotective causes.

5.1 Limitations of the study

Although our research produced noticeable outcomes, it has several 
limitations. First, because each group included only a limited number of 
mice, caution is important when interpreting the results. Second, 
alterations in gut microbiota composition and function are affected by 
antibiotic classes, doses, routes, and durations of administration (Lange 
et al., 2016). A period of 3 weeks was used in this study for the oral 
administration of antibiotics. No further analysis was performed to 
determine whether the altered gut microbiota had recovered. It is 
necessary to perform further research to obtain a deeper understanding 
of the mechanism.
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(A) amx vs con; (B) cip vs con, KEGG enrichment analysis graph. (C) Heat map 
represent the significantly different metabolites in the groups.
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Hierarchical clustering of correlation between gut microbiota and 
metabolome downstream.
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