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Objective: Adolescents with major depressive disorder (MDD) exhibit abnormal 
dynamic functional connectivity (dFC) patterns, but it remains unclear whether 
these aberrant dFC patterns are linked to antidepressant treatment. The 
aim of this study is to investigate whether dFC patterns will be  changed by 
antidepressant treatment, as well as whether baseline dFC pattern could predict 
treatment response in adolescent MDD patients.

Method: We included 35 drug-naïve, first-episode MDD adolescents (age 
14.40 ± 1.24; 8 males and 27 females) and 24 healthy controls (HCs, age 
14.21 ± 1.41; 11 males and 13 females). All MDD adolescents received 6 weeks of 
antidepressant treatment. Resting state and T1 MRI data were collected in MDD 
adolescents before and after treatment and in HCs. Independent component 
analysis (ICA) was used to compare the different dFC pattern between MDD 
adolescents and HCs at baseline, as well as which between before and after 
treatment in MDD adolescents. Finally, Pearson correlation and multivariate 
linear regression analyses were used to explore the associations between dFC 
pattern and changed score of BDI in MDD adolescents.

Results: The mean dFC value between right inferior frontal gyrus (IFG) and 
bilateral insular cortex (IC; right, r = −0.461, p-FDR = 0.012; left, r = −0.518, p-
FDR = 0.007) at baseline were negatively correlated with BDI score reduction. 
The mean dFC value between left frontal pole (FP) and right superior parietal 
lobule (SPL) after treatment was positively correlated with BDI score reduction 
(r = 0.442, p-FDR = 0.014). And the mean dFC values between right IFG and 
bilateral IC (right, β = −1.563, p-FDR = 0.021; left, β = −1.868, p-FDR = 0.012) at 
baseline could predict antidepressant treatment response.

Conclusion: These findings demonstrate that dFC patterns between some brain 
areas could be  a prospective factor for predicting antidepressant treatment 
response.
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1 Introduction

Major depressive disorder (MDD) is a mental illness with high 
morbidity, mortality and recurrence rate (Demyttenaere et al., 2004; 
Malhi and Mann, 2018; Monroe and Harkness, 2022). It is currently 
the second leading cause of disability worldwide (Collaborators, 
2024). Among Chinese children and adolescents, MDD has become 
the third most common mental illness (Li F. et al., 2022). Moreover, 
adolescents with MDD are prone to substance abuse and suicide 
(Thapar et al., 2012).

Despite widespread use of antidepressants, remission rate 
remains only 30 to 40% (Trivedi et al., 2006; Ioannidis, 2008; Zhou 
et al., 2020). In addition, slow onset of antidepressant effects also 
increases burdens on patients and their family (Quitkin et  al., 
1987). But finding predictors of treatment response has always been 
a challenge. Various neuroimaging markers have shown their 
abilities to predict antidepressant treatment response, such as gray 
matter volume and static functional connectivity (FC) patterns 
(Langenecker et al., 2007; Williams et al., 2015; Dunlop et al., 2017; 
Liu et  al., 2017; Chin Fatt et  al., 2020). While the functional 
connectome approach suggests that brain FC is changed over time 
(Calhoun et  al., 2014; Marchitelli et  al., 2022). The method, 
dynamic functional connectivity (dFC) analysis, estimates time-
varying functional connectivity on a temporal scale (Cribben et al., 
2012; Engel and Gerloff, 2022), and reflects more transitory 
patterns in blood oxygen level dependent (BOLD) signals (Allen 
et al., 2014; Jalilianhasanpour et al., 2021). But most of studies have 
ignored dFC changes associated with MDD and 
antidepressant treatment.

Early works have showed that MDD adolescents exhibited 
changed dFC strength in brain regions which involved in emotional 
and cognitive process (eg. prefrontal cortex and parahippocampal 
gyrus; Cribben et al., 2012; Kaiser et al., 2015a; Marchitelli et al., 2022). 
Surprisingly little is known about the relationship between dFC 
patterns and antidepressant treatment. Connectome-based predictive 
modeling demonstrated that baseline dFC within anterior cingulate 
cortex (ACC) predicted less improvement in cognitive flexibility after 
psilocybin therapy (Doss et al., 2021). Findings indicated that reward 
network may serve as the potential target for antidepressant treatment 
and the promising predictors of treatment response (Hou et al., 2018). 
Li et al. (2021) quantified functional stability and found that baseline 
functional stability in dorsal ACC and ventral ACC, calcarine sulcus, 
and middle occipital gyrus could be valid predictors of remission in 
MDD patients. But studies above had (1) small sample size of less than 
30 cases, (2) short (2 weeks) or long-term (7 months) treatment 
response to be explored. There are also several articles about dFC 
patterns predicting the response of electroconvulsive therapy (ECT) 
or psychotherapy. For example, dFC between default mode network 
(DMN) and cognitive control network (CCN), could as a predictive 
biomarker of the outcome of ECT in depressed patients (Dini et al., 
2021). MDD patients showed increased dFC variability in dorsolateral 
prefrontal cortex and precuneus after cognitive behavioral therapy 
(Zhou et  al., 2021). However, these existing studies have mainly 
focused on a few brain regions or neural circuits, revealing a bias in 
dFC patterns that are particularly related to antidepressant treatment 
response (Voegeli et al., 2017; Kuai et al., 2024).

In this study, we sought to determine whether baseline dFC 
patterns could predict early antidepressant treatment response. 

The results have the potential to provide extensive information on 
the brain basis of antidepressant treatment in adolescents 
with MDD.

2 Methods

2.1 Participants

This study was approved by the Ethics Committee of West China 
Hospital, Sichuan University and registered on the Chinese Clinical 
Trial Registration Platform (ChiCTR2000033402). Drug-naïve, first-
episode MDD adolescents and healthy controls aged 12–17 years from 
September 2020 to December 2021. All study subjects were from the 
inpatient or outpatient departments of West China Hospital of 
Sichuan University, and healthy controls were recruited through 
advertising. All participants and their guardians signed written 
informed consent. All adolescents with MDD were diagnosed 
according to the diagnostic criteria for MDD in the Diagnostic and 
Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV). 
Two senior psychiatrists performed mental health examinations using 
the Chinese version of Affective Disorders and Schizophrenia-Present 
and Lifetime Version (KSADS-PL; Kaufman et al., 1997). Thirty-five 
adolescents with MDD (age 14.40 ± 1.24; 8 males and 27 females) and 
24 healthy controls (HCs, age 14.21 ± 1.41; 11 males and 13 females) 
were included in this study. Inclusion criteria for both MDD patients 
and HCs were 12–17 years old, right-handed, have at least an 
elementary school education, have a normal brain structure, be able 
to understand the contents of the scales, IQ > 85, has not received 
electroconvulsive therapy, and has not taken any other medications 
recently. We exclude those subjects with other axis I and axis II mental 
illness, severe physical illnesses, history of neurologic disease or injury, 
previous use of illicit substances, pregnancy or breastfeeding. No HCs 
had psychiatric illness or had attempted suicide.

All adolescents with MDD were treated with antidepressants, 
either alone or in combination with antipsychotics, sedative-hypnotics 
or anxiolytics. Antidepressants included agomelatine (43%, 15/35, 
50 mg/d), sertraline (37%, 13/35, 50–150 mg/d), escitalopram (14%, 
5/35, 10–15 mg/d) and venlafaxine (6%, 2/35, 150–225 mg/d). 
Antipsychotics included quetiapine (14%, 5/35, 50–100 mg/d) and 
olanzapine (9%, 3/35, 2.5 mg/d). Sedative-hypnotics included 
alprazolam (26%, 9/35, 0.4 mg/d), zopiclone (9%, 3/35, 7.5 mg/d) and 
lorazepam (9%, 3/35, 0.5 mg/d). Anxiolytic was tandospirone (6%, 
2/35, 30 mg/d). In subsequent analyses, the doses of antidepressants, 
antipsychotics and sedative-hypnotics were converted to equivalent 
doses of fluoxetine (Hayasaka et  al., 2015), chlorpromazine 
(Andreasen et  al., 2010) and diazepam (Borrelli et  al., 2022), 
respectively.

2.2 Assessment

Beck Depression Inventory (BDI) was used to evaluate the 
depressive symptom severity of patients before and after treatment 
(Jackson-Koku, 2016). Patients were defined as responder group 
(group A, BDI score reduction ≥50%), non-responder group (group 
B, 25% ≤ BDI score reduction <50% and group C, BDI score reduction 
<25%; Reeves et al., 2012). HCs also completed the BDI at baseline.
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2.3 MRI protocol procedure

Resting-state structural and functional MRI data were collected 
in MDD adolescents before and after treatment and in HCs on the 
same 3.0 T MRI scanner (uMR790, United-Imaging Healthcare, 
Shanghai, China). Participants were asked to remain calm, close their 
eyes, relax, and not think about anything during the scan. Foam 
padding and earplugs were used to minimize the effects of head 
movements and scanner noise. After the scan, participants were asked 
if they fell asleep during the scan. During the scan, images were 
visually inspected for structural abnormalities, head motion and 
artifacts. Only images without the above influence were retained for 
the study.

T1-weighted (T1w) images were acquired using a magnetization-
prepared, rapid gradient-echo sequence. The parameters were as 
follows: repetition time (TR), 8.4 ms; echo time (TE), 3.8 ms; flip 
angle, 8°; slice thickness, 0.8 mm; total number of sagittal slices, 208; 
matrix size, 256 × 256; field of view (FOV), 256 × 256 mm2; and voxel 
size, 0.8 × 0.8 × 0.8 mm3.

Resting-state background echo-planar imaging (EPI) were 
obtained. The parameters were as follows: TR, 1000 ms; TE, 30 ms; flip 
angle, 60°; FOV, 210 × 210 mm2; number of slices, 65; voxel size, 
2.5 × 2.5 × 2.5 mm3; and layer thickness, 2.5 mm.

2.4 Functional image preprocessing

The original dicom file was converted to nifty file using MRIcron.1 
Then images of each subject were visually inspected again to ensure 
the absence of artifacts, deletions and ghosting before preprocessing. 
The data were preprocessed and analyzed using MATLAB R2022b 
(MathWorks, Natick, MA, United States), SPM122 and CONN toolbox 
version 22b.3 The steps for preprocessing the structural MRI data 
included translation to the (0, 0, 0) coordinates, segmentation and 
normalization (using gray/white/cerebrospinal fluid segmentation and 
MNI normalization). T1W image was used for segmentation because 
it has higher spatial resolution. Since we are ultimately interested in 
functional image data, we then had to resample these tissue maps onto 
the functional data. Functional pre-processing involved the following 
steps: realignment and unwarp (for motion and field map correction), 
translation of the image center (to the origin 0, 0, 0), slice-timing 
correction, outlier scan detection and scrubbing (using ART: artifact 
removal toolbox), spatial normalization to an MNI template 
(functional target resolution 2 mm) and functional smoothing (full 
width half maximum of 8 mm). Default preprocessing parameters 
were used to define and reduce possible confounding due to head 
movement and blood oxygen level-dependent signals in cerebrospinal 
fluid and white matter. For noise reduction due to physiological effects 
(such as respiration and pulsation) and drift caused by scanner noise, 
the signals for white matter and cerebrospinal fluid were regressed 
from the functional data, and a bandpass filter of 0.008–0.09 Hz was 
applied by default (Hallquist et al., 2013). After preprocessing, quality 
control was performed for each subject.

1 http://www.mccauslandcenter.sc.edu/mricro/mricron

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

3 www.nitrc.org/projects/conn

2.5 Dynamic independent component 
analysis

The ICA can separate signals from noise and increase the 
sensitivity of detecting inter-individual differences (Monakhova 
and Rutledge, 2020). Dyn-ICA matrices represent a measure of 
different modulatory circuits expression and rate of connectivity 
change between each pair of regions of interest (ROIs), 
characterized by the strength and sign of connectivity changes 
covarying with a given component/circuit timeseries. In this 
research, dynamic connectivity analysis was performed to explore 
cross-time functional modulation in the matrix of connectivity 
between ROIs (Calhoun et al., 2014). The dyn-ICA was conducted 
using the CONN toolbox and performed on the connectivity 
time-series, calculated the connectivity strength between any pair 
of ROIs at any given time point. The computation involved ICA 
decomposition of the ROI-ROI dynamic connectivity timeseries 
into 20 components with 30 smoothing kernels (selected by 
default in CONN). CONN’s dyn-ICA implementation follows 
Calhoun’s group-ICA methodology (Calhoun et al., 2001), with 
optional subject-level dimensionality reduction, concatenation 
across subjects, iterative dual regression on group-level data, a 
fastICA algorithm for group-level independent component 
definition (with a hyperbolic tangent contrast function), and 
subject-level back-projection (back-projection of the group-level 
connectivity matrices into a series of subject-specific connectivity 
components). Then, T tests (including independent and paired T 
tests) were used to compare different dFC patterns between MDD 
and HCs, as well as between before and after treatment. 
Threshold-free cluster enhancement was used for multiple 
comparison correction (Smith and Nichols, 2009). These ROIs 
were defined from the brain atlas file in the CONN toolbox and 
included 132 brain regions derived from the Harvard-Oxford 
Cortex Atlas (provided by the Harvard Center of Morphometric 
Analysis, Cambridge, Massachusetts) and cerebellum  
parcellations.

2.6 Statistical analysis

We extracted the dFC values between each two brain areas at 
different time points and calculated the average value of the entire scan 
time. Pearson correlation was used to investigate the association between 
mean dFC values (before and after treatment) and BDI score (BDI score 
reduction, BDI score before and after treatment) in MDD patients. 
Multivariate linear regression analyses were carried out to determine 
whether dFC patterns at baseline can predict antidepressant treatment 
response. Covariates included age, sex, baseline BDI score and 
medication dosage (including dose of antidepressant, antipsychotics, 
sedative-hypnotics and anxiolytics) of patients. To validate the prediction 
analyses, we  conducted repeated 3-fold cross-validation (Ash and 
Hughes-Oliver, 2018) and permutation test. Cross-validation is virtually 
unbiased, but is known to be variable when applied to small samples (Li 
et al., 2022). To reduce its variability, the whole process was repeated 10 
times. While permutation test was most used statistical analysis for small 
sample studies (Liu, 2024). We also conducted sensitivity and specificity 
analyses for each dFC pattern identified as a predictor to identify 
neuroimaging biomarkers of differential treatment response. An 
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adjusted p value <0.05 [False Discovery Rate (FDR) correction] was 
used. All statistical analyses were performed using R 4.3.3.4

3 Results

3.1 Demographic characteristics

Demographic and clinical characteristics of the participants are listed 
in Table 1. There were no statistical differences in sex distribution ( 2x = 

4 https://www.r-project.org/

2.471, p = 0.116) or age distribution (t = −0.551, p = 0.584) between HC 
and MDD group. In MDD patients, the BDI scores decreased significantly 
after treatment (t = 4.226, p < 0.001). 14% of patients achieved treatment 
response (Group A, 5/35), while 86% of patients failed to achieve response 
(Group B, 29%, 10/35 and Group C, 57%, 20/35).

3.2 Altered dFC patterns in MDD group

In this study, seven brain regions (including right temporal 
occipital fusiform cortex, bilateral planum polar, bilateral planum 
temporal and bilateral Heschl’s gyrus) with different dFC patterns 
between MDD and HC group were found, which were listed in 
Supplementary Table S1. And several brain regions with different dFC 

TABLE 1 Sociodemographic and clinical characteristics of the participants.

HCs 
(n = 24)

MDD 
adolescents 

(n = 35)

x2 / t p Effect 
size

MDD adolescents x2 / t p Effect 
size

Responders 
(n = 5)

Non-
responders 

(n = 30)

N (%) N (%) x2 p Hedges’ 
g

N (%) N (%) x2 p Hedges’ 
g

Sex 2.471 0.116 0.413 0.972 0.568 0.330

  Male 11 (46) 8 (23) 2 (40) 6 (20)

  Female 13 (54) 27 (77) 3 (60) 24 (80)

Antidepressants NA NA NA 3.390 0.268 0.640

  Agomelatine NA 15 (43) 3 (60) 12 (40)

  Sertraline NA 13 (37) 1 (20) 12 (40)

Escitalopram NA 5 (14) 0 5 (17)

Venlafaxine NA 2 (6) 1 (20) 1 (3)

Antipsychotics NA NA NA 0.972 0.568 0.330

  Yes NA 8 (23) 2 (40) 6 (20)

  No NA 27 (77) 3 (60) 24 (80)

Sedative-

hypnotics

NA NA NA 0.019 0.889 0.046

  Yes NA 15 (43) 2 (40) 13 (43)

  No NA 20 (57) 3 (60) 17 (57)

Anxiolytics NA NA NA 0.354 0.552 0.198

  Yes NA 2 (6) 0 2 (7)

  No NA 33 (94) 5 (100) 28 (93)

Mean (SD) Mean (SD) t p Hedges’ g Mean (SD) Mean (SD) t p Hedges’ g

Age, y 14.21 (1.41) 14.40 (1.24) −0.551 0.584 0.142 14.80 (1.30) 14.33 (1.24) 0.774 0.445 0.255

Education, y 8.63 (1.47) 8.91 (1.38) −0.771 0.444 0.198 9.20 (2.05) 8.87 (1.28) 0.352 0.740 0.116

Dose of 

antidepressants1, 

mg/d

NA 40.16 (12.99) NA NA NA 42.72 (9.88) 39.74 (13.53) 0.471 0.641 0.156

Pre-treatment 

BDI score

5.00 (4.51) 36.03 (10.97) −14.991 <0.001 3.852 29.20 (10.50) 37.17 (10.79) −1.534 0.135 0.507

Post-treatment 

BDI score

NA 29.23 (12.17) NA NA NA 11.80 (7.19) 32.13 (10.26) −4.235 <0.001 1.198

1Dose of antidepressants were transferred to equivalent fluoxetine dosage.
HCs, healthy controls; MDD, major depressive disorder; BDI, Beck Depression Inventory.
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patterns in MDD group between pre-and post-treatment were found 
(Table 2). These brain regions included right triangular part of inferior 
frontal gyrus (IFG tri r), bilateral insular cortex (right, IC r; left, IC l), 
bilateral central opercular cortex (right, CO r; left, CO l), right 
temporooccipital part of middle temporal gyrus (toMTG r), right 
supracalcarine cortex (SCC r), left posterior division of supramarginal 
gyrus (pSMG l), right cuneal cortex (Cuneal r), left frontal pole (FP l), 
right superior parietal lobule (SPL r; Figure 1).

3.3 DFC value correlated with BDI score 
reduction in MDD group

Before treatment, we found the mean dFC value between IFG tri 
r and IC l (r = −0.419, p-FDR = 0.022) was negatively correlated with 
BDI score in MDD group (Figure 2A). There were no correlations 
between mean dFC values and BDI score after treatment.

The mean dFC value between IFG tri r and IC r (r = −0.461, 
p-FDR = 0.012) at baseline, as well as which between IFG tri r 
and IC l (r = −0.518, p-FDR = 0.007), were negatively correlated 
with BDI score reduction (Figures 2B,C). The mean dFC value 
between FP l and SPL r after treatment was positively correlated 
with BDI score reduction (r = 0.442, p-FDR = 0.014; Figure 2D).

3.4 Prediction of treatment response

3.4.1 Multivariate linear regression analyses
Linear regression models incorporated mean dFC value at baseline 

as independent variable, BDI score reduction (referred as treatment 
response) as dependent variable. Covariates included age, sex, baseline 
BDI score and medication dosage of patients. We found lower mean 
dFC value between IFG tri r and IC r (Model A; β = −1.563, SD = 0.599, 
t = −2.607, p-FDR = 0.021, adjusted R2 = 0.214) at baseline, as well as 
which between IFG tri r and IC l (Model B; β = −1.868, SD = 0.598, 
t = −3.123, p-FDR = 0.012, adjusted R2 = 0.279), could predict better 
antidepressant treatment response.

3.4.2 Repeated 3-fold cross-validation
The correlation between predicted and actual BDI score reduction 

for Model A was 0.44, for Model B was 0.48.

3.4.3 Permutation test
Permutation test was carried out and similar results were obtained. 

Mean dFC value between IFG tri r and IC r (p = 0.017, p-FDR = 0.021) 
at baseline, as well as which between IFG tri r and IC l (p = 0.003, 
p-FDR = 0.012), could predict antidepressant treatment response.

3.4.4 Sensitivity and specificity with BDI score 
reduction ≥25% as outcome

The sensitivity and specificity for mean dFC value between IFG 
tri r and IC r were 0.63 and 0.67 respectively, for mean dFC value 
between IFG tri r and IC l were 0.65 and 0.73, respectively.

4 Discussion

In this study, we used dyn-ICA to identify altered dFC patterns 
(right IFG, bilateral IC, bilateral CO, right MTG, right SCC, left SMG, 
right cuneal cortex, left FP and right SPL) between pre-and post-
treatment in adolescents with MDD. Mean dFC values between right 
IFG and bilateral IC at baseline was found to be  related with 
antidepressant treatment response and could serve as predictors.

The IFG, IC, and CO are part of the inhibitory control network 
(ICN; Goghari and MacDonald 3rd, 2009), which is linked to task 
performance that demand strong inhibitory skills (Congdon et al., 
2010). Using the stop-signal task-related probabilistic ICA, Congdon 
et al. reported two components that included similar regions found in 
our study (Congdon et al., 2010). They found that activating the ICN 
was associated with better inhibitory response, the ability to suppress 
behaviors like motor actions and higher-level responses (such as 
thoughts and emotions; Congdon et al., 2010). We found dFC between 
IFG and insular lobe was related with antidepressant treatment. And 
the right IFG seemed to be a core brain region related to antidepressant 
treatment. The IFG has a number of functions including the 
processing of speech and language in Broca’s area (Greenlee et al., 
2007). While the insulae is believed to be involved in consciousness 
and plays a role in diverse functions usually linked to emotion or the 
regulation of the body’s homeostasis (Bushara et al., 2001). These 
functions include compassion, empathy, taste, perception, motor 
control, self-awareness, cognitive functioning, interpersonal 
relationships, and awareness of homeostatic emotions such as hunger, 
pain and fatigue (Bushara et al., 2003; De Martino et al., 2006; Xue 

TABLE 2 Connections with different dFC patterns between pre-and post-treatment in MDD group.

Connection T p

IFG tri r-IC r 4.28 <0.001

IFG tri r-CO r 4.00 <0.001

IFG tri r-IC l 3.42 0.002

IFG tri r-CO l 2.82 0.008

toMTG r– CO r 2.16 0.040

SCC r-pSMG l −4.28 <0.001

Cuneal r– pSMG l −3.72 <0.001

FP l-SPL r 4.28 <0.001

IFG tri r, right triangular part of inferior frontal gyrus; IC r, right insular cortex; IC l, left insular cortex; CO r, right central opercular cortex; CO l, left central opercular cortex; toMTG r, right 
temporooccipital part of middle temporal gyrus; SCC r, right supracalcarine cortex; pSMG l, left posterior division of supramarginal gyrus; Cuneal r, right cuneal cortex; FP l, left frontal pole; 
SPL r, right superior parietal lobule.
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FIGURE 1

Brain regions with altered dFC pattern after treatment. (A,B) Right triangular part of inferior frontal gyrus, bilateral insular cortex, bilateral central 
opercular cortex, right temporooccipital part of middle temporal gyrus; (C,D) right supracalcarine cortex, left posterior division of supramarginal 
gyrus, right cuneal cortex; (E,F) left frontal pole, right superior parietal lobule. The color in picture A, C and E means the mean strength of dFC. 
Blue stands for the lower dFC, while the red means higher dFC. Significant differences between pre-and post-treatment are shown (two-tailed 
t-test, p-FDR < 0.05).
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et al., 2010). Both IFG and insular cortex are well known to be closely 
related MDD psychopathology (Greenlee et al., 2007; Xue et al., 2010).

The SCC, SMG and cuneal cortex belong to the sensory-motor 
network (SMN; Chenji et  al., 2016). This network includes 
subnetworks that support sensorimotor abilities, such as the auditory 
and visual subnetworks (Supekar et al., 2019). The SMN can help 
individuals identify external stimuli and influence cognitive 
development in early life (von Hofsten and Rosander, 2018). In 
patients with MDD, severity of depression symptoms is correlated 
with connectivity between the executive control network and the SMN 
(Tang et  al., 2021). Moreover, sFC patterns in the SMN were 
significantly changed in patients with remitted late-life depression and 
amnestic mild cognitive impairment (Chen et al., 2016; Chen et al., 
2020). And these changes were associated with a decline in patient’s 
overall cognitive functioning and behavioral executive abilities (Chen 
et  al., 2016). Therefore, we  speculated that antidepressant might 
be able to alter SMN activity of affecting patients’ cognitive function, 
thereby improve their depression symptoms.

Both the FP and SPL are components of the frontoparietal 
network (FPN), which plays a vital role on targeting in a complex 
visual environment and is closely associated with cognitive function 
(Szczepanski et al., 2013). Prior studies have reported that depressed 

patients have lower connectivity within the FPN compared to HCs 
(Kaiser et al., 2015b). Moreover, after light therapy, MDD patients 
showed increased connectivity within the FPN (Huang et al., 2022). 
In patients with insomnia, connectivity between FP and SPL predicts 
better treatment response and is positively associated with the score 
of Pittsburgh Sleep Quality Score (Zheng et al., 2023). And insomnia 
has been shown to be very closely related to MDD and antidepressants 
may change FC in FPN to alleviate sleep disturbance in MDD patients 
(Riemann et al., 2020).

There are several limitations in our study. First, the sample size 
was relatively small. And the number of responders was consequently 
low, so we chose 25% as a cut-off value. In future, we will expand 
sample size to do further exploration. Second, our study only focused 
on acute treatment response which may contribute to low number of 
responders. We chose 6 weeks of treatment as the intervention because 
6 weeks is a recommended time to change medication, while the 
original drug is useless (Ogle and Akkerman, 2013). Future research 
could look at long-term treatment response. Last, our study did not 
consider the effect of environmental factors. As is suggested in 
previous study, the onset of depression is influenced by both genes and 
the environment, including childhood stress, early trauma, shift work 
and so on (Kaufman et al., 2018; Mitra et al., 2018; Diez et al., 2021). 

FIGURE 2

Baseline and reduced BDI score correlated with mean dFC values between brain areas in MDD patients. IFG tri r, right triangular part of inferior frontal 
gyrus; IC l, left insular cortex; IC r, right insular cortex; FP l, left frontal pole; SPL r, right superior parietal lobule. (A) Baseline BDI score correlated with 
mean dFC value between IFG tri r and IC l; (B) Reduction on BDI score correlated with mean dFC value between IFG tri r and IC r; (C) Reduction on BDI 
score correlated with mean dFC value between IFG tri r and IC l; (D) Reduction on BDI score correlated with mean dFC value between FP l and SPL r.
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So environmental factors are crucial, especially for children and 
adolescents. Therefore, future studies should also investigate the 
effects of environmental factors on treatment response in 
adolescent MDD.

5 Conclusion

In this study, we identified specific dFC pattern-based predictors 
of pharmacological treatment response involving brain regions known 
to be affected by MDD. Mean dFC values between right IFG and 
bilateral IC at baseline were found to be related with antidepressant 
treatment response and could serve as predictors. And the specific 
mechanisms underlying the relationship between dFC patterns and 
treatment response need to be further investigated in the future.
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