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Seven unique frequency profiles 
for scoring vigilance states in 
preclinical electrophysiological 
data
Freja Gam Østergaard  and Martien J. H. Kas *

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands

Manual scoring of longitudinal electroencephalographical (EEG) data is a slow 
and time-consuming process. Current advances in the application of machine-
learning and artificial intelligence to EEG data are moving fast; however, there is 
still a need for expert raters to validate scoring of EEG data. We hypothesized that 
power-frequency profiles are determining the state and ‘set the framework’ for 
communication between neurons. Based on these assumptions, a scoring method 
with a set frequency profile for each vigilance state, both in sleep and awake, was 
developed and validated. We defined seven states of the functional brain with 
unique profiles in terms of frequency-power spectra, coherence, phase-amplitude 
coupling, α exponent, functional excitation-inhibition balance (fE/I), and aperiodic 
exponent. The new method requires a manual check of wake–sleep transitions and 
is therefore considered semi-automatic. This semi-automatic approach showed 
similar α exponent and fE/I when compared to traces scored manually. The new 
method was faster than manual scoring, and the advanced outcomes of each state 
were stable across datasets and epoch length. When applying the new method to 
the neurexin-1α (Nrxn1α) gene deficient mouse, a model of synaptic dysfunction 
relevant to autism spectrum disorders, several genotype differences in the 24-h 
distribution of vigilance states were detected. Most prominent was the decrease 
in slow-wave sleep when comparing wild-type mice to Nrxn1α-deficient mice. 
This new methodology puts forward an optimized and validated EEG analysis 
pipeline for the identification of translational electrophysiological biomarkers for 
brain disorders that are related to sleep architecture and E/I balance.
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1 Introduction

There has been an increasing interest in using electroencephalography(EEG)-based 
biomarkers for brain disorders, because of its robustness and high translational value (Kopell 
et  al., 2014; Newson and Thiagarajan, 2019). For example, recordings of spontaneous 
electrophysiological activity are considered useful as a diagnostic marker for various 
neurological conditions (Voytek and Knight, 2015). However, scoring electrophysiological data 
into vigilance states is a tedious and slow task to perform. In this study, we propose a model 
for semi-automatic scoring based on frequency profiles. The hypothesis is that these power-
frequency profiles are determining for the state and ‘set the framework’ for the communication 
between neurons.

Most modern solutions use some form of supervised machine learning to define the 
states for each subject (Allocca et al., 2019; Barger et al., 2019). This is typically done by 
manually scoring a number of epochs, based on either the filtered signal or a frequency 
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profile. However, since the alpha rhythm (~10 Hz) was discovered 
in humans by Hans Berger in 1929 (İnce et  al., 2021), multiple 
studies in various species have shown similar activity; therefore, 
manually training a new model for each dataset may compare to 
reinventing the wheel for each study. This may not only 
be unnecessary but also introduce variance if two states are hard to 
distinguish by assessing the signal visually. In addition, the currently 
available scoring approaches are typically very specific to certain 
physiological conditions, such as sleep or epilepsy, and still human 
expert raters are needed to validate the scoring (Fürbass et  al., 
2020). An advantage of employing a rule-based script is that it 
consistently provides the same patterns with the same labels in 
every dataset.

The awake substates have in general not been characterized as well 
as sleep states possibly because most human EEG recordings are done 
in seated subjects, to avoid movement artifacts. Here, we define three 
substates of wakefulness: a1; delta-dominated, a2; theta-dominated, and 
a3; alpha-dominated, named after the classically defined power bands: 
delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–12 Hz). Delta-dominated 
(a1) wakefulness has been linked to locomotor behavior (Schultheiss 
et al., 2020). Theta-dominated (a2) awake has been linked to active 
navigation, exploratory behaviors (Schultheiss et al., 2020), narcolepsy 
(Vassalli and Franken, 2017), and attention (Fiebelkorn and Kastner, 
2019). The theta activity is thought to originate in the hippocampus 
(Nuñez and Buño, 2021). Similarly, delta oscillations are expected to 
originate in deeper structures, while the alpha is considered to be a 
cortical frequency. Alpha-dominated activity (a3) is most commonly 
referred to as resting state (Buzsáki, 2006)—the alpha oscillation is a 
characteristic of the idling sensory system (Kropotov, 2016). Non-rapid 
eye movement (nREM) sleep states are divided by their relative delta 
power. In human sleep-staging, there is an expectation of a fast ‘descend’ 
from wakeful to slow-wave sleep (Buzsáki, 2006; Genzel et al., 2014). 
This transition looks quite instant in rodents.

The method of rule-based scoring presented here was validated 
in four different and independent datasets not only by comparing the 
number of epochs to manually scored data but also by comparing the 
α exponent (α). This exponent is a measure of criticality of the signal 
(Stadnitski, 2012; Bruining et al., 2020) and it was added to evaluate 
the differences between the manual and semi-automatic scoring, as 
solely using the number of epochs in each state is not very descriptive 
of the consequences of inaccurate labeling. α is better for 
encapsulating how those consequences of automatic scoring may 
impact further analysis.

To illustrate the value of scoring all wake and sleep states, the 
Nrxn1α-deficient mouse model was employed. The Nrxn1 gene 
encoding neurexin-1α has been associated with various psychiatric 
diagnosis such as autism spectrum disorder and schizophrenia 
(Ishizuka et  al., 2020). These psychiatric disorders have been 
characterized by changes in sleep architecture (Phillips et al., 2012; 
Devnani and Hegde, 2015; Léger et al., 2018) and sensory processing 
(Yaguchi and Hidaka, 2020). Neurexin is a large, cell-adhesion molecule 
(Craig and Kang, 2007), facilitating the assembly of presynapses in early 
development (Dean et  al., 2003). The gene expression peaks right 
around birth and then declines very early in life (Jenkins et al., 2016). 
Neurexin has been shown to regulate nighttime sleep in Drosophila by 
reducing the synaptic transmission of specific neurons (Tong et al., 
2016). Here, we showed how knocking out the gene influences the 
distribution of vigilance states across 24-h recordings.

2 Materials and methods

2.1 State definitions for semiautomatic 
scoring (SAS)

The script presented here is written in MATLAB and is based on 
source code from AccuSleep (Barger et  al., 2019) (available on 
Github) and the Chronux toolbox (http://chronux.org/). It uses a fast 
Fourier transform (FFT) to generate a frequency power spectrum 
for each 1 s epoch continuously sampled. Frequency profiles of the 
states are considered ‘fixed’ within a spectrum, while the noise levels 
are considered varying and are therefore adjusted manually. The 
number and definitions of states was based on literature and further 
testing if all data would fall into the defined states.

Here, three substates of wakefulness are defined by their dominating 
frequency band. The most common awake substate is delta awake 
(Schultheiss et al., 2020), defined as a bimodal pattern, with a peak in 
the delta range and one in the alpha range, and it is further divided into 
a1 and a3 depending on which range has the highest power, measured 
as a sum across the range rather than the power at a specific peak 
frequency. In a1 the delta band has the highest power, while in the a3 
the alpha band has the highest power. In addition to the high power in 
the alpha band, the mice are inactive in the a3 state but have a high 
muscle tone in the neck muscles suggesting they are awake. Inactivity 
and high alpha matches the resting state definitions (Buzsáki, 2006); 
however, it is grouped with the awake states and not as the first stage of 
sleep as Buzsáki does. This is due to the muscle tone being higher during 
a3 than any of the sleep states. The a2 or theta awake (Van Gelder et al., 
1991; Vassalli and Franken, 2017) is defined by a unimodal peak in the 
theta range. This state is independent of locomotor activity, although 
hippocampal theta has been associated with active navigation 
(Schultheiss et al., 2020). The muscle tone and theta peak frequency 
separates a2 from the REM sleep as the tone is higher during a2 than 
during REM, where the muscles are relaxed (show a low muscle tone), 
while the theta peak frequency is typically lower during a2, than 
during REM.

The non-REM (nREM) states are not following the American 
Academy of Sleep Medicine (AASM) scoring manual as the manual is 
focused on humans and a few of their definitions include 
non-translational measures, e.g., eye movements in N1 (Troester et al., 
2023). The AASM scoring manual is based on scoring from raw traces 
rather than on the basis of spectrograms. In the present method, K 
complexes are not being taken into account here as they are not 
detectable in frequency-power spectra. Sleep spindles (transient 
activity at 11–16 Hz) affect the spectrum and are included. The nREM 
substates use the relative definitions: nREM1 is defined as an epoch 
with a power in the <10 Hz band of more than 20 times the power in 
the band 20–24 Hz and corresponds to slow-wave sleep (Léger et al., 
2018), in nREM2 the power in the lower band is 10–20 times the 
power of the higher band, and in nREM3 the power of the lower band 
is >10 times the power of the higher band. These substates typically 
occur in the succession nREM1 ➔ nREM2 ➔ nREM3 ➔ nREM2/
REM (see Supplementary Figure S1 for diagram).

The state definitions used here only use low-frequency activity. 
This has to do with the notion that higher frequency oscillations are 
thought to be a characteristic of localized processing (Kopell et al., 
2014), suggesting that lower frequency oscillations could 
be characteristic of global changes in brain state.
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The definitions here only require the electrophysiological signal 
from cortex. Motion sensors and electromyograms (EMGs) are helpful 
for finding transitions between wake and sleep, especially if the signal 
is noisy, but they are not necessary for the scoring. The application of 
the script is described below in Section 2.2.4.

2.2 Data and animals

Four datasets were used for validating the scoring. These datasets 
contained data from the FMR1 mouse model (males) with drugs (Kat 
et al., 2024), C57Bl/6J animals (9 male and 10 female, 16 weeks of age), 
Pcdh9 gene knockout animals (Bruining et al., 2015) (35 males, 8 and 
22 weeks of age) (Supplementary material), and Nrxn1 animals (41 
males, 10 and 22 weeks of age) (Supplementary material). In addition, 
23 male Nrxn1 mice were used for the 24-h recordings (wild-type 
(WT); n = 5, heterozygous gene knock-out (Het); n = 8, homozygous 
gene knock-out (Hom); n = 9).

Data are available on GIN with the following DOIs: Pcdh9; 
10.12751/g-node.5l85fj, Nrxn1; 10.12751/g-node.j2h8vr, C57Bl/6J; 
10.12751/g-node.h4ddn6.

All experiments were performed in accordance with National and 
EU legislation, directive 2010/63/EU of the European Parliament. All 
animals were housed under a 12-h/12-h light/dark cycle (lights off at 
14:00), with access to water and standard chow ad libitum. Animal 
welfare was monitored daily. The animals were group housed until 
surgery. After surgery, they were housed in pairs with a separator that 
allowed for touch and smell but prevented damage to their implant. 
The cages were enriched with a red, plexiglass hideout and nesting 
material. Females and males were housed in separate rooms 
throughout the duration of the study. The individual weight of the 
mice was monitored every other week.

2.2.1 Surgery
At 6 weeks of age, 23 male mice [from Nrxn1 line (Südhof, 2017)] 

were anaesthetized using isoflurane (induced at 5%, maintained at 
~1%) in a mix of NO2 and O2 in a 1:2 relation and administered at a 
flow of 1 l/min. Carprofen 5 mg/kg was administered subcutaneously 
(SC) in the flank, and lidocaine was injected SC on the head. The 
animal was placed in a robotic stereotactic frame (Neurostar, 
Germany). An incision was made over the skull. Then, the skull was 
scratched with a scalpel and prepared with 35% phosphoric acid. 
Craniotomies for the recoding electrodes were drilled over the visual 
cortex AP -4 ML ± 2.5, the prefrontal cortex AP 2.58 ML − 1.57, and 
the auditory cortex AP -2.5 ML ± 3.5. The reference electrode was 
placed over cerebellum AP -6 ML 0. Electrodes were placed on the 
right prefrontal cortex and bilaterally on the visual cortex and auditory 
cortex. A reference electrode was placed in the cerebellum, and two 
stranded electrodes were placed under the neck muscles to 
record electromyograms.

The wires for the electrodes were preassembled (ND associates, 
UK) into a plastic pedestal (Omnetics Connector Corporation, USA). 
The electrodes were jeweler screws 0.7 mm (Antrin, USA) traversing 
the skull and measuring the electrical potential on the cortex of the 
brain. The implant was attached to the skull using dental cement (3 M, 
USA). The skin was closed around the cement with sutures. Carprofen 
was administered SC at 5 mg/kg the day after surgery, and the animal 
was granted 2 weeks of recovery before any recordings were carried out.

2.2.2 Recordings
All 4-h recordings were carried out in the late light phase, with 

the wireless TaiNi system (Jiang et al., 2017). The animals were freely 
moving during the recording sessions. The sampling rate was 
1084.7 Hz, the system utilizes an online low-pass filter at 9700 Hz and 
high-pass filter at 0.35 Hz. The 24-h recordings of the Nrxn1s were 
carried out at a sampling frequency of 454 Hz, to limit the processing 
power required of the computer. Custom-made infrared motion 
sensors were placed over the recording cage throughout the 
recording. These motion sensors detected ~80% of all motion in 
the cage.

2.2.3 Manual scoring
The data from the FMR1 model were manually scored by two 

people using the SleepScore 705 package in Spike2 v10 (CED, UK), 
with epoch lengths of 5 s, continuously sampled. The data were scored 
with a particular focus on the accuracy of scoring the resting state (a3) 
also called inactive wakefulness. Comparisons between scoring 
methods were carried out with this in mind.

2.2.4 Semi-automatic scoring (SAS)
All datasets were preprocessed and passed through the SAS script 

(can be found on Github, https://github.com/FrejaGam/EEGcode). 
The script downsamples the data to make visualization of the scoring 
less computationally intense. If EMGs are used, a change point analysis 
is carried out on a sum plot of the signal to determine when the 
muscle tone is high (tense) and when the muscle tone is low (relaxed). 
These segments are then assigned to awake/tense and to sleep/relaxed. 
This part is sensitive to noise in the signal, and it is useful to visually 
assess whether the true transitions have been detected.

From here on, the overall states are subdivided automatically 
according to the definitions described in Section 2.1. The default 
epoch length is 1 s (the FMR1 study uses epochs of 0.5, 1, and 5 s). All 
epochs are continuously sampled.

Once the scoring is complete, a column vector of labels is created. 
These labels are given in ASCII with the current configuration: a; a1, 
b; a2, c; a3, l; REM, m; nREM1, n; nREM2, o; nREM3, N; noise, U; 
unscored. U is useful for development but should not appear in the 
final list. From the list of labels, the filtered (not downsampled) data 
can be distributed into states for further processing, e.g., coherence, 
phase-amplitude coupling (PAC), detrended fluctuation analysis (dfa), 
functional excitation-inhibition ratio (fE/I), and fitting oscillations 
and 1/f (FOOOF).

SAS was applied to data from the C57Bl/6J, Pcdh9, and Nrxn1 
mice to validate the stability of state definitions between datasets.

2.2.4.1 Analysis of labels
The labels alone provided information on the proportion of time 

spent in each state along with the sequence of states and transitions 
between. The label data were stacked into barplots in MATLAB, using 
colors from the Wes Anderson Palettes.1 Correlation analysis was 
carried out in RStudio 2023.03.0 Build 386.

Sequence and transitions were inferred from epoch pairs of 
consecutive epochs. Combinations of the ASCII labels (not including 

1 https://github.com/karthik/wesanderson/tree/master
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U) yield 64 label pairs. Stacked bar plots are shown in 
Supplementary Figure S8, both with epochs followed by the same label 
(periods of same vigilance state) or followed by a different label 
(transitions). Pairs containing the noise label were excluded from 
the depiction.

2.3 Analysis of scored data

To validate the existence of the defined states, a battery of 
advanced analysis was applied, as described below. This further serves 
as a framework for what can be  expected from these analyses in 
various states.

2.3.1 Coherence
Wavelet coherence describes the correlation of two signals. In 

neuroscience, coherence becomes a method for disentangling network 
dynamics, in line with C. Shatz’s paraphrase of the Hebbian paradigm 
‘neurons that fire together wire together’ (Shatz, 1992). The electrode 
design used for this study yields six pairs of visual and auditory 
electrodes (Supplementary Figure S2). Wavelet coherence was 
computed with the built-in MATLAB function yielding the correlation 
coefficient. As the coherence was stable within each state (data not 
shown), the time dimension was averaged out. The resulting graphs 
are shown in Supplementary Figure S2.

When coherence was measured over the frequency spectrum 
from 0.5 to 70 Hz, a clear peak showed. The frequency of maximum 
coherence was then extracted from the graph. Both peak frequency 
and maximum coherence varied with state.

2.3.2 Phase-amplitude coupling (PAC)
PAC describes the process where the phase of a low frequency 

predicts the amplitude of a higher frequency. PAC is computed by 
extracting the power of the high frequencies here 30, 35, 40, 45, and 
50 Hz and the phase of the low frequencies 1–15 Hz. The PAC is the 
mean of the power multiplied by the e of the phase squared. The script 
is adapted from Cohen (2014), to fit data structures in the SAS 
pipeline. Since the phase variable is not very stable, then the phases 
were bootstrapped yielding the PACz instead of ‘just’ the PAC. The 
PACz is more stable across individuals and trials because it is 
normalized to 100 permutations of the signal.

The maximum PACz value was extracted including peak 
frequencies and then plotted in Supplementary Figures S3, S6, S7; in 
addition, the frequency of the lower frequency was used for statistics.

2.3.3 Detrended fluctuation analysis and 
functional E/I balance

DFA was carried out to compute the α exponent of the filtered but 
not downsampled data. The script was adapted from Mike X. Cohen’s 
course on Udemy.2 The detrended fluctuation analysis was introduced 
by Peng et al. in 1994, to detect long-term correlations or power-law 
scaling of a signal (Peng et al., 1994). The power-law scaling has been 
linked to systems operating at criticality. A dynamic system is 
considered to be operating at an optimal level, when operating close 

2 https://www.udemy.com/course/solved-challenges-ants/

to criticality, as this is the point at which shifting between two states 
is equally likely.

The α exponent is computed as the linear fit of the root mean 
square of the detrended epochs at 20 different scales, ranging from 1 
to 20% of the epoch. The α exponents across the frequencies 0.5–70 Hz 
are shown in Supplementary Figure S4.

The crude meaning of the α exponent in relation to 
electrophysiology is as follows: α < 0.5, the process exhibits anti-
correlations (unusual in EEG), α = 0.5; white noise, α = 1; the signal 
is made up of the same shape but possibly repeated on different scales 
i.e. the process has a memory (Hardstone et al., 2012). In addition, 
pink noise has an α ≈ 1. α > 1 suggests insufficient data for 
the computation.

Bruining et  al. have described how the DFA can be  used to 
generate a measure of the functional balance between inhibition and 
excitation (Bruining et  al., 2020), by computing the correlation 
between the DFA and the original amplitude of the signal and 
subtracting it from 1. The fE/I is not computed if α < 0.6. The fE/I 
script from Bruining et al. was added to the DFA script. The resulting 
fE/I is shown in Supplementary Figure S4.

2.3.4 Aperiodic component
The aperiodic component has gained interest as a potential 

biomarker for various psychiatry conditions (Voytek and Knight, 
2015; Østergaard et al., 2024). The aperiodic component from the 
‘fitting oscillations and one over f ’ (FOOOF) analysis pipeline 
(available on Github)(Donoghue et al., 2020) is the slope of the 
1/f. The 1/f signal is found in most natural signals including 
EEG. To fit the data into the FOOOF pipeline, the Welch’s power 
spectral density (PSD) estimation was applied to the scored signal 
and then exported to python, where the aperiodic component was 
extracted. The aperiodic exponent for each state is shown in 
Supplementary Figure S5.

2.3.5 Spindle detection
Spindles were detected using a custom script with parameters 

from previous studies (Andrillon et al., 2011; Phillips et al., 2012). The 
signal was narrowband filtered in the range 8–18 Hz with a FIR filter; 
then, the z-scores were computed, and a Hilbert envelope of the 
z-scores was computed. From the envelope, spindles were identified 
as peaks with SD > 3.5 with duration of 0.5–2 s from the envelope 
increasing above SD = 1 to SD < 1. The average PSD from 9 to 16 Hz 
was then calculated for each sleep state (Supplementary Figure S6).

2.4 Statistics

Descriptive statistics are presented as mean and coefficient of 
variance (CV). The CV is the standard deviation divided by the mean, 
giving a coefficient that is comparable across data types.

Statistics were carried out in the R interface Rstudio (Rstudio, 
USA). Analyses of variance (ANOVAs) were computed of model 
variables (coherence, PACz, etc.) as functions of state with the ID as 
random effect, and all models showed a significant effect of state. Post-
hoc tests were carried out using the estimation statistics package 
DABESTR (Ho et al., 2019).

The colormap of the correlogram was thresholded with the 
p-value adjusted for multiple comparisons, and a t-test (including 
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F-statistics) of the linear fit was carried out to look at the correlation 
between states.

Statistics on curves were computed in MATLAB 2020a 
(MathWorks, USA), as asterisks when the Bonferroni corrected 95% 
confidence interval of the difference wave does not include zero.

3 Results

3.1 State definitions

To validate the new scoring method, multiple datasets were 
employed. The data from Bl6 males and females is used for illustrations 
(Figure 1 and Table 1, including Supplementary Figures S2–S6), while 
data from Nrxn1 (Supplementary Figure S7) and Pcdh9 
(Supplementary Figure S8) lines can be found in the Supplementary 
Materials. To visualize the power-frequency profiles, averages were 
made across epochs within each state. The averages are shown in 
Figure  1. The figure shows both the outcome of the fast Fourier 
transform (FFT) which is used in the present script, along with the 
power spectral density (PSD) which is used both in the FOOOF 
pipeline (Donoghue et  al., 2020) and for sleep spindle analysis 
(Supplementary Figure S6). Both methods for computing power in the 
signal revealed the same peak frequency for each state. Panel B shows 
the coefficient of variance (CV) for the awake epochs when divided 
into substates vs. not divided, indicating that subdividing the awake 
epochs lowers variance in the data.

As seen in Figure 1, each vigilance state has a unique frequency 
profile. To support this claim, a range of advanced analyses were done 
yielding: coherence, PACz, and α exponent (Supplementary 
Figures S2–S6). Subsequently, ANOVAs were computed to test for the 
effect of vigilance state. The resulting statistics were as follows: coherence 
F(6,612) = 98, p < 0.0001, PACz F(6,108) = 33, p < 0.0001, α 
F(6,234) = 50, p < 0.0001, fE/I F(6,194) = 20, p < 0.0001, and the 
aperiodic component F(6,108) = 554, p < 0.0001. The post-hoc analysis is 
summarized in Supplementary Table S1. In conclusion, the effect of the 
vigilance state was highly significant for the measures used here. Table 1 
displays the average maximum frequency and related measure with CV 
in parenthesis. The aperiodic exponent describes an underlying activity 
and changes with state, over the frequency range 0.5–65 Hz 
(Supplementary Figure S5).

There were recurrent trends in the frequency profiles of the 
vigilance states (Table  1). The active states share the high peak 
frequency with REM sleep. The sleep states share the low peak 
frequency. In the active states, it was noticeable that the frequencies of 
maximum coherence and PACz were in the 6.9–8.8 Hz range when 
the definitions of a1 and a2 have peak frequencies below 6.2 Hz. REM 
sleep shared several features with the awake states and looked similar 
to a3 when considering the peak frequencies along with α, fE/I, and 
aperiodic exponent (Supplementary Table S1) but not when looking 
at the coherence or PACz, i.e., REM showed higher coherence and 
higher PACz compared to a3.

The DFA showed that the point of highest criticality varied 
with frequency and vigilance state, which could suggest that the 
frequency bands have a practical meaning for the functioning. The 
analysis of the functional excitation-inhibition balance (fE/I) 
showed one peak over 1 (excitation-dominated), followed by a 
peak below 1 (inhibition-dominated). It can be speculated that 

this might be a way for the system to isolate frequencies if different 
frequencies have different interpretations or network properties. 
Interestingly, the beta band (12–30 Hz) is inhibition-dominated in 
all states, yet spindle analysis shows activity in the lower beta band 
(<13 Hz) during nREM2 and nREM3 (Supplementary Figure S6S1). 
Spindles are detectable in the frontal channel in nREM2 and 
nREM3, with a peak frequency at 11.2 Hz. The PSD of the frontal 
channel changes across sleep states, while the PSDs in the auditory 
and visual channels stay at the same level.

These patterns were robust across datasets and time 
(Supplementary Figures S7, S8 and Supplementary Tables S2, S3). 
It is noticeable that, although the PACz values for a2 and a3 are 
low, then they center around the same frequencies in all datasets: 
Bl6 (Table  1), Nrxn1 (Supplementary Table S2), and Pcdh9 
(Supplementary Table S3), indicating that these features are 
robust, in spite of the differing sources of variation in the datasets: 
The Bl6 data contain both males and females, while the Nrxn1 and 
Pcdh9 data contain multiple genotypes recorded at different 
time points.

3.1.1 Comparison of SAS and manually scoring
Data from FMR1 knockout mice were used to compare semi-

automatic scoring with the current standard which is manual scoring 
by two people. It should be noted that the FMR1 data were scored with 
a focus on the resting state (a3). Figure 2A shows a bar plot of vigilance 
states, when manually scored vs. semi-automatically scored. The 
histogram has been organized to give an idea of how the entire 
dataset looks.

The fraction of resting state is ~2% in the manually scored data 
and ~1% for the same data scored semi-automatically.

To test the consequences of the different scoring methods, 
secondary outcomes were used. Here, α computed with DFA is used 
to compare the two methods (Figure 2B). SAS shows a significantly 
higher α exponent at the alpha-band ~10 Hz. Overall, the shapes are 
similar, and only 3 out of 65 frequencies are significantly different 
(illustrated with asterisks). The α exponents for the SAS data are 
higher at 7 and 10 Hz, indicating the SAS is more accurate, where the 
manually scored epochs may contain different vigilance states giving 
the signal a more random appearance—lowering the α exponent.

3.1.2 Epoch length does not influence the α 
exponent

The manual scoring (and SAS comparison) was carried out with 
5 s epochs. To test how the α exponent was affected by the length of 
the epochs and essentially the amount of data in each epoch, semi-
automatic scoring was carried out with epochs of 0.5, 1, and 5 s 
(Figure 3). Since the longer epochs would be expected to contain 
more noise, then the α exponent would be expected to be generally 
lower for epochs of 5 s than epochs of 1 s which again would be lower 
for epochs of 0.5 s duration. Furthermore, it was assumed that there 
was a slight variation in the heterogeneity of data as the vigilance 
states seem to change rapidly, and the 5 s epochs may contain a 
greater mix of states than the 1 s epochs. However, the results showed 
a minimum of difference in α exponents, and the CVs are the same 
across epoch lengths.

To summarize, the epoch length mattered for the amount of data 
in each vigilance state but did not introduce significant changes in 
advanced outcomes such as the α exponent.
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3.2 24-h recording of Nrxn1-deficient mice

The semi-automatic scoring was applied to investigate the sleep 
and awake distributions in the Nrxn1-deficient mouse model (both 
homozygous and heterozygous knock-out mice) and their wild-type 
littermate controls. Recordings were made over 24 h when the 
animals were 8 weeks old and again at 22 weeks. The summary data 

showed that sleep/wake distribution changed as a function of 
genotype (Figure 4A). In fact, genotype correlated significantly with 
all states (Figure 4B). Homozygous knock-out (Hom) mice showed 
significant increases (mean [95% confidence interval]) in the 
number of epochs labeled: a1 (Tp1: 9.95% [4.46 14.8], Tp2: 8.6% 
[3.23 13.1]), a3 (Tp1: 3.12% [2.29 4.07], Tp2: 2.44% [1.32 4.2]), and 
REM (Tp1: 0.86% [0.11 1.65], Tp2: 1.41% [0.69 2.24]), and a 

FIGURE 1

Frequency profiles of all states. (A) The profiles of all states used in scoring, both with the profile from FFT (AccuSleep) (blue) and the power spectral 
density using Welch’s (turquoise). (B) The coefficient of variance (CV) from the FFT, for the three awake states (a1; blue, a2; yellow, a3; red) along with 
the total awake (black). A.u.—arbitrary unit.
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decrease in epochs labeled nREM1 (Tp1: −9.96% [−13.7–6.31], Tp2: 
−7.62% [−11.5–3.79]) at both time points when compared to 
WT. Fewer epochs were labeled nREM2 (−4.44% [−7.51–1.49]), 
while the number of epochs labeled nREM3 (4.34% [0.68 10.4]) was 
increased at week 8 only. Heterozygous knock-out (Het) mice 
showed significant increases in epochs labeled as a3 (Tp1: 1.24% 
[0.05 2.62], Tp2: 1.41% [0.17 2.81]) and REM (Tp2: 1.09% 
[0.31 1.83]).

The correlogram (Figure 4B) showed the strongest correlation 
(with high Pearson’s and low p-value) between a1 and nREM1. The 
correlation between nREM1 and a1, which is ~ − 1 (Figure 4C), in 
other words each minute not spent asleep (slow wave), is spent awake 
(and active) and vice versa. This is not the case for the Hom group at 
22 weeks of age, where there is a weakly positive correlation between 
a1 and nREM1. nREM3 showed a statistically significant, negative 
correlation with nREM1 (Figure  4B). As state distribution is a 

zero-sum game, then it is likely that the increases in nREM3 are 
resulting from the imbalance between a1 and nREM1.

Genotype effects on the sleep–wake distribution were also 
observed. Distributing the epoch labels over the course of 24 h showed 
that the Hom group changed their pattern of sleep–wake over time 
(Figure 5); at the second time point, the group has two increases in 
sleep during the active phase, instead of one.

To scrutinize the distribution of sleep and wake over the 24 h 
period further, cumulated distributions were drawn using the epoch 
labels per hour (Figure 6). The cumulative plots suggested that the 
change in correlation is driven by changes in time spent in nREM1 
rather than in a1, although Hom has more consecutive periods of 
awake. The Hom group showed less nREM1 and it is distributed 
differently over the course of the 24 h recordings, as the Hom group 
has a slow incline in sleep epochs during the active phase, where the 
wild-type and Het group has uneven and steeper slopes. Although the 

TABLE 1 Overview of states for the Bl6 (n = 19) with name, label, definition, mean frequency of maximum coherence (coherence is average for all five 
channel pairs) along with mean (CV), phase frequency of the maximum PACz value, and DFA; peak frequency and α exponent, and fE/I; frequency of 
maximum and minimum (Supplementary Figures S2–S4).

Name of 
state

ASCII 
label

Definitions for each 
epoch

Coherence
Max. frequency

Coherence 
value

PACz
Max. phase 
frequency

PACz mean

DFA
Peak frequency, 

α exponent

fE/I
Max. frequency
Min. frequency

a1 (awake, active) a (97) Max power in the 0.2–3 Hz 

range

8.8 Hz (0.06),

0.76 (0.14)

6.9 Hz (0.59),

12 (0.59)

P1: 5 Hz (0.16), α 0.86 

(0.10)

P2: 10 Hz (0.14), α 

0.84 (0.11)

5.6 Hz (0.48), 0.91 

(0.14)

14 Hz (0.26),

0.69 (0.30)

a2 (awake, not 

necessarily active)

b (98) Max power in the 3.2–6 Hz 

range

7.4 Hz (0.13), 0.69 

(0.17)

8.1 Hz (0.52),

5.3 (0.77)

P1: 4.1 Hz (0.51), α 

0.79 (0.16)

P2: 11 Hz (0.24), α 

0.77 (0.09)

4.2 Hz (0.29), 1.0 

(0.10)

16 Hz (0.53), 0.63 

(0.16)

a3 (resting state, 

inactive)

c (99) Max power in the 6.2–12 Hz 

range

8.8 Hz (0.07), 0.75 

(0.15)

7.3 Hz (0.55),

3.2 (1.19)

P: 11 Hz (0.25), α 0.74 

(0.13)

5.1 Hz (1.47), 1.1 

(0.27)

17 Hz (0.34),

0.27 (0.44)

REM (sleep) l (108) Power in the range 6–10 Hz > 

0.2–6 Hz

8.3 Hz (0.05), 0.82 

(0.09)

7.3 Hz (0.26),

10 (0.69)

P1: 5 Hz (0.16), α 0.71 

(0.09)

P2: 13 Hz (0.19), α 

0.74 (0.10)

6.9 Hz (1.01),

1.2 (0.09)

19 Hz (0.51), 0.62 

(0.13)

nREM1 (slow-

wave sleep)

m (109) Power in the range 0.2–12 Hz 

more than 20 times the 

power in the range 20–24 Hz

2 Hz (0.16), 0.81 

(0.10)

2.1 Hz (0.46), 27 

(0.02)

P: 1.6 Hz (1.06), α 0.70 

(0.06)

3.4 Hz (0.44), 1.2 

(0.10)

15 Hz (0.07), 0.70 

(0.19)

nREM2 (slightly 

faster than slow-

wave)

n (110) Power in the range 0.2–12 Hz 

10–20 times the power in the 

range 20–24 Hz

1.9 Hz (0.37), 0.73 

(0.15)

3.6 Hz (0.16),

17 (0.65)

P: 1.5 Hz (0.66), α 0.77 

(0.09)

3.4 Hz (0.35), 1.1 

(0.06)

16 Hz (0.26), 0.57 

(0.11)

nREM3 (includes 

sleep spindles)

o (111) Power in the range 0.2–12 Hz 

is less than 10 times the 

power in the range 20–24 Hz

1.6 Hz (0.56), 0.64 

(0.19)

6.3 Hz (0.49),

8.8 (0.82)

P1: 2.4 Hz (0.54), α 

0.92 (0.08)

P2: 13 Hz (0.10), α 0.9 

(0.07)

3.0 Hz (0.6), 0.96 

(0.09)

20 Hz (0.36), 0.45 

(0.16)

Noise N (85) Power is too big or too low to 

fall into any of the other 

categories.

The peak frequencies presented here are reproducible in the datasets with Pcdh9 and Nrxn1 (Supplementary Tables S2, S3). Bold writing in the table indicates the frequency of the maximum 
value with the CV in parenthesis.
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24-h recording was carried out in the home cage, there was still a 
visible habituation period from getting the transmitter on (Figure 5).

When looking at the sequence data and transitions 
(Supplementary Figure S10), then the early time point of the Hom 
group (8-week-old animals) stands out, with more transitions between 
awake states and fewer consecutive nREM1 periods 
(Supplementary Figure S11). The later time point (22-week-old 
animals) seemed to be  closer to the WT and Het groups; this is 
contrary to Figures 4C and 5 where the later time point differs from 
the rest. These findings suggest that the Hom group is employing some 
alternative compensation strategies to cope with the lack of slow-wave 
sleep, and these strategies are only working in part.

In summary, there is disorder in the sleep–wake balance of the 
homozygous knock-out generally expressed as less slow-wave sleep. 
Furthermore, the changes in sleep distribution in the Hom group did 
not fully compensate for the underlying lack of nREM1.

4 Discussion

In this study, we  presented a guideline and tool for scoring 
electrophysiological data into vigilance states and provided concrete 
examples of how vigilance states matter for advanced outcomes (i.e., 
coherence, PACz, α, fE/I, and aperiodic exponent). The new method 
for scoring electrophysiological data used fixed frequency profiles of 
each state. We decided to keep the frequency bands defining each state 
fixed as they reoccur with the same ranges. In addition, the assignment 

was based on the summed power in a range rather than the peak 
frequency as we believe the majority of the power should determine 
the assignment rather than the power at a specific peak frequency. The 
definitions are exclusive to each vigilance state but also written in such 
a way that all epochs are assigned an appropriate label (including 
noise). With the current version, a 24-h recording can be fully scored 
in approximately 1 h, which includes quality checks. Furthermore, 
we showed how advanced outcomes were stable across datasets.

This SAS method should be applied to EEG data in general as 
recent research has shown that scoring even awake data from humans 
into vigilance states can determine whether you  find a difference 
between groups or not (Østergaard et al., 2024).

4.1 Number of states

Traditionally, scoring of EEG data has only been applied to sleep 
data, while the awake substates have not been studied in depth as a lot of 
animal electrophysiology has been carried out in anaesthetized animals 
(Vassalli and Franken, 2017) and human subjects have mostly been 
sitting still. Here, the purpose was to ensure that all data were scored and 
that every frequency profile of each state was represented fairly in the 
definitions. This resulted in seven distinct vigilance states, namely, three 
awake states and four sleep states. During nREM sleep, delta power 
occurs as a spectrum starting with high power at low frequency that 
gradually decreases while ‘spreading’ over more frequencies to start over 
again; this cycle is occasionally interrupted by REM sleep. The golden 

FIGURE 2

(A) Summary of labels from manual scoring and semi-automatic scoring. (B) Mean α exponent. Black: manual scoring, turquois: SAS. The two curves 
differ significantly at three frequencies out of 65. This happens in Asterisk where the CI95 (Bonferroni-adjusted) of the difference wave does not 
include 0. This happens at the alpha band frequency.
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standard of sleep scoring is ‘the AASM manual for scoring of sleep and 
associated events’ which is developed for humans. In this manual, not all 
states are translational because they involve eye movement, chin EMG, 
or specific voltage such as N3 where ‘a peak-to-peak amplitude of 
>75 μV’ is expected. One should generally be careful translating voltages 
between cortical and extracranial electrodes. Comparing the state 
definitions of the present study to the AASM manual (Troester et al., 
2023), nREM1 shows high amplitudes and slow wave activity resembling 
AASMs N3, while nREM2 and nREM3 have sleep spindles similar to N2. 
In the present definition where the relative power within the epoch 
determines the label, a gradient resulting from the spindles is not 
surprising. The N1 definition is not used here as the wake–sleep 
transitions in mice are usually from wake to slow-wave delta sleep and 
not to a state of ‘low-amplitude mixed frequencies in the theta range 
4–7 Hz’. The transition analysis of the SAS (Supplementary Figure S10B) 
shows a lot of fluctuation between the sleep states. Some of these 
transitions may be true, but some might also be caused by placing a hard 
boundary in a spectrum. This scoring does not take epileptiform activity 
into account. That said most seizure activity would ‘distort’ the frequency 
power spectra by increasing power in the higher frequencies (>13 Hz); 
therefore, more a3 and nREM3 would be expected.

4.1.1 Spectral fingerprint of state
Each state (both wake and sleep) is dominated by a frequency 

profile with one prominent frequency band. These prominent frequency 
bands reoccur to some extend in the advanced measures, e.g., coherence 

and PACz. They may be related to a default network mode. Neurons 
cannot be  inactive, so either they are in a default mode (not to 
be confused with the default mode network) or active—processing 
stimuli. This would explain why the power of the awake states is 
generally lower than for the sleep states; there are fewer neurons in the 
default mode as there is a lot of ongoing and specific sensory processing. 
In relation to human data, then it is well-established that the alpha 
power increases over the occipital lobe when the eyes are closed (Travis 
et al., 1974); less input means more neurons idling (Kropotov, 2016) or 
in the default mode. This default mode may be the state in which the 
neurons are the readiest for certain types of activity.

The delta band activity seen during a1 may be  the default 
frequency in deeper structures. However, Schultheiss et al. studied 
electrophysiological activity of the hippocampus and described how 
delta-dominated network modes appear interspersed with theta-
dominated modes during navigation (Schultheiss et al., 2020), thus 
representing distinct circuit dynamics. The neurons’ ability to fire on 
different frequencies may depend on anatomical location and 
connections as alpha band activity has not been reported for deeper 
structures. Theta activity is expected to originate in the hippocampus 
both during awake and during sleep (Vassalli and Franken, 2017). It 
is noticeable that the a2 shows a lower theta peak frequency than 
REM. More research is needed to determine whether this difference 
is related to the lower muscle tone during REM.

In one of Steriade’s last papers, he argued that instead of looking 
at single frequency bands, one should look at the combination of 

FIGURE 3

Epoch lengths primarily showed an effect on the less frequent states, such as theta dominated awake, alpha dominated awake (resting state), and 
REM sleep. To have comparable amounts of data, we used the α exponent of the total awake state data and not the three substates separately. Blue; 
0.5 s, yellow; 1 s, red; 5 s.
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multiple bands as ‘complex wave sequences’. In the article, he described 
how oscillations in the beta band can move into the gamma band 
‘under light membrane depolarization’ (Steriade, 2006). He argues that 
change in a single band is less important than the broader trend of 
electrical activity. The proposed model is not incompatible with the 
assumptions of SAS, and the model presented in the current paper 
focuses on activity in one band for labeling purposes only, while 
advanced analysis uses higher frequency resolutions <1 Hz.

4.2 Slow-wave sleep is decreased in Nrxn1α 
deficient mice

To provide an example of what can be gained from applying the 
pipeline to a genetic model of autism spectrum disorder, 24-h EEG 
recordings were analyzed. The 24-h recordings of the Nrxn1 model 
show clear correlations between the genotype and state (Figure 4B). 
In addition, the distribution of these states changes with time and 

genotype, aligning with the fact that sleep disturbances are often 
reported for autistic people (Devnani and Hegde, 2015). The results 
indicated that changes in a1 were dependent on the gene dosage, 
meaning that the Hom group had more epochs labeled a1 than Het, 
which had more than WT. The number of epochs labeled nREM1 was 
only affected in the Hom and not in the other groups (Figure 6). It 
can be  speculated that there are more compensatory mechanism 
securing nREM1 than awake substates as slow-wave sleep is 
considered important for much of the maintenance of the brain 
(Léger et al., 2018). It has been shown that during slow-wave sleep, 
the interstitial space of the brain expands to make room for the 
glymphatic flow (Jessen et al., 2015) and a functional decoupling of 
the neurons is occurring (Steriade, 2006), as the liquid flow around 
the neurons is increasing. The massive increase in delta power seen 
during nREM1 may be  caused by either decoupling of neurons, 
silencing the cortical neurons, and making the delta oscillation from 
deeper structures easier to record, or the delta band activity may 
be the base frequency of uncoupled neurons; thus, uncoupling causes 

FIGURE 4

Proportion of vigilance states varies with genotype. (A) Summary of label distribution for three genotypes [wild-type (WT), heterozygous (Het), and 
homozygous (Hom)] at two time points [8 weeks (w8) and 22 weeks (w22) of age] scored with 1 s epochs. (B) Correlation plot of variables: rose is Pearson’s 
correlation coefficient of 1 = positive correlation, green: ~ − 1 = negative correlation. Mint: 0, no relation between variables. Age showed barely any 
correlation but a significant relation to REM (p = 0.03). Genotype showed statistically significant relations to all states especially nREM1 (Pearson’s = −0.74, 
p < 0.0001). (C) Correlation of proportion of nREM1 and a1, slope = −1.1 for WT and Het, but not for Hom at the second time point slope = 0.64.
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cortical neurons to change from alpha to delta oscillatory activity. The 
cyclic sleep (Supplementary Figure S1) may reflect the system 
decoupling to clean the synapses and then gradually recoupling the 
networks again, to allow sensing of the environment, as functional 
coupling of neurons into networks is necessary for optimal 
functioning (Phillips et al., 2012; Kopell et al., 2014). Nrxn1α is a 
structural protein involved in the assembly of presynaptic proteins 
(Dean et  al., 2003); thus, deficiency of the protein may cause a 
disturbance in the cortical neurons’ ability to modulate activity 
pattern. The increase in awake states and irritability (Etherton et al., 
2009) may be  a consequence of the disturbed sleep, thereby an 
indirect consequence of knocking-out Nrxn1α rather than a direct 
consequence of the knock-out.

Interestingly, not all awake states increased the same, while there 
were increases in a1 and a3 there was a decrease in a2 epochs. If 
Fiebelkorn and Kastner’s theory about theta-band activity being 
necessary for attention (Fiebelkorn and Kastner, 2019) is correct, then 
Nrxn1α-deficiency may cause a progressive decrease in attention and 
an increase in wakefulness.

4.3 Limitations

Although the scoring is mostly automatic, manual intervention may 
be needed in cases where noise or dropouts in the signal can make it 
hard for the change point analysis to locate ‘true’ sleep–wake transitions 

FIGURE 5

Hourly distribution of wake and sleep states over the course of 24 h, starting at 9 am on day 1 and ending at 9 am on day 2 (x-axis). The dark phase is 
indicated by the black frames. Wild-type (WT), heterozygous (Het), and homozygous KO (Hom) of Nrxn1 at (A) 8 weeks (young adult) and (B) 22 weeks 
of age (middle-aged). Statistical analysis of the development in a1 and nREM1 epochs is shown in Figure 6.
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in the signal. Still, the overall processing time of the proposed method 
would be faster than fully hand scoring the data as the manual labor is 
only in indicating wake–sleep transitions and not in labeling every epoch.

It is a possible limitation that vigilance states may change within 
a fraction of a second, which was the current length of our epochs for 
the analysis. In such a situation, some epochs may contain half of one 
state and half of another state, increasing the variability within a state. 
Nevertheless, based on our analyses, an epoch length of half a second 
seemed to show similar distributions as an epoch length of 1 s 
(Figure 3), suggesting that states of less than 1-s duration are unlikely.

5 Conclusion

The semiautomatic scoring (SAS) tool presented here can identify 
seven distinct vigilance states. The main advantages of SAS are the 
speed of data processing and the robustness across datasets. 
Compared to manually scored data, the α exponents were very 
similar (Figure 2B), validating that the SAS tool is just as accurate as 
manual scoring. Furthermore, applying the SAS tool to a mouse 
model for synaptic dysfunction in ASD revealed a significant gene 
dosage effect in the number of a1 epochs. Thus, this new methodology 
puts forward an optimized and validated EEG analysis pipeline for 
the identification of translational electrophysiological biomarkers for 
brain disorders that are related to sleep architecture and E/I balance.
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hour). The square frames indicate the dark/active phase. The asterisks indicate when the Bonferroni-corrected CI95 of the difference curve to WT1 
does not include 0, meaning a statistically significant difference. Red; WT time point 1 (8 weeks), dark green; Het 1, light blue; Hom 1, yellow; WT time 
point 2 (22 weeks), light green; Het 2, pink; Hom 2.
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