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Background: Some studies indicated that histone modification may be involved 
in depression disorder (DD). The maintenance of the histone acetylation state 
is the work of histone acetyltransferase (HAT) and histone deacetylase (HDAC), 
which is thought to be a potential diagnostic biomarker of depression. However, 
it is still unknown how histone acetylation-related genes (HAC-RGs) contribute 
to the onset and progression of DD.

Methods: GSE76826 and GSE98793were obtained from the Gene Expression 
Omnibus (GEO) database, HAC-RGs were acquired from the GeneCards 
database. Initially, the differentially expressed genes (DEGs) in GSE76826 were 
investigated. We used weighted gene co-expression network analysis (WGCNA) 
to screen key module genes. Candidate genes were selected by intersecting 
DEGs, key module genes, and HAC-RGs, followed by functional analysis. Two 
machine learning algorithms were used to identify hub genes, which were used 
for drug prediction, immunological infiltration studies, nomogram construction, 
and regulatory network building. The expression levels were verified using the 
GSE76826 and GSE98793 datasets. Hub gene expression levels in the clinical 
samples were verified using reverse transcription quantitative PCR (RT-qPCR).

Results: The 23 candidate genes were obtained by intersecting 2,316 DEGs, 
1,010 HAC-RGs and 2,617 key module genes. Three hub genes (JDP2, ALOX5, 
and KPNB1) were gained by two machine learning algorithms. The nomogram 
constructed based on these three hub genes showed high predictive accuracy. 
Additionally, the three hub genes were enriched in the kegg_ribosome. The 
9 different immune cells were identified in GSE76826, which were associated 
with three hub genes. A hub gene-drug network (98 nodes, 106 edges) and 
an lncRNA-miRNA-mRNA network (56 nodes, 87 edges), were built using the 
database. The expression level verification indicated that, with the exception of 
the KPNB1 gene, the DD group had higher levels of JDP2 and ALOX5 and that 
the expression patterns in GSE76826 and GSE98793 were consistent, with RT-
qPCR confirming higher ALOX5 and JDP2 expression in DD samples.

Conclusion: This study identified three hub genes (JDP2, ALOX5, and KPNB1) 
associated with histone acetylation, offering new insight into the diagnosis and 
treatment of DD.
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1 Introduction

DD is one of the most common mental illnesses, characterized by 
persistently depressed mood, cognitive impairment, and, in severe 
cases, self-harm and suicidal behaviors (Jin et al., 2019). More than 
300 million people suffer from DD worldwide, contributing to a 
substantial global disease burden (GBD 2019 Diseases and Injuries 
Collaborators, 2020). While pharmacological treatments are the 
primary intervention for DD, their efficacy is limited, and they often 
come with numerous adverse effects and place a heavy financial, 
psychological, and physical burden on patients. Additionally, clinical 
practice currently lacks objective biomarkers for DD. Studies have 
revealed that the etiology of DD is multifactorial, predominantly 
including genetic and environmental variables as well as their 
interactions. Recent research on epigenetic regulation in DD suggests 
that this disorder may be  associated with abnormal monoamine 
neurotransmitter secretion, increased oxidative stress, inhibition of 
neurotrophic factors, excessive secretion of inflammatory cytokines, 
and activation of the hypothalamic-pituitary-adrenal (HPA) axis 
(Shadrina et al., 2018; Himmerich et al., 2019; Majd et al., 2020; Wang 
et  al., 2020). Therefore, understanding these intricate biological 
processes is crucial for developing efficient DD diagnosis and 
treatment strategies.

Recently, there has been a notable surge of interest in the 
relationship between DD and epigenetics. Epigenetics serves as a 
potential link between genetic and environmental influences. Originally 
proposed by Waddington, epigenetics refers to the regulation of gene 
expression without altering DNA sequences (Waddington, 1959). The 
primary mechanisms of epigenetic regulation include DNA 
methylation, histone post-translational modifications, genomic 
imprinting, and non-coding RNAs (Portela and Esteller, 2010). 
Previous research has highlighted the critical role of epigenetic 
alterations in neurological disorders, including DD, Parkinson’s disease, 
Alzheimer’s disease, and Huntington’s disease (Shukla and Tekwani, 
2020). Among various forms of epigenetic modifications, post-
translational modifications of histones have been shown to influence 
chromosome conformation, thereby affecting gene expression. 
Epidemiological analyses reveal that although monozygotic twins 
exhibit similar histone modifications at birth, these differences manifest 
with age, resulting in varying risks of developing DD (Lockwood et al., 
2015). This suggests that epigenetic characteristics may be modified by 
environmental factors, which increases the susceptibility to DD. Histone 
modifications, a type of epigenetic alteration, regulate gene expression 
genes by influencing chromosome structure. The maintenance of 
histone acetylation state is a function of histone acetyltransferase (HAT) 

and histone deacetylase (HDAC), which are thought to be potential 
diagnostic biomarkers of depression. Imbalances in HAT and HDAC 
activities lead to aberrant histone acetylation, which causes aberrant 
behavior and reduced cognitive function by compromising synaptic 
plasticity. Studies have reported that prenatal stress reduces BDNF 
expression and increases HDAC expression in the hippocampal 
regions, which affects synaptic and neuronal plasticity. This may be due 
to the emergence of behaviors resembling those of depression and 
anxiety. Similarly, adult stress increases hippocampal HDAC5 
expression and MeCP2 levels in the BDNF promoter (Park et al., 2021). 
Furthermore, histone hyper-and hypoacetylation influence 
physiological balance in neurons and promote the accumulation of 
pathological proteins (Kabir et  al., 2023). However, the specific 
mechanism by which histone acetylation-related genes contribute to 
the development of DD has not yet been documented.

In this study, we utilized the least absolute shrinkage and selection 
operator (LASSO) analysis to screen for genes with diagnostic value 
for DD, identify differentially expressed histone acetylation-related 
genes, construct a diagnostic model, and assess its diagnostic 
performance. In addition, we examined the correlation between these 
biomarkers and immune cell infiltration to elucidate the role of the 
immune system in DD onset. A lncRNA-miRNA-mRNA gene 
network was also constructed. The findings of this study provide a 
theoretical foundation for the diagnosis and treatment of DD, offering 
insights into the pathophysiology of the condition.

2 Materials and methods

2.1 Data source and processing

Training set GSE76826 and Validation set GSE98793 relevant to 
DD, were obtained from the Gene Expression Omnibus (GEO) 
database.1 GSE76826 contains 10 DD blood samples and 12 control 
samples. The GSE98793 dataset contained 64 DD blood samples and 
64 control samples. A total of 1,010 histone acetylation-related genes 
(HAC-RGs) (relevance score > 5) were obtained from the GeneCards 
database.2 R-package “limma” (version 3.52.4) was used to obtain the 
differentially expressed genes (DEGs) in GSE76826 between DD and 
control samples (|log2FC(fold change)| > 0.5, p-value < 0.05) (Wang 
et al., 2022; Ritchie et al., 2015).

2.2 Weighted gene co-expression network 
analysis

Outlier samples were first identified and removed through 
clustering. To ensure that gene interactions conformed to a scale-free 

1 https://www.ncbi.nlm.nih.gov/

2 https://www.genecards.org/

Abbreviations: DD, Depression disorder; HAT, Histone acetyltransferase; HDAC, 

Histone deacetylase; BDNF, Brain-derived neurotrophic factor; LASSO, Least 

absolute shrinkage and selection operator; GEO, Gene expression omnibus; 

WGCNA, Weighted gene co-expression network analysis; KEGG, Kyoto 

encyclopedia of genes genomes; ROC, Receiver operating characteristic; DEGs, 

Differentially expressed genes.
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distribution, we determined the optimal soft threshold for the data. 
A co-expression module was then constructed using the hybrid 
dynamic tree-cutting algorithm, with a minimum module size of 100 
genes. The module most strongly correlated with the studied traits was 
identified as the key module. Finally, key module genes were screened 
through the establishment of suitable thresholds based on gene 
significance (GS) and module membership (MM) (Wang et al., 2022; 
Langfelder and Horvath, 2008).

2.3 Functional analysis of candidate genes

DEGs, HAC-RGs, and critical module genes were intersected to 
identify candidate genes. Kyoto Encyclopedia of Genes Genomes 
(KEGG) and Gene Ontology (GO) studies using the R-package 
“clusterProfiler” (version 4.4.4) (p-value < 0.05). Cellular components 
(CC), molecular functions (MF), and biological processes (BP) were 
incorporated into the GO item (Wang et al., 2022; Ao et al., 2023; Zhao 
et al., 2021). To create a protein-protein interaction (PPI) network of 
potential genes, we used The STRING database (correlation threshold: 
0.15) (Zhang et al., 2022; Chen et al., 2022).

2.4 Machine learning screening

Based on candidate genes, (LASSO) (R-package “glmnet,” version 
4.1.7) and the Boruta algorithm were utilized to identify feature genes. 
LASSO regression can yield regression coefficients that are equal to 
zero, thereby facilitating the construction of an interpretable model. 
The Boruta algorithm, on the other hand, identifies the most relevant 
features that correlated with the dependent variable. Hub genes were 
obtained by intersecting the feature genes identified by the two 
machine learning algorithms (Zhang et al., 2022; Zhu et al., 2022).

2.5 Construction of nomogram

The nomogram containing hub genes were constructed using 
R-package “rms” (version 6.7.1). Base on training set, the receiver 
operating characteristic (ROC) curve was drawn using R-package 
“pROC” (version 1.18.0) to evaluate the model accuracy (Wang et al., 
2022; Sun et al., 2022).

2.6 Gene set enrichment analysis

According to the correlation (hub genes vs. all genes in 
GSE76826), and gene set enrichment analysis (GSEA) enrichment 
analysis was carried out for the hub genes using R-package 
“clusterProfiler” (version 4.4.4) and org.Hs.eg.db (|NES| > 1 & NOM, 
p-value < 0.05) (Zhang et al., 2022).

2.7 Immune analysis

The single-sample gene set enrichment analysis (ssGSEA) 
algorithm was used to calculate the distribution proportions of the 28 
immune cell types in GSE76826. Differences in immune cells were 

compared using t-test (DD vs control). Spearman’s correlation was 
calculated between hub genes and differential immune cells (Zhang 
et al., 2022; Lv et al., 2022), and the ggcorrplot (v0.1.3) function was 
used to plot a correlation heatmap of hub genes and differentially 
expressed immune cells (Tian et al., 2023).

2.8 Construction of lncRNA-miRNA-mRNA 
network

The miRNAs regulating the hub genes were predicted using 
miRDB3 and the miRWalk database.4 The predicted miRNAs from the 
two databases were then intersected to identify common miRNAs. The 
Starbase database5 was used to predict the lncRNAs (clipExpNum > 
20) that corresponded to the miRNAs. The Cytoscape software was 
used to visualize the lncRNA-miRNA-mRNA network (Shannon 
et al., 2003; Li et al., 2022).

2.9 Drug prediction and validation of hub 
genes

Utilizing the comparative toxicogenomics database (CTD),6 
Potential medications linked to hub genes were predicted using the 
Comparative Toxicogenomics Database.7 Cytoscape software 
visualizes the hub gene drugs that inhibit the expression of the hub 
gene network (Li et al., 2022). In addition, we analyzed the expression 
of key genes in the training set GSE76826 and the external validation 
set GSE98793. The ggplot (version 3.4.4) function was used to create 
violin plots and box plots. The Wilcoxon rank-sum test 
(non-parametric test) was applied to calculate the significance of inter-
group differences, with a threshold of p < 0.05 to generate 
significance symbols.

2.10 Statistical analysis

Hub gene expression was examined using the R package “ggplot.” 
This study’s analysis was performed using the R programming 
language. Tests for group differences were conducted using either the 
Wilcoxon rank-sum test or t-test. Statistical significance was set at 
p < 0.05 significant.

2.11 Experimental validation by reverse 
transcription quantitative PCR

TRIzol (Ambion) was used to extract total RNA from the blood 
specimens. A NanoPhotometer N50 was used to assess RNA 
concentration and purity. The SureScript First Strand cDNA Synthesis 
Kit (Servicebio) was used for the reverse transcription of total RNA 

3 http://www.mirdb.org

4 http://mirwalk.umm.uni-heidelberg.de/

5 http://starbase.sysu.edu.cn

6 http://ctdbase.org/

7 http://ctdbase.org/
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into cDNA. The 2x Universal Blue SYBR Green qPCR Master Mix was 
used for qPCR analysis. The qPCR reaction was run for 40 cycles, with 
the following parameters: initial denaturation for 1 min at 95°C, 
denaturation for 20 s at 95°C, annealing for 20 s at 55°C, and extension 
for 30 s at 72°C. Table 1 contains a list of primer sequences. The relative 
expression of hub genes was determined using the 2−△△Ct method, 
with relative expression levels normalized to the endogenous reference 
GAPDH. And we used the ggplot function for plotting, with the geom_
bar function to create bar plots. The t-test was applied to calculate the 
p-value between groups and generate significance symbols.

3 Results

3.1 The 23 candidate genes were obtained

To identify differentially expressed genes between the normal 
group and the DD group, the results of the differential expression 
analysis showed, in GSE76826 (DD vs. control), we acquired 2,316 
DEGs, of which 1,298 were up-regulated and 1,018 were down-
regulated (Figures 1A,B). To identify the gene modules most closely 
related to DD, we performed weighted gene co-expression network 
analysis (WGCNA) analysis. The sample clustering diagram after 
removing the outlier sample is presented in Figures 1C,D. When β = 8 
and R2 = 0.85, the mean connectivity converges to 0 (Figure 1E). After 
clustering similar modules, 12 co-expression modules were obtained 
(threshold: 0.8) (Figure  1F). The results of the correlation study 
indicated that the MEbrown module had the strongest significant 
positive correlation with DD (R2 = 0.71, p = 3e-04). The MEbrown 
module, which contained 23,248 genes, was identified as crucial 
(Figure 1G).

Further screening of 2,617 important module genes was 
conducted based on MM > 0.8 and GS > 0.2 (Figure  1H). By 
combining DEGs, HAC-RGs, and key module genes, 23 candidate 
genes were identified (Figure 2A). To explore the common functions 
and related pathways of the candidate genes, we  performed 
enrichment analysis, and the results of the GO analysis showed, the 
candidate genes in BP were primarily related to erythrocyte 
differentiation. In CC, candidate genes were enriched in the RNA 
polymerase II transcription regulator complex. In the MF, the 
candidate genes were associated with DNA-binding transcription 
factor binding (Figure 2B). In the KEGG pathways, the candidate 
genes were mainly concentrated in the FoxO signaling pathway 
(Figure  2C). Based on the 23 candidate genes, the PPI network 

contained 22-nodes and 89 edges. Notably, strong interaction was 
observed between MAPK1 and MAPK14, CEBPB, and SOD2 
(Figure 2D).

3.2 Three hub genes were identified by 
machine learning

To further screen for key genes that could serve as diagnostic 
biomarkers for DD, we performed machine learning-based analysis 
on the candidate genes. Three characteristic genes were obtained using 
LASSO algorithm: JDP2, ALOX5 and KPNB1 (Figures  3A,B). 
Following analysis with Boruta algorithm, 16 characteristic genes were 
identified: JDP2, ALOX5, KPNB1, PTEN, MSL1, RCOR1, SAT1, 
HSPA1A, TXN, RXRA, KDM4B, MAPK1, VDR, CEBPB, FOXO3, and 
SMARCD3 (Figure 3C). By intersecting the characteristic genes, three 
hub genes (JDP2, ALOX5, and KPNB1) were identified (Figure 3D). 
JDP2 was a member of the stress protein family, and it regulated gene 
expression by interacting with other transcription factors (Yu et al., 
2019). ALOX5 was an iron-containing non-heme dioxygenase that 
regulated cell death through inflammation and lipid peroxidation (Li 
et al., 2023). KPNB1 was a key protein in the karyopherin beta family 
and played a critical role in epigenetic regulation (Dong et al., 2018). 
Moreover, the study discovered that the identified hub genes are 
functionally associated with the biological pathways depicted in 
Figures 1, 2. Specifically. JDP2 modulates erythroid differentiation and 
transcriptional activity by interacting with DNA-binding transcription 
factors (Liila-Fogarty et al., 2024; Jin et al., 2006). ALOX5 is implicated 
in the FoxO signaling pathway and contributes to transcriptional 
regulation (Liu et  al., 2024). KPNB1 mediates nuclear import of 
transcription factors through recognition of DNA-binding domains 
(Li et al., 2024). As shown in Figure 3E, a nomogram based on these 
three hub genes was constructed. Moreover, the area under the curve 
(AUC) values of the model were > 0.9, indicating that the model had 
an excellent predictive ability (Figure 3F).

3.3 JDP2, ALOX5, and KPNB1 were 
correlated with ribosome pathway

To further investigate the relevant signaling pathways and 
potential biological mechanisms involved in key genes. We performed 
GSEA analysis based on the three hub genes. JDP2 was enriched in 69 
KEGG pathways, including the kegg_fc_gamma _ r-mediated 
phagocytosis (Figure  4A). ALOX5 was associated with 52 KEGG 
pathways, including the kegg_dna_replication (Figure 4B). KPNB1 
was associated with 71 KEGG pathways, including the kegg_toll_like_
receptor_signaling_pathway (Figure 4C). Furthermore, the three hub 
genes were enriched in kegg_ribosome, kegg_fc_gamma_r_ 
mediated_phagocytosis and kegg_olfactory_transduction, indicating 
that these genes might have affected DD through these pathways.

3.4 Nine different immune cells were 
associated with three hub genes

To observe the composition of immune cells between the normal 
group and the DD group samples, We conducted immune infiltration 

TABLE 1 The sequences of the primers for qPCR.

Gene name Primer sequences

ALOX5 F CCAGACCATCACCCACCTTC

ALOX5 R CCTTGTCAAAGAGGCCACAC

JDP2 F CTCTCAGTCTTGGGGCCTTC

JDP2 R CCAGGCATCATAGCAGGAGG

KPNB1 F CCCATTTGGAGGGAGGAAGTA

KPNB1 R GTTCCACAAGGAAAGTGGGC

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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FIGURE 1

DEGs identification in peripheral serum from depressed patients. (A) Volcano plot of GSE76826. Red and blue represent upregulated and 
downregulated DEGs, respectively, and gray represents no difference. (B) Heatmap of GSE76826. (C,D) Sample clustering plots after removing outlier 
samples. (E) Examination of the mean connectivity and scale-free index for different soft-thresholding powers. (F) Clustering dendrogram for the 

(Continued)
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analysis. The distribution proportion and correlation heat map of the 28 
immunoinfiltrating cells in GSE76826 are displayed in Figures 5A,B. Nine 
types of immune cells were identified: eosinophils, gamma delta T cells, 
activated B cells, activated CD8 T cells, effector memory CD8 T cells, 
immature B cells, immature dendritic cells, macrophages, and neutrophils 
(Figure 5C). This suggested that the hub genes might have influenced the 
level of immune cell infiltration in DD. A substantial negative correlation 
was identified between JDP2 and activated CD8 T cells (cor = −0.8), 
whereas KPNB1, eosinophils, and macrophages showed a high positive 
correlation (cor = 0.76) (Figure 5D).

3.5 lncRNA-miRNA-mRNA network 
construction based on hub genes

To gain a deeper understanding of the potential mechanisms 
of hub gene regulation, we  conducted a ceRNA network 
analysis. Using the two databases, the numbers of miRNAs 
predicted by JDP2, ALOX5, and KPNB1 were 86, 12, and 106, 
respectively (Figures  6A–C). Based on the common miRNAs, 
1,599 lncRNAs were identified. The lncRNA-miRNA-mRNA 
network contained 56-nodes and 87-edges. For example, 

development of similar modules. Each color represents a module. (G) Relations between modules and traits. In the heatmap, a clinical characteristic is 
represented by each column and a ME by each row. The p-value and correlation coefficient for each cell are displayed. (H) A scatter plot showing how 
the MEbrown module’s gene significance (GS) and module membership (MM) relate to one another. Solid dots are utilized to indicate genes having 
MM ≥ 0.5 and GS ≥ 0.5.

FIGURE 1 (Continued)

FIGURE 2

Candidate gene functional analysis. (A) Venn diagram showing the overlap between DEG, HAC-RG, and key module genes. (B) GO enrichment analysis, 
(C) KEGG enrichment analysis. (D) Interaction between MAPK1 and MAPK14, CEBPB, and SOD2, etc. The deeper the red color in the image, the higher 
the interaction level.
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FIGURE 3

Construction and validation of diagnostic histone acetylation-related gene signatures for DD. Screening diagnostic markers for DD using a 
comprehensive approach. (A,B) LASSO regression analysis used to identify hub genes. (C) Boruta algorithm analysis. (D) Hub genes. (E) Nomogram of 
hub genes. (F) ROC curve diagnostic performance of hub genes.
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FIGURE 4

Three hub genes were correlated with ribosome pathway. (A–C) GSEA functional analysis of hub genes (A) JDP2, (B) ALOX5, (C) KPNB1.
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XIST-hsa-miR-3129-5p-ALOX5 and AL139099.4-hsa-miR-199a-
3p-KPNB1 were among the regulatory relationships identified 
(Figure 6D). These results demonstrated the interactions between 
different molecules, helping to reveal the potential mechanisms of 
hub gene regulation.

3.6 Construction of hub gene-drug 
network based on hub genes

To predict potential drugs related to the hub gene and DD, 
we  conducted a drug prediction analysis. The hub gene-drug 
network contained 98-nodes and 106-edges. For instance, 
C080163 suppressed KPNB1 expression, D000082 suppressed 
ALOX5 expression, and D020111 suppressed JDP2 expression 
(Figure 7A). Finally, we verified the expression. The expression of 
ALOX5, JDP2, and KPNB1 was lower in the control samples than 
in the DD samples of GSE76826. In GSE98793, the trends of 
ALOX5 and JDP2 were consistent with those of GSE76826, 
whereas KPNB1 did not differ significantly in GSE98793 
(Figures 7B,C).

3.7 Validation of hub gene expression in 
clinical samples

Blood samples were taken from five DD patients and five healthy 
controls to verify the expression of hub genes. The reverse 
transcription quantitative PCR (RT-qPCR) results showed that the 
relative expression levels of ALOX5 and JDP2 were significantly higher 
in the DD group than those in the control group (Figures 8A,B). 
However, no significant difference was observed in KPNB1 expression 
between the control and DD groups (Figure  8C). These results 
suggested that the expression levels of ALOX5 and JDP2 might have 
influenced DD.

4 Discussion

DD is influenced by both genetic and environmental factors. 
Clinical manifestations of DD include cognitive impairment, 
persistently depressed mood, and a decrease in volitional activity, 
with severe cases potentially presenting with symptoms such as 
hallucinations (Liu et  al., 2023). The diagnosis of DD remains 

FIGURE 5

Results of immune cell infiltration analysis in GSE 76826. (A) The relative amount of infiltration of 28 distinct immune cell subtypes in the peripheral 
blood of patients with DD. (B) Correlation among 28 different immune cell subgroups; white denotes no association between any given immune cell 
group, while red and blue show positive and negative correlations, respectively. (C) A comparison of 28 different immune cell types, where the normal 
group is shown in green and the depressive group is shown in red. The treatment group represents depression, and the control group represents the 
normal group. (D) Three hub genes related to histone acetylation and nine immune cells are correlated. The positive association increases with color 
redder. The negative connection increases with a beautiful blue hue.
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difficult due to its heterogeneity and complex pathological 
characteristics. In the absence of objective diagnostic criteria, the 
current diagnosis is primarily based on clinical evaluation of 
patients’ self-reported symptoms. The development of DD may 

be  influenced by histone modifications caused by various 
environmental variables. Among these modifications, histone 
acetylation plays a crucial role in DD (Montagud-Romero et al., 
2016). Studying histone acetylation-related biomarkers could 

FIGURE 6

lncRNA-miRNA-mRNA Network construction based on hub genes. (A–C) Venn diagrams showing the intersection of miRNA numbers of hub genes 
from the GSE98793 and GSE76826 databases. (D) CeRNA network: regulating gene expression through interactions between RNA molecules, 
investigation of the lncRNA-miRNA-mRNA network. Orange denotes predicted lncRNA, red indicates hub genes, and blue indicates predicted miRNA.
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provide deeper insight into the pathogenesis of DD and offer new 
perspectives on diagnostic and treatment strategies.

In this study, biomarkers associated with DD were screened 
using LASSO and Boruta machine learning methods. Through ROC 
curve analysis, ALOX5, JDP2, and KPNB1 were identified as the 
three key genes associated with histone acetylation. ALOX5 
(Arachidonate 5-lipoxygenase) is a non-heme iron-containing 
dioxygenase involved in leukotriene biosynthesis and regulation of 
inflammatory responses and various types of cell death (Sun et al., 

2019). Ortega et  al. found increased expression of ALOX5 in 
placental tissues when comparing biomarkers from 22 pregnant 
women with gestational psychosis and 20 healthy pregnant women. 
Furthermore, the study discovered that ALOX5 overexpression was 
directly associated with abnormally increased glucocorticoid levels 
in pregnant women experiencing their first psychotic episode 
(Ortega et al., 2023).

Similarly, a meta-analysis by Hubbard and Miller’s revealed that 
individuals undergoing their first psychotic episode exhibited 

FIGURE 7

Construction of hub gene-drug Network based on hub genes. (A) Hub gene-drug network analysis: the relationship between key genes and inhibitory 
drugs, red represents hub genes, and blue represents predicted drugs. (B) Expression of potential biomarkers in the GSE98793 database. (C) Expression 
of potential biomarkers in the GSE76826 database.
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abnormally high levels of glucocorticoids in their blood (Hubbard and 
Miller, 2019). This suggests that ALOX5 may contribute to the 
pathological changes associated with DD by regulating the HPA axis. 
Recent research has shown a direct correlation between inflammation 
and DD (Sarno et al., 2021), with ALOX5 possibly serving as a crucial 
mediator. However, how ALOX5 contributes to the development and 
progression of DD remains unclear (Joshi and Praticò, 2013). There 
exists a significant association between histone acetylation and 
inflammation. Both inflammatory and anti-inflammatory genes are 
regulated by histone acetylation, thereby determining their activation 
status (Daskalaki et al., 2018). Histone acetylation is controlled by 
histone acetyltransferases (HATs) (Adcock et  al., 2005). The 
acetylation mediated by HATs typically facilitates gene transcription 
by unraveling compact chromatin structures (Grunstein, 1997). As a 
crucial member of the HAT family, p300 not only acetylates histones 
but also functions as an adaptor factor for transcription factors 
(Eckner et al., 1994). Notably, potential p300 binding sites have been 
identified on the ALOX5 promoter (Zhang et al., 2023), and studies 
suggest that cortisol may regulate ALOX5 gene expression through 
p300 (Wang et al., 2012). These findings indicate a close relationship 
between the ALOX5 gene and histone acetylation. Therefore, 
we hypothesize that ALOX5 might activate inflammatory response 
systems through histone acetylation-mediated mechanisms, 
potentially contributing to the pathogenesis of DD.

The JPD2 (Jun dimerization protein 2), a member of the stress 
protein family, is recognized as an AP-1 repressor protein involved in 
chromatin assembly regulation, and both positive and negative 
transcriptional regulation (Lohoff et  al., 2022). In addition to its 
involvement in several cellular functions, active AP-1 has been 
connected to the molecular mechanisms underlying a number of 
illnesses, such as cancer, rheumatoid arthritis, psoriasis, and asthma. 
JPD2 has been shown to regulate oxidative stress (Tsai et al., 2016; 
Wuputra et al., 2022). JDP2 is part of the Nrf2-MafK complex, which 
is involved in detoxification and antioxidant functions. This is 
accomplished by triggering several detoxifying or antioxidant 
enzymes, binding to antioxidant response elements (ARE) in vivo, and 
enhancing ARE-dependent gene expression. These enzymes are 
essential for defending tissues and cells against endogenous reactive 
oxygen species (ROS) and external carcinogens (Tanigawa et  al., 
2013). Several clinical disorders, such as cancer, cardiovascular 
disease, inflammation, and neurodegeneration, are associated with 
oxidative stress and ROS. Oxidative stress caused by excessive ROS is 

one of the contributing factors to DD. Patients with DD exhibit 
decreased antioxidant capacity and higher markers of oxidative stress. 
Several studies have demonstrated that ROS significantly inhibit 
histone acetylation, and histone hypoacetylation is associated with 
oncogenic potential and cytotoxicity (Kang et al., 2003). Furthermore, 
histone acetylation has been implicated in both the pathophysiology 
and treatment of depression (Zhu et al., 2021). JDP2 suppresses HAT 
activity through its interaction with histones and the binding of its 
basic bZIP domain to DNA. Although the histone-binding region of 
JDP2 lacks typical acidic residues, it remains critical for HAT 
inhibition, with the basic region in the bZIP domain also playing a 
significant role. JDP2 can inhibit p300-mediated acetylation even in 
the presence of excess histones (Jin et  al., 2006). We  therefore 
hypothesize that JDP2 may influence histone acetylation by 
modulating ROS levels, thereby playing a pivotal role in regulating 
depression-related genes.

KPNB1 is a key protein in the nuclear transport protein β family, 
responsible for mediating the transport of proteins from the cytoplasm 
to the nucleus. It comprises 19 tandem HEAT repeat sequences. It has 
been reported that KPNB1 plays a pivotal role in epigenetic regulation, 
particularly in gene silencing and gene expression modulation (Dong 
et al., 2018). Studies have revealed that elevated expression of KPNB1 
is associated with poor patient prognosis. Notably, DD1 combined 
with KPNB1 inhibitors effectively suppresses gastric cancer cell 
proliferation and tumor growth by enhancing both genomic and 
non-genomic activities of Nur77, suggesting KPNB1 as a promising 
therapeutic target in cancer treatment (Zhang et  al., 2024). 
Furthermore, KPNB1 has been shown to interact with immobilized 
H4 (histone), while TNPO1 (KPNB2, MIP1), an importin closely 
related to KPNB1, interacts with the H3 tail. These findings collectively 
underscore the potential biological significance of KPNB1 in cellular 
processes (Apta-Smith et al., 2018). However, there is currently limited 
research on whether the KPNB1 gene can serve as a specific diagnostic 
biomarker for mental illnesses to further investigate related 
therapeutic targets, especially for DD. The present study confirms that 
these three biomarkers were closely associated with the diagnosis and 
treatment of DD. However, further investigation is required to 
elucidate their mechanisms of action.

The present study identified three biomarkers that co-enriched in 
ribosomes, fc-gamma-r-mediated phagocytosis, and olfactory 
transduction pathways. Ribosomal dysregulation is a common feature 
of depression in humans and chronic stress in mice (Zhang et al., 

FIGURE 8

Three hub genes’ expression in clinical samples was validated by qPCR. * indicates p-value < 0.05. (A) JDP2, (B) ALOX5, (C) KPNB1.
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2023). Previous studies have demonstrated that anomalies in the 
immune and inflammatory systems are linked to the pathophysiology 
of DD (Richardson et  al., 2022), with fc-gamma-r-mediated-
phagocytosis being one of the pathways involved. This 
pathway stimulates phagocytosis, which subsequently increases 
phospholipase D (PLD) activity. This, in turn, induces phosphatidic 
acid (PA) production in the plasma membrane of macrophages and 
promotes phagosome formation (Ji et al., 2016). Furthermore, a lack 
of olfactory stimulation was significantly correlated with DD. The 
olfactory and emotional processing pathways share a common 
anatomical foundation (Croy and Hummel, 2017), and the extent of 
olfactory impairment can serve as an indicator of depression severity. 
Additionally, the loss of olfaction may increase the likelihood of 
developing DD (Leon and Woo, 2022).

Studies have linked DD to leukocytosis, an increased neutrophil-
to-lymphocyte ratio, and an elevated CD4 + to CD8 + T-cell ratio 
(Mazza et al., 2018). It is also associated with systemic immunological 
activation (Mazza et al., 2018). Through the analysis of DD immune 
cell infiltration, we discovered that the DD group exhibited higher 
neutrophil infiltration than the control group, consistent with the 
observations by Lynall et  al. (2020). Their study, which analyzed 
peripheral blood samples from 206 patients with DD and 77 healthy 
controls, identified 14 immune cell subtypes and reported an increase 
in neutrophil numbers in patients with DD; this increase was 
positively correlated with DD symptom scores, predicting changes in 
symptom severity (Lynall et al., 2020). Furthermore, a previous study 
found that the serum of patients with DD had higher levels of several 
immune cells, including monocytes, dendritic cells, and macrophages 
(Beurel et  al., 2020), which is consistent with our findings. 
Additionally, DD has been associated with immune suppression 
characterized by a reduced lymphocyte proliferation response or a 
decreased T helper cell count (Schleifer et al., 1989). CD8 + T cells 
play a crucial role in immune regulation, and previous studies have 
suggested that modulating the immunological microenvironment in 
depressed mice is possible by decreasing CD8 + T cell apoptosis (Lu 
et  al., 2017). Additionally, Magioncalda et  al. reported a strong 
correlation between bipolar disorder and decreased circulating 
CD8 + T cell counts (Magioncalda et al., 2018). an important regulator 
of CD8 + T cell depletion during long-term viral infections and 
malignancies has been found to be AP-1 (Magioncalda et al., 2018). 
In our study, activated CD8 + T cells exhibited a negative correlation 
with JDP2, and lower levels of activated CD8 + T cell infiltration were 
observed, which is consistent with previous studies.

Collectively, the pathogenesis and pathophysiology of DD are 
significantly influenced by neuroimmune system interactions. In 
cells where KPNB1 was inhibited, the transcriptional activities of 
AP-1 and NFκB, critical for cancer cell biology and the expression 
of inflammatory target genes, were repressed (Papavassiliou and 
Musti, 2020). Concomitantly, the expression of interleukin-6, 
interleukin-1 β, tumor necrosis factor α, and target genes of 
granulocyte colony-stimulating factor, NFkB, and AP-1 was found 
to be markedly diminished in experiments employing nuclear input 
inhibition of KPNB1. KPNB1 has been shown to suppress these 
transcription factors’ activities, making cancer cells more invasive 
(Stelma and Leaner, 2017). Studies have also found that KPNB1 
expression is up-regulated in a number of cancers (Cai et al., 2024), 
and dysregulation of KPNB1 is closely linked to carcinogenesis. 
Moreover, ALOX5 regulates T cell pyroptosis in rheumatoid 
arthritis. Arachidonic acid (AA)-regulated Ca2 + −selective (ARC) 

channels promote CD 4 + T cell pyroptosis and elevate the 
expression of ALOX5 in rheumatoid arthritis CD 4 + T cells (Cai 
et  al., 2024). ALOX5 has also been reported to alter neuronal 
function, which may explain why mice lacking ALOX5 display 
increased defensive behaviors against anxiety (Joshi and Praticò, 
2011). Moreover, the placental tissues of pregnant women 
experiencing their first psychotic episode showed higher expression 
of ALOX5 compared to healthy control (Zhang et  al., 2023). 
However, whether the interactions between these genes and 
immune cells contribute to the progression of DD remains to 
be determined and requires further investigation.

In summary, through bioinformatics and machine learning 
approaches, we have identified histone acetylation-related biomarkers 
ALOX5, JDP2, and KPNB1 associated with depression. These genes hold 
significant clinical translational potential in depression research. With 
in-depth understanding of their mechanistic roles in depression 
pathogenesis, these genes may emerge as novel biomarkers, providing 
new perspectives for early diagnosis, pathological monitoring, and 
personalized treatment of DD. Specifically, ALOX5 might activate the 
inflammatory response system through histone acetylation mechanisms, 
thereby triggering DD; JDP2 could regulate ROS levels to influence 
histone acetylation, playing a pivotal role in controlling depression-related 
gene expression and offering guidance for individualized therapy; while 
KPNB1 may serve as a crucial mediator in neurotransmission and 
intracellular signaling pathways, facilitating assessment of disease 
progression and therapeutic efficacy in DD. However, this study has 
certain limitations. Firstly, the analysis based on the dataset may have 
certain biases in terms of sample sources and clinical background. Many 
in vivo and in vitro variations in environmental factors and intercellular 
interactions cannot be predicted solely through bioinformatics analysis. 
Secondly, DD exhibits clinical heterogeneity. This study did not 
comprehensively document the specific disease subtypes of enrolled 
patients. While we employed the ssGSEA method to estimate immune 
cell infiltration in depression patients, these predictive results require 
further validation through additional research. Therefore, subsequent 
studies should incorporate samples from more diverse backgrounds and 
enhance validation through in vivo and in vitro experiments. Although 
genes JPD2, ALOX5, and KPNB1 have demonstrated significant potential 
in basic research - potentially playing crucial roles in early diagnosis, 
prognostic evaluation, treatment response monitoring for cancer, 
immune and inflammatory diseases, and serving as key targets for 
precision therapy - their mechanistic roles in depression warrant further 
investigation. Clinical translation still requires additional validation, 
particularly through more in vivo/in vitro experiments and exploration of 
targeted therapeutic strategies, to develop more effective treatment 
regimens for patients. Despite existing limitations, this study provides 
valuable references for the clinical diagnosis and treatment of DD.

5 Conclusion

Using a series of bioinformatics methods, this study identified three 
key genes (ALOX5, JDP2, KPNB1) that play significant roles in DD. The 
findings revealed that these genes were highly correlated with immune 
cell infiltration levels and had a superior diagnostic performance. These 
genes have undergone extensive validation and may have practical 
implications for the diagnosis and treatment of DD. In addition, these 
genes may play a role in the immunological, inflammatory, or signaling 
pathways that contribute to the pathophysiology of DD. This insight could 
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open new avenues for research and help uncover novel biomarkers and 
therapeutic targets for DD.
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