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Introduction: Prognostication in patients with prolonged disorders of 
consciousness (pDoC) remains a challenging task. Electroencephalography (EEG) 
is a neurophysiological method that provides objective information for evaluating 
overall brain function. In this study, we aim to investigate the multiple features of 
pDoC using EEG and evaluate the prognostic values of these indicators.

Methods: We analyzed the EEG features: (i) spectral power; (ii) microstates; and 
(iii) mismatch negativity (MMN) and P3a of healthy controls, patients in minimally 
conscious state (MCS), and unresponsive wakefulness syndrome (UWS). Patients 
were followed up for 6 months. A combination of machine learning and 
SHapley Additive exPlanations (SHAP) were used to develop predictive model 
and interpret the results.

Results: The results indicated significant abnormalities in low-frequency spectral 
power, microstate parameters, and amplitudes of MMN and P3a in MCS and 
UWS. A predictive model constructed using support vector machine achieved 
an area under the curve (AUC) of 0.95, with the top 10 SHAP values being 
associated with transition probability (TP) from state C to F, time coverage of 
state E, TP from state D to F and D to F, mean duration of state A, TP from state 
F to C, amplitude of MMN, time coverage of state F, TP from state C to D, and 
mean duration of state E. Predictive models constructed for each component 
using support vector machine revealed that microstates had the highest AUC 
(0.95), followed by MMN and P3a (0.65), and finally spectral power (0.05).

Discussion: This study provides preliminary evidence for the application of 
microstate-based multiple EEG features for prognosis prediction in pDoC.

Clinical trial registration: chictr.org.cn, identifier ChiCTR2200064099.
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1 Introduction

Prolonged disorders of consciousness (pDoC) encompass the 
vegetative state/unresponsive wakefulness syndrome (UWS) that 
characterized by an absence of conscious content, and the minimally 
conscious state (MCS) with discontinuous and fluctuating signs of 
conscious (Giacino et al., 2018; Schnakers, 2020). In clinical routine, both 
consensus-based expert diagnoses and widely used behavioral scale have 
been reported considerable misdiagnosis rates (Schnakers et al., 2009; 
Wannez et al., 2017). Identifying reliable features of conscious processing 
holds critical practical implications for prognostic discrimination.

Electroencephalography (EEG) provides objective information 
through multi-channel electrodes for studying and evaluating overall 
brain function and has been widely applied in pDoC (Bai et al., 2021). 
Since few patients with pDoC are able to follow clearly detectable 
commands (Cruse et al., 2011), resting-state spectral power and event-
related potential (ERP) are two commonly used EEG detection 
technologies (Bai et al., 2021). These patterns reflect the spontaneous 
EEG signal oscillation (Piarulli et al., 2016) and processing abilities 
such as recognition and attention to sound of pDoC (Qin et al., 2008), 
respectively. However, these methods appear to be  relatively 
insufficient for the comprehensive evaluation of continuous and 
dynamic complex brain functions (Demertzi et al., 2019).

Patients with impaired consciousness exhibit characteristics of 
global information processing deficits and increased local 
information processing in their brain networks (Rizkallah et  al., 
2019). Furthermore, as the level of consciousness decreases, the 
degree of integration within large-scale functional brain networks 
also diminishes (Panda et al., 2022). The temporal dynamics of these 
changes are particularly significant in pDoC (Panda et  al., 2022; 
Panda et al., 2016). In recent years, numerous studies have reported 
that microstates may be associated with various psychological states 
(Baradits et al., 2020; Tamano et al., 2022; Bochet et al., 2021; Zanesco 
et al., 2020), providing insight into neural activity of the brain during 
resting-state. As a “quantitative indicator” of the distribution pattern 
of brain topographic maps, microstate analysis divides resting-state 
EEG signals into a limited number of distinct quasi-stable states 
(Khanna et al., 2015; Pascual-Marqui et al., 1995). Each microstate is 
distinctly associated with cortical regions of distinct brain networks 
described by neuroimaging methods. For example, state A is 
considered to be related to the auditory network, while state B is 
primarily activated in brain regions of the visual network (Custo 
et al., 2017). Although some studies have begun to explore changes 
in microstates of pDoC (Zhang et al., 2023; Li et al., 2024; Ling et al., 
2024), research on their complete temporal characteristics remains 
limited, and more prognostic characteristics and underlying 
mechanisms need to be explained.

In addition, it is worth noting that previous studies have mostly 
relied on single EEG indicator or analytical method to assess the 
characteristics and prognosis of pDoC. Armanfard et al., reported that 
detecting of MMN component using machine learning can improve 
the accuracy of predicting the probability of recovery from coma 
(Armanfard et al., 2019). Sitt et al., jointly evaluated the diagnostic and 
prognostic value of spectral power and ERP for DoC (Sitt et al., 2014). 
However, to date, only a few studies have used quantitative indicators 
based on resting-state microstates to predict the prognosis of DoC 
(Stefan et al., 2018), and there is a lack of predictive models for different 
categories of indicators including microstates. Moreover, due to clinical 
heterogeneity and the lack of unified prognostic assessment criteria, 

the relative performance of these commonly used techniques in 
evaluating the prognosis of pDoC remains unclear.

The present study has two objectives: first, to explore the multiple 
EEG features of pDoC. Second, to develop predictive models using 
machine learning, evaluate the prognostic value of these indicators in 
a single dataset, and compare the importance of different patterns. To 
this end, we analyzed microstates, spectral power, and auditory evoked 
potentials from both patients with pDoC and healthy controls. 
Patients were further categorized according to their level of 
consciousness after 6 months. SHapley Additive exPlanations (SHAP) 
was introduced to identify the most important features in the model. 
This information will lead to a better understanding of neural function 
of human consciousness recovery.

2 Materials and methods

2.1 Patients and controls

This prospective study was undertaken at China Rehabilitation 
Research Center, Beijing, China. We consecutively recruited patients 
who met the definition of pDoC (Giacino et  al., 2018) and were 
confirmed by the Coma Recovery Scale-Revised (CRS-R). Eligible 
patients were aged 18–75, had stable conditions, and with no history of 
mental illness, drug abuse, or open craniocerebral injury. Healthy 
participants were recruited from nursing staff and volunteers, who were 
native Chinese speakers without any mental or neurological diseases. All 
patients received at least 5 CRS-R assessments performed separately by 
2 physicians within 1 week before enrollment to confirm a stable 
diagnosis of MCS or UWS (Wannez et al., 2017). The CRS-R includes 6 
subscales involving auditory, visual, motor, verbal, communication, and 
arousal processes. Score of ≥3 for auditory, motor or verbal, or ≥ 2 for 
visual, or 1 for communication are consistent with a diagnosis of 
MCS. Lower scores represent a UWS (Giacino et al., 2004).

CRS-R was re-evaluated 6 months later followed the 
administration and scoring guidelines. Discharged patients were 
accompanied by family members to receive video consultation from 
professional doctors to check if they are in emergence from MCS 
(EMCS). EMCS are defined as recovering functional object use or 
communication from UWS or MCS (Giacino et al., 2002). Written 
informed consent was obtained from all healthy controls and the legal 
representatives of all patients before the study. The work was approved 
by the Ethics Committee of the China Rehabilitation Research Center. 
All procedures were conducted in accordance with the Code of Ethics 
of the World Medical Association (Declaration of Helsinki).

2.2 Procedures

EEG data were collected using a 32-channel electrode cap (NSM2, 
Neuracle, Changzhou, China). All participants took a short break of 
1–2 min before the next block began. Firstly, 10 min of resting-state EEG 
were recorded. The ERP paradigm consisted of 2 blocks. Each block 
began with auditory presentation of the task instruction for that block: 
“The examination is about to begin. Please concentrate on the sounds”. 
In block1, a 1,200 Hz tone served as the deviant stimulus (20% of all 
stimuli), and an 800 Hz tone (80% of all stimuli) served as the standard 
stimuli. Stimuli were randomly delivered with a duration of 80 ms each 
and interval varying from 601 ms to 700 ms across 1,000 events. In 
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block2, novel stimuli were presented as dog barking with a duration of 
600 ms (10% of all stimuli), and 1,200 Hz and 800 Hz tones were 80 ms 
each, accounting for 20 and 70% of all stimuli, respectively. The time 
intervals randomly varied from 751 ms to 850 ms. The ground electrode 
was placed at Fpz on the scalp, and the reference electrode was placed at 
CPz. All electrode impedances were kept below 5kΩ, and the sampling 
rate was 1,000 Hz.

2.3 Data pre-processing

Recorded data were preprocessed using the EEGLAB toolbox 
under MATLAB (Li et al., 2024). After locating channels and removing 
unused electrodes, EEG data were bandpass filtered (high-pass: 
0.1 Hz, low-pass: 45 Hz), followed by the use of a 48–52 Hz notch filter 
to suppress power line noise. Bad segments were then rejected, bad 
channels were identified and spherically interpolated. Artifacts 
including ocular and muscular activities were identified by 
independent component analysis. Specifically, resting-state EEG was 
divided into non-overlapping 2 s segments, and the average potential 
was calculated and re-referenced. ERP data were segmented into 
epochs of 500 ms for MMN and 600 ms from stimulus onset for P3a, 
including a 100 ms pre-stimulus period (Kruiper et  al., 2019; 
Krugliakova et al., 2019), and re-referenced to the averaged mastoids.

2.4 Spectral power analysis

The spectral power of the selected EEG artifact-free epochs was 
analyzed using fast Fourier transform. Spectral power was averaged 

over the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta 
(13–30 Hz) bands. The gamma was excluded due to potential 
contamination from high-frequency muscle movements (Rossi 
Sebastiano et al., 2015). Additionally, electrodes were grouped into five 
regions of interest (ROIs): Frontal (Fp1, Fp2, Fz, F3, F4, F7, F8), 
Central (Cz, C3, C4), Temporal (T3, T4, T5, T6), Parietal (Pz, P3, P4), 
and Occipital (Oz, O1, O2) (Babiloni et al., 2010) (Figure 1).

2.5 Microstate analysis

Microstate analysis was performed using the k-means clustering 
algorithm in Cartool EEG software (Damborska et al., 2019) following 
standard procedures (Baradits et al., 2020; Sun et al., 2021). To extract 
EEG microstates, the global field power was first computed by calculating 
the potential variance across all channels at each time point. All brain 
topographies at the peak sampling times of global field power were used 
for clustering. Custo’s early research identified seven microstates (Custo 
et al., 2017). Microstate A is characterized by strong activation in the left 
middle and superior temporal lobe. Microstate B simultaneously involves 
the left and right occipital cortical areas. Microstate C engages the 
precuneus and posterior cingulate cortex, while Microstate D involves 
the right inferior parietal lobe and right middle and superior frontal gyri. 
Microstates E, F, and G represent additional topographies distinct from 
the classical four states, displaying activation in the left medial frontal 
gyrus, dorsal anterior cingulate cortex, and right inferior parietal lobule, 
respectively. Previous studies have shown that a six-state classification 
can comprehensively capture the diversity of brain activity and elucidate 

FIGURE 1

Diagram of EEG analysis in pDoC.
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the mechanisms of transition between different states, with each state 
corresponding to specific brain networks or functional modules, 
effectively reflecting the dynamic interactions within these networks 
(Damborska et al., 2019; Gold et al., 2022; Brechet et al., 2019).

In this study, we  adopted a six-microstate classification and 
employed microstate segmentation to extract EEG features. 
Specifically, the identification of each topographic map was 
accomplished using Time-Aggregated Hierarchical Clustering 
(T-AAHC), an unsupervised learning algorithm typically used for 
clustering time series data (Haehner et al., 2023; Buetler et al., 2014). 
Initially, T-AAHC assumes that all raw maps from each subject 
constitute a single cluster, meaning the initial number of clusters 
equals the total number of raw microstate maps, denoted as n. Then, 
it identifies the cluster with the smallest variance explained ratio, 
considering it belongs to the same class as the cluster with the highest 
correlation coefficient. At this point, the number of clusters reduces to 
N−1. This process is repeated iteratively X times until N−X = 6, with 
the six clusters that explain the highest variance ratio taken as the 
individual clusters. Subsequently, all individual clusters from all 
subjects within each group are aggregated into a new set of raw maps, 
and the process is repeated to obtain common topographies.

By sorting individual EEG microstates and identifying common 
topographies for each group, we calculated the average group-level 
microstate classes for healthy controls, MCS and UWS patients. 
Group-average topographies were used to fit EEG clustering labels for 
individual subjects. The following microstate parameters were 
extracted: mean duration, coverage of time, occurrence per second 
and the transition probability (TP). Mean duration represents the 
average time (in milliseconds) that the microstate remains stable. 
Coverage of time measures the percentage of time covered by the EEG 
microstate category. Occurrence per second refers to the frequency of 
the microstate repeated per second. TP represent the probability of 
transitioning between brain microstates.

2.6 ERP analysis

Two ERP components evoked by independent blocks were 
identified: MMN in Oddball block 1 and P3a in block 2. Peak 
amplitude and corresponding latency were assessed using Matlab 
R2021b. After preprocessing the data with EEGLAB toolbox, MMN 
was represented as the ERP to the deviant stimuli subtracted from the 
ERP to the standard stimuli, calculated separately for each subject 
(Kotchoubey et  al., 2005), and noted as the minimum amplitude 
within the window of 90 to 200 ms (Duncan et al., 2009). P3a was 
evoked by novel stimuli in block2 (Linnavalli et al., 2022), noted as the 
maximum amplitude within the window of 175 to 375 ms (Kruiper 
et al., 2019). Amplitude and latency of MMN and P3a components 
were calculated to obtain individual average values (Schnakers et al., 
2008). For each component, only the data from the electrode Fz were 
analyzed for maximum amplitude and corresponding latency (Wu 
et al., 2020).

2.7 Machine learning analysis and feature 
importance

Python was used to conduct support vector machine (SVM) 
and extreme gradient boosting (XGBoost) for data analysis. 

According to patient’s prognosis (in EMCS or remain in pDoC), 
these two classification algorithms were developed to build 
predictive models of EEG features. SVM is a robust classification 
and regression model advantageous for small samples size, high 
dimensions, and accurate classification (Huang et  al., 2023). 
XGBoost integrates and optimizes multiple decision tree models, 
offering high accuracy and interpretability (Wang et al., 2021). To 
maintain the correlation between different features, Min-Max 
normalization was applied to the raw data. The datasets for EMCS 
and pDoC groups were randomly divided into training sets (60% of 
the cohort) and test sets (40% of the cohort). Receiver operating 
characteristic (ROC) curves were plotted to evaluate the 
performance of each algorithm, and the optimal predictive model 
with higher area under the curve (AUC) was selected based on a 
comprehensive evaluation of EEG metrics. Predictive models for 
spectral power, microstates, and ERPs were further constructed to 
compare their contributions to prognosis.

To further interpret the importance of each feature in model 
prediction, SHAP values were introduced in this study. SHAP is a 
unified framework that effectively explains the underlying 
mechanisms and feature contributions of machine learning models 
(Wang et al., 2021). Therefore, we used SHAP to identify the top 10 
factors of importance in the optimal model. In each feature 
importance plot, all patients’ attributions to the outcome are 
depicted as differently colored points, where red points indicating 
high SHAP values and blue points indicating low SHAP values. The 
higher the SHAP value of a feature, the more important it is for 
predicting EMCS.

2.8 Statistical analysis

Statistical analysis of the data was performed using SPSS software 
(version 27). For continuous variables, within-group comparisons 
were conducted using analysis of variance (ANOVA). Chi-square tests 
were used to examine differences in gender and etiology between 
groups. The Shapiro–Wilk test was used to assess data normality. 
Group was considered as a between-subjects factor, while bands 
(delta, theta, alpha, beta) and ROIs (frontal, central, temporal, parietal, 
occipital) as were considered as within-subjects factors for spectral 
power. Microstate classes (A-F) were analyzed as within-subjects 
factors for mean duration, coverage of time and occurrence per 
second of microstate. The latency and amplitude of MMN and P3a at 
Fz were analyzed. Age and gender were included as covariates. The 
Greenhouse–Geisser correction was applied for multiple comparisons. 
The significance level was set at 0.05 (with Bonferroni correction).

3 Results

3.1 Demographics

This study included 15 healthy people, 15 with MCS, and 15 with 
UWS (Table 1). There were no differences in gender and age between 
the three groups. No differences in the illness duration and etiology 
were found between patients in MCS and UWS. The CRS-R scores of 
MCS were higher than UWS. All participants completed a 10 min 
resting-state EEG examination and ERP testing. Six patients (20%) are 
in EMCS 6 months after EEG acquisition, 23 patients (76.7%) 

https://doi.org/10.3389/fnins.2025.1492225
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2025.1492225

Frontiers in Neuroscience 05 frontiersin.org

remained in pDoC, and 1 patient died of COVID-19. There were no 
differences in age, gender, etiology, course of illness, or CRS-R scores 
between the EMCS and pDoC groups (Table 2).

3.2 Spontaneous EEG oscillations

3.2.1 Spectral power
There was a statistically significant interaction between group (HC, 

MCS, UWS) and spectral power in band (delta, theta, alpha, beta) (F (3, 
38) =7.549; p < 0.001). Figure 2 shows the average regional spectral 
power of the four frequency bands. Compared to healthy controls, UWS 
patients had higher delta power in the frontal (p < 0.05), temporal 
(p < 0.05), and occipital (p < 0.01) regions, while MCS patients had 
higher delta power in the occipital region (p < 0.05). MCS patients had 
higher theta power than healthy controls (frontal p < 0.05; temporal 
p < 0.05; occipital p < 0.05). Additionally, beta power in the parietal 
region was significantly lower in both MCS and UWS patients (p < 0.05).

3.2.2 Microstates
The K-mean clustering algorithm provided six microstate maps 

(A, B, C, D, E, and F) for all study groups (Figure 3A). The results 
showed that compared to healthy controls, UWS had longer mean 
duration in class D (p < 0.05) and fewer occurrence number per 

second in class A (p < 0.05), C (p < 0.01), and F (p < 0.01). MCS had 
fewer occurrence number in class A (p < 0.05) and C (p < 0.01). No 
group differences were observed in terms of time coverage.

Compared to healthy controls, MCS showed significant reductions 
in TP between A and C (p < 0.001), from class C to B (p < 0.01) and E 
to C (p < 0.01), while TP increased from class B to A (p < 0.05) and A 
to E (p < 0.05). Furthermore, compared to healthy controls, UWS 
showed significant reductions in TP between class A and C (p < 0.01), 
D and F (p < 0.01) and from class E to C (p < 0.01), and increased TP 
from class D to A (p < 0.01), D to B (p < 0.01), and A to F (p < 0.05). 
In addition, compared to MCS, TP in UWS was lower between class 
A and B (p < 0.001), class A and E (p < 0.05), and class D and F 
(p < 0.01), while it was higher between class A and D (p < 0.05), A to 
F (p < 0.01) and D to B (p < 0.05) (Figure 3).

3.2.3 MMN and P3a
Then we compared the amplitude and latency of MMN and P3a 

between healthy controls and patients with MCS or UWS. Results 
showed that there were no statistically significant differences in the 
average latency of MMN and P3a among HC, MCS, and UWS groups 
(148.93 vs.159.80 vs.147.50 ms, 246.80 vs.250.53 vs.261.08 ms). 
Amplitudes of MMN and P3a were significantly different among the 
three groups (F = 6.595, p = 0.003; F = 13.974, p < 0.001). Of which, the 
absolute amplitude of MMN was lower in MCS and UWS compared to 

TABLE 1 Demographic and variables of MCS, UWS, and HC.

Variables MCS UWS HC Statistics p-value

Categorical variables: (N) Chi-square

Gender (female/male) 5/10 7/8 7/8 0.729 0.695

Etiology TBI (5) TBI (10) NA 3.652 0.143

CVD (9) CVD (5)

HIE (1)

Continuous variables: mean (SEM) ANOVA (F)

Age (years) 52.4 (4.5) 47.2 (4.3) 37.9 (3.6) 3.107 0.055

t-test (t)

Illness duration (days) 276.8 (71.3) 219.7 (83.5) NA 0.52 0.607

CRS-R 11 (0.6) 6.5 (0.5) NA 6.054 <0.001

HC, healthy controls; MCS, minimally conscious state; UWS, unresponsive wakefulness syndrome; TBI, traumatic brain injury; CVD, cerebrovascular disease; HIE, hypoxic ischemic 
encephalopathy; CRS-R, coma recovery scale-revised; NA, no data.

TABLE 2 Variables of EMCS and PDoC groups in 6 months.

Variables EMCS PDoC Statistics p-value

Categorical variables: (N) Chi-square (Fisher)

Gender (n, female/male) 5/1 8/15 NA 0.064

Etiology (n) TBI (3) TBI (12) 0.623 1

CVD (3) CVD (10)

HIE (1)

Continuous variables: mean (SEM) t-test (t)

Age (years) 46.8 (5.7) 50.2 (3.8) −0.421 0.677

Illness duration (days) 111.8 (21.3) 287.1 (68.7) −1.282 0.211

CRS-R 10.2 (1.1) 8.4 (0.7) 1.257 0.22

EMCS, emergence from MCS; PDoC, prolonged disorders of consciousness; TBI, traumatic brain injury; CVD, cerebrovascular disease; HIE, hypoxic ischemic encephalopathy; CRS-R, coma 
recovery scale-revised; NA, no data.
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healthy controls (p < 0.05, p < 0.01), and amplitude of P3a was 
significantly reduced in MCS and UWS (p < 0.001, p < 0.001) (Figure 4).

3.2.4 Machine model development and feature 
importance

During the 6-month follow-up period, SVM achieved an AUC of 
0.95 for prediction, which was significantly higher than that of 
XGboost (AUC = 0.7). Therefore, SVM was selected for subsequent 
prediction in this study. Furthermore, we used SVM to construct 
predictive models for spectral power, microstate, and ERP, respectively. 
Microstate showed the highest performance (AUC = 0.95), followed 
by ERP (AUC = 0.65), and finally spectral power (AUC = 0.05). To 
intuitively interpret the importance of each feature, we used Kernel 
SHAP to illustrate how these variables affect the overall predictive 
model. Figure  5C shows the top  10 risk factors evaluated by the 
average absolute SHAP value: TP from state C to F, time coverage of 
state E, TP from state D to F and D to F, mean duration of state A, TP 
from state F to C, amplitude of MMN, time coverage of state F, TP 
from state C to D, and mean duration of state E. Figure 5D shows its 
top 10 most important features associated with a higher predicted 
probability of EMCS in 6 months.

4 Discussion

This study explored the multiple EEG features of pDoC and 
developed a predictive model using SVM, achieving a high predictive 
performance (AUC = 0.95). By comparing the predictive capabilities 
of different modalities, we  found that microstates contributed the 
most to the predictive model.

Prognostic prediction of pDoC is a complex and challenging task. 
Different EEG paradigms and analytical techniques convey different 
information, and the accuracy of the assessment may be influenced by 
confounding factors (Liuzzi et al., 2022). Therefore, it is particularly 
important to conduct evaluations using multiple methods. Previous 

studies have utilized EEG metrics for predicting the recovery of 
consciousness (Armanfard et al., 2019; Stefan et al., 2018; Liuzzi et al., 
2022). We expanded on their work in the following aspects. Firstly, 
we  comprehensively integrated commonly used EEG biomarkers 
(microstates, spectral power, and ERPs), attempting to provide 
additional prognostic markers through these features. When applying 
SVM to validate their predictive value, we obtained a higher AUC than 
previous studies, confirming the predictive value of multimodal EEG 
features (Figure 5A). Lastly, surprisingly, the results of SHAP values 
indicated that microstate parameters are highly significant for predicting 
EMCS (Figure 5C). We further compared the prognostic classification 
capabilities of different EEG patterns and confirmed that the model 
based on microstate data have the highest predictive ability (Figure 5B).

Spontaneous brain activity in the resting-state accounting for 80% 
of the entire energy consumption of the brain (Raichle and Mintun, 
2006), especially concerning perception and consciousness (Wolff 
et al., 2019; Lee et al., 2022). In this study, we classified six microstates 
similar to the previous research (Zanesco et al., 2020; Damborska 
et al., 2019; Gold et al., 2022; Brechet et al., 2019) (Figure 3A). As 
mentioned, each resting-state topography is considered to activate 
certain cortical areas, representing synchronized activity of a 
distributed networks. Microstate A is closely related to the temporal 
lobe and involves auditory consciousness (Milz et al., 2016), while 
microstate B is associated with the occipital cortex (Britz et al., 2010). 
Microstate C is involved in information integration and the 
frontoparietal network (Li et al., 2024). Microstate D is an important 
electrophysiological representation of the attention network and is 
related to cognitive executive control functions (Michel and Koenig, 
2018). Activation of microstate E is thought to be related to the default 
mode network that mediating internal consciousness (Li et al., 2023). 
Microstate F is spatially correlated with microstate C and plays a 
central role in the saliency network (Coste and Kleinschmidt, 2016; 
Sadaghiani and D'Esposito, 2015).

Transition from one microstate to another may represent sequences 
of network formations constituting large-scale brain networks (Baradits 

FIGURE 2

The average mean (95% CI) of EEG spectral power. (A) The values of frequency bands (delta, theta, alpha, beta) in HC, MCS and UWS groups. (B) The 
values of low (delta, theta) and high (alpha, beta) frequency bands in HC, MCS and UWS groups. HC, healthy controls; MCS, minimally conscious state; 
UWS, unresponsive wakefulness syndrome.
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et al., 2020; Khanna et al., 2015). In this study, we found that MCS and 
UWS patients exhibited different TP compared to healthy controls 
(Figure 3B), indicating that the coupling and sequential activation of the 
corresponding brain networks and potential neuronal components are 
disturbed (Khanna et al., 2015). King et al., suggested that as the level of 
consciousness increases, the degree of information exchange between 
brain regions systematically increases, especially over longer distances 
in the cortex (King et al., 2013). The results here indicated that most 

transitions between microstates are more strongly correlated in MCS 
than in UWS and ranked high in the feature importance of predictive 
model (Figures  5C,D). Thus, enhanced activation and interaction 
between microstates are generally associated with better outcomes in 
pDoC (Wu et al., 2015). Moreover, our results suggest that transitions 
in brain networks or microstates related to consciousness are not merely 
one-way, unidirectional changes but involve simultaneous increases or 
decreases in both directions (Figure 3C). For example, MCS patients 

FIGURE 3

General properties of microstates. (A) Potential maps of the results of microstate segmentation in HC, MCS and UWS. (B) Comparison of the transition 
probabilities between HC, MCS and UWS. (C–E) Mean (95% CI) of the mean duration, coverage of time and occurrence number of six microstates 
among the three groups. HC, healthy controls; MCS, minimally conscious state; UWS, unresponsive wakefulness syndrome; * p < 0.05; ** p < 0.01 
(Bonferroni-corrected).
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show stronger transitions between state F and state D compared to UWS 
patients (Figure  3B). These states activate regions that are densely 
interconnected via neural fibers, working together to influence attention 
allocation and executive control abilities (Kim et al., 2018).

The average duration of microstates reflects the stability of their 
underlying neural components (Khanna et al., 2015), while the occurrence 
frequency represents the tendency of activation of potential neural 
generators. Artoni et  al., observed that the temporal dynamics and 
complexity of microstates increased with the depth of sedation (Artoni 
et al., 2022), leading to an obvious “U-shape” curve. These changes in 
microstate parameters indicate variations in the active regions of brain 
networks of pDoC (Figures  3C,E), which can also be  validated by 
calculating the TP of microstates. With the recovery of consciousness, the 
orderliness of organizational function may increase and the randomness 
may decrease, providing new inspiration for future treatment.

In this study, we used two independent paradigms to calculate the 
MMN and P3a. Compared to healthy controls, both MCS and UWS 
patients had reduced amplitudes of MMN and P3a (Figures 4A,B), 
indicating a decline in discriminative ability and additional attentional 
capacity to sounds in pDoC patients (Kotchoubey et  al., 2005; 
Linnavalli et al., 2022; Wang et al., 2018). Moreover, MMN also ranked 
in the top  10 important features in the prediction model 
(Figures 5C,D), confirming that auditory paradigm evoked potentials 
have certain predictive values for pDoC (Buetler et  al., 2014). 

Additionally, consistent with previous studies (Piarulli et al., 2016; 
Rossi Sebastiano et al., 2015), we observed increased low-frequency 
band power in patients with pDoC (Figures 2A,B). Although previous 
studies have reported some predictive value of alpha power for 
consciousness recovery (Stefan et al., 2018), in this study, spectral 
power showed a low predictive capability in the prognostic model 
(Figure  5B). This may be  due to the fact that we  differentiated 
prognosis based on whether patients were EMCS or not, resulting in 
a relatively limited number of EMCS patients due to the high level of 
consciousness required.

Furthermore, this study has several limitations. Firstly, we did not 
consider the effect of individualized rehabilitation and medication in 
our analysis. Given the limited sample size, these variables could 
impact the accuracy of the results. Secondly, as previous research has 
shown, the complexity and methodological diversity of pDoC may lead 
to high heterogeneity in results (Ballanti et al., 2022). Larger sample 
size, multi-center studies, and more fine-grained classification schemes 
will contribute to explore more complex patterns of rehabilitation 
trajectories and improve the universality of the results. Specifically, 
integrating advanced analytical techniques from functional imaging 
into EEG data processing might facilitate a better understanding of 
how the brain’s dynamic functional connectivity evolves in pDoC. This 
could potentially lead to new insights into the neural mechanisms 
underlying pDoC and contribute to the development of more effective 

FIGURE 4

MMN and P3a amplitude on electrode Fz. Grand average waves and the statistical comparation of the averaged peak amplitudes and latencies (95% CI) 
over Fz electrode between HC, MCS and UWS groups of MMN (A) or P3a (B). HC, healthy controls; MCS, minimally conscious state; UWS, unresponsive 
wakefulness syndrome. * p < 0.05; ** p < 0.01; *** p < 0.001 (Bonferroni-corrected).
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therapeutic strategies (Panda et al., 2023; Perl et al., 2023; Escrichs 
et al., 2022). Furthermore, a recent study has emphasized that deriving 
independent microstate atlases for subgroups can significantly elevate 
the Type I error rate, whereas applying a unified set of maps across the 
entire dataset can reduce such errors and enhance the reliability of the 
results (Murphy et al., 2024). In this study, given the particularity and 
complexity of pDoC, the use of a unified atlas for analysis could 
introduce additional errors, increasing the complexity of the analysis 
and the likelihood of erroneous conclusions. Therefore, we  have 
followed the traditional analysis method (Baradits et al., 2020; Li et al., 
2024; Sun et al., 2021). There is a need in the future to explore how to 
achieve a more scientific balance between the application of unified 
atlases and the differences among populations.

5 Conclusion

This study used multiple EEG patterns to represent the abnormal 
features of pDoC patients. These EEG features have demonstrated a 
certain degree of accuracy in predicting the 6-month prognosis of pDoC, 
with microstates making a significant contribution to the prognosis 
model. This innovative finding helps to understand the 
neurophysiological mechanisms behind consciousness recovery and 

provide additional insights to reveal the characteristics of brain signals 
in pDoC.
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