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Low-latency hierarchical routing
of reconfigurable neuromorphic
systems

Samalika Perera*, Ying Xu, André van Schaik and Runchun Wang

International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and

Development, Western Sydney University, Kingswood, NSW, Australia

A reconfigurable hardware accelerator implementation for spiking neural

network (SNN) simulation using field-programmable gate arrays (FPGAs) is

promising and attractive research because massive parallelism results in better

execution speed. For large-scale SNN simulations, a large number of FPGAs are

needed. However, inter-FPGA communication bottlenecks cause congestion,

data losses, and latency ine�ciencies. In this work, we employed a hierarchical

tree-based interconnection architecture for multi-FPGAs. This architecture is

scalable as new branches can be added to a tree, maintaining a constant

local bandwidth. The tree-based approach contrasts with linear Network on

Chip (NoC), where congestion can arise from numerous connections. We

propose a routing architecture that introduces an arbiter mechanism by

employing stochastic arbitration considering data level queues of First In, First

Out (FIFO) bu�ers. This mechanism e�ectively reduces the bottleneck caused

by FIFO congestion, resulting in improved overall latency. Results present

measurement data collected for performance analysis of latency.We compared

the performance of the design using our proposed stochastic routing scheme

to a traditional round-robin architecture. The results demonstrate that the

stochastic arbiters achieve lower worst-case latency and improved overall

performance compared to the round-robin arbiters.

KEYWORDS

neuromorphic engineering, FPGA acceleration, multi-FPGA, networks on chip,

transceivers, SNN, arbiter

1 Introduction

Simulation of complex biological neural systems is a promising research area in

the current era, as the brain performs computation in a power-efficient and impressive

parallel manner that standard computers can’t match. Though conventional von Neumann

architecture-based designs offer shorter design times and configurability, larger-scale

software-based simulators can’t match biological spiking rates (ms) and demand significant

power (Sharp et al., 2012). Consequently, researchers are increasingly exploring analog

and digital hardware solutions like BrainScale (Pfeil et al., 2013). Application-Specific

Integrated Circuits (ASIC) processors, such as TrueNorth from IBM (Cassidy et al.,

2013), SpiNNaker (Furber et al., 2013), SpiNNaker 2 (Mayr et al., 2019), and the Loihi

(Davies et al., 2018) chip and Loihi 2 (Intel Corporation, 2021), are being developed.

FPGAs have also emerged as a promising area of study, providing significant speed-

ups over software simulations (Javanshir et al., 2022; Schuman et al., 2017). Modern

commercial neuromorphic processors, such as SynSense’s Dynap-CNN, Speck, and Xylo,

which are specialized for real-time vision processing, as well as Innatera’s low-power

mixed-signal spiking processors for audio and healthcare applications, are also emerging
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as promising solutions (SynSense, 2024; Richter et al., 2024; Bos

and Muir, 2022; Innatera, 2024). Additionally, FPGAs offer the

benefits of shorter design periods, reconfigurability, reusability for

different applications, optimisation for each problem, and easy

interfacing with host computers (Liu and Wang, 2009). Modern

entry-level FPGAs contain many logic gates and physical memory,

allowing large-scale neural networks to be created at a lower cost

compared to other hardware options. Increasing the number of

neurons not only demands more computing cores but also leads

to inefficiencies due to excessive core-to-core communication,

creating a bottleneck in scaling hardware for brain-scale SNNs

(Fang et al., 2018). To address these challenges in large-scale

SNN simulations, it is essential to interconnect multiple FPGA

boards into a multi-FPGA Network on Chip (NoC) platform. Such

platforms are crucial for providing high-performance solutions

for computationally intensive tasks, logical emulation, and rapid

prototyping, effectively overcoming the limitations of single-board

configurations (Wang et al., 2015).

NoC switches are introduced between cores, offering a more

scalable and flexible topology compared to traditional bus-based

architectures. This multi-FPGA platform requires high bandwidth

and low-latency communication to achieve real-time benefits.

Good routing mechanism selection and exploration of topology

between these nodes define overall design performance. Network

routers are critical for directing data between senders and receivers,

adhering to specific algorithms. They consist primarily of input

buffers, crossbars, arbiters, and control units. An arbiter is key to

managing data flow and resolving output port conflicts, ensuring

smooth packet transfer through a network. Input buffers hold

data temporarily, while crossbars connect ports under arbiter and

control unit guidance (Kayarkar and Khurge, 2016).

Congestion in routing architecture significantly causes

increased latency and data loss. Generally, there are two types of

congestion that can occur. The first type occurs inside a router

when multiple incoming packets request the same destination

port. In this case, only one port is granted to transmit while

other ports are stalled temporarily until transmission is complete.

We refer to this as contention congestion. The second type is

buffer congestion, which occurs when a destination router’s input

buffer is full; the router must wait until packets stored in the

destination are transmitted. A packet will be dropped when buffer

congestion occurs. Another factor that impacts performance is a

router’s buffer size. A larger buffer size can reduce the congestion

rate. However, a dual-clock buffer is expensive in terms of area

consumption.Therefore, in this work, we explain an arbitration

strategy without utilizing a larger buffer size.

To address congestion and improve communication efficiency

in NoC systems, various topologies have been proposed, each

presenting distinct advantages and limitations. The mesh topology

arranges routers in a grid, offering robust fault tolerance by

providing alternative paths for rerouting data in the event

of failures (Williams, 2023). However, this structure is often

constrained by high congestion levels and increased latency,

particularly for communication over longer distances (Hu et al.,

2008). A refinement of this design is the torus topology, which

links the edges of the grid to create a toroidal network. This

enhancement reduces latency and improves scalability, but the

additional interconnections significantly complicate design and

lead to increased power consumption (Hu et al., 2008). Another

commonly used topology is the tree structure, which supports

scalability through its hierarchical organization. While effective for

systems requiring structured communication, tree-based designs

can suffer from latency issues due to the need for intermediate

routing, especially under heavy traffic conditions (Kamal et al.,

2012). The ring topology, by contrast, connects routers in a circular

loop, achieving simplicity and fault tolerance through its ability

to reroute traffic during failures (Williams, 2023). Nonetheless,

it is often constrained by latency bottlenecks, as packets may

have to traverse multiple nodes to reach their destination (Hu

et al., 2008). While hierarchical tree-based topologies are widely

recognized for their scalability and structured communication, they

can encounter challenges with congestion at intermediate nodes,

particularly under heavy traffic conditions (Kamal et al., 2012). To

mitigate these challenges, we propose a routing arbiter mechanism

specifically designed for hierarchical multi-FPGA systems. By

incorporating stochastic arbitration, the mechanism adapts to

traffic demands in real time, prioritizing data based on FIFO levels.

This approach reduces congestion, improves buffer utilization,

and enhances overall efficiency. By optimizing buffer performance

and minimizing bottlenecks, the proposed mechanism provides a

latency-efficient solution for hierarchical routing in multi-FPGA

systems.

The proposed hierarchical tree-based routing architecture

reduces the risk of deadlock by avoiding cyclic dependencies,

which are common in ring or mesh topologies. The directed and

acyclic structure ensures that data flows in a structured manner,

minimizing circular waiting conditions. Additionally, the system

employs buffer monitoring mechanisms to prevent overloading.

When buffers approach capacity, traffic from upstream nodes

is temporarily paused, helping to avoid congestion. Whilst the

focus of our validation has been on general system stability,

the architecture is designed to handle scenarios that could lead

to deadlock, ensuring smooth operation under heavy traffic

conditions.

Building upon the hierarchical tree-based routing architecture

discussed earlier, this work proposes a novel routing arbiter

mechanism for hierarchical multi-FPGA architecture that employs

stochastic arbitration and considers the data levels of FIFOs,

leading to more efficient buffer utilization and reducing the

need for larger buffers. This mechanism effectively reduces the

bottleneck caused by FIFO congestion, resulting in improved

overall latency. We compare our stochastic arbitration technique to

the standard round-robin arbitration technique to benchmark the

latency performance. The proposed work presented in the paper

discusses latency-wise, efficient hierarchical routing architecture for

a multi-FPGA SNN hardware design.

The remainder of this paper is structured as follows: the next

section provides an in-depth discussion of recent architectures of

multi-FPGA SNN hardware designs within the context of related

works. Following this, we delve into the details of our proposed

architecture, explaining its components and experimental setup,

and the corresponding results. Finally, we draw conclusions based

on our findings, offering a comparative analysis and engaging in a

comprehensive discussion of the implications of our work.
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2 Related works

In the literature, various multi-FPGA architectures have been

proposed for neuromorphic scalable SNN accelerators (Wang et al.,

2018; Moore et al., 2012; Sripad et al., 2018; McDaid et al., 2008;

Karim et al., 2020). Considering recent FPGA-based multi-FPGA

SNN accelerators, the EMBRACE (McDaid et al., 2008) architecture

features a router with a programmable address table, enabling

the simulation of different SNN structures. The router is packet-

switched and follows round-robin principles. It is a multi-FPGA

custom system with a predicted capacity of up to 64 FPGA nodes,

targeting high bandwidth and low latency communication.Modern

FPGAs with integrated high-speed serial links were leveraged to

simplify the construction of a cost-effective multi-FPGA system.

The routing scheme used in Bluehive is a simple dimension-

ordered routing scheme, a distributed deterministic routing scheme

applied in n-dimensional meshes (Moore et al., 2012). This design

approach enables the simulation of large networks, with 64k spiking

neurons per FPGA and 64M synapses. Additionally, the design

is scalable to a large numbers of FPGAs, and they have already

demonstrated a four-FPGA system with 256k neurons and 256M

synapses. Given the low utilization of inter-FPGA bandwidth, they

predict linear scaling to at least 64 FPGAs, with a mean bandwidth

of 250Mbit/s between each FPGA board. The limiting factor is

FPGA-to-FPGA bandwidth. Based on a 3D torus configuration, the

system achieves 12 Gbit/s of bidirectional bandwidth per channel.

However, the design lacks a mechanism to address congestion

within the SNN network during saturation scenarios, prioritizing

a lightly loaded network to minimize congestion and emphasize

low-latency routing. SNNs for Versatile Applications (SNAVA)

is an FPGA-based platform for SNN hardware, as presented in

Sripad et al. (2018). The primary motivation behind this work

is scalability, with a proposed network topology based on a

ring configuration. Unlike the approach shown by Moore et al.

(2012), they avoided using extra hardware to connect numerous

FPGAs, reducing the need for expensive dedicated interfaces to link

multiple boards. They utilized pipeline operations on each board to

increase communication performance.

Astrobyte, as detailed in Karim et al. (2020) and Karim (2020) is

a multi-FPGA-based architecture developed for simulating spiking

astrocyte neural networks (SANN). This work introduces a novel

approach, combined with NoC, to facilitate dense communication

between astrocytes and neurons. They have used conventional

mesh routing topology with a round-robin arbitration technique.

In Astrobyte, as detailed in Karim et al. (2020), they demonstrated

that the platform could achieve up to ×188 speedup for SANN

applications when compared to an equivalent MATLAB model.

The Astrobyte architecture consists of bidirectional Intel Gigabit

Transceiver Blocks (GXB) to serialize the data stream and send it

over Serial Advanced Technology Attachment (SATA) connections.

The IBM Neural Computer Architecture (Narayanan et al.,

2020) is a highly scalable parallel processing system with hundreds

of programmable nodes in a 3D NoC mesh topology. The

communication network of that design supports directed and

broadcast packet routing schemes. Nodes are interconnected

using single-span and multi-span Serializer-Deserializer (SERDES)

(Sheldon, 2000) links connected to the fabric of the Xilinx Zynq

FPGA. The system utilizes Postmaster Direct Memory Access

(DMA) operation. An application running on the source node

(either on the CPU or FPGA) writes data to a transmit queue on

the FPGA logic. Upon reaching the destination node, the data is

consumed by the FPGA and then written into a memory-mapped

region. It is important to note that while the Postmaster DMA

operation is a vital component, the broader IBM neural computer

architecture is not limited to computational neuroscience; it

also encompasses machine intelligence domains. IBM design’s

goal is more general than computational neuroscience. The

IBM Neural Computer (INC) differs from others because it is

composed of distinct processors + memory nodes interconnected

by communicating links. Also, communication interfaces are not

predefined and are not limited to a set of use cases like other

systems. When we consider the above-mentioned multi-FPGA

accelerator’s communication architectures, they differ according

to the focus of these designs. As an example, EMBRACE

work is implemented to support programable different SNN

structures (McDaid et al., 2008), Bluehive targets massive real-time

simulations (Moore et al., 2012), and the work presented inMcDaid

et al. (2008) focuses on SANN acceleration and a runtime data

acquisition system. However, router architecture design, arbitration

technique, and topology used in these designs vary based on

each focus. The main distinction of our work is that we aim to

achieve a latency-efficient architecture. In the SNN simulations,

since spike arrival time encodes the spike data, a minimum latency

requirement provides an advantage for accurate communication.

3 Architecture

We use a NoC hierarchical tree-based topology in our design.

In computer networks, tree topology is sometimes known as a

star bus topology (Williams, 2023). This nomenclature arises from

the fusion of features inherent to both star and bus topologies,

culminating in a tree-like structure. The proposed multi-FPGA

architecture spans two main hierarchical levels, reaching 128 nodes

at the bottom level (L1) of the hierarchy, with level two (L2) routers

communicating with each other. We use an extended version of

the hierarchical address-event routing (HiAER) architecture (Park

et al., 2017) for scalable communication of neural and synaptic

spike events between different cores. The HiAER adopts a tree-

based interconnect with a fractal structure for its connectivity

hierarchy. Interestingly, the communication bandwidth remains

consistent at each level. This consistency is attributed to the

decreasing fan-out observed at higher levels of the hierarchy.

Therefore, additional nodes can be added to the design easily by

expanding hierarchical levels while maintaining communication

bandwidth at each node. The proposed architecture implements

routers and computing nodes on FPGA and high-speed transceiver

links are used as inter-node communication links. Data packets

are used to organize and transmit information between FPGAs.

A packet typically consists of the actual data payload that needs

to be transmitted, along with additional control information such

as headers and source/destination addresses. We implemented

the functional verification of our prototype system on different

FPGA boards, which we discuss in the experimentation and results

section. In this setup, with four FPGAs working together, we

have explored approaches for different levels of communication.
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FIGURE 1

Arria 10 SoC development FPGA board, where the orange color cable is 3m Generic Compatible 40G QSFP+ to 4x10G SFP+ Breakout Active Optical

Cable.

Initially, we calculated performance evaluation matrix data with

a four-FPGA system. Subsequently, we compared this data with

an emulated loopback prototype system. More details on data

collection experimental setups for this four-FPGA system and

the loopback prototype system are in the experimentation and

results section. For clarity, we will refer to the four-FPGA setup

as the “Non-Loopback Setup.” From this point onward, any

mention of this setup will be under this name. Conversely,

the loopback prototype system on the Arria 10 SoC FPGA

board, depicted in Figure 1, will be referred to as the “Loopback

Setup.”

The Arria 10 SoC FPGA is specifically designed to develop

high-performance networking applications. Its high-performance

FPGA fabric allows complex designs and a wide range of high-

speed interfaces, including transceiver links (Hitek Systems LLC,

2021). The board consists of four SFP+ (small form-factor

pluggable ports) for 10G/1G interfaces and dual QSFP+ (quad small

form-factor pluggable ports for 40G interfaces (CablesAndKits,

2023). The prototype functional verification design has been

implemented on this FPGA by loopback in transceivers links

into the same SoC FPGA, as shown in Figure 1. We have used

10G transceiver link interconnects in the design. Our choice of

high-speed transceiver links for our multi-FPGA setup hinges

on their fast data rates, low latency, extended reach, and high

reliability. These links can move data at gigabit speeds, crucial

for the high-volume data transfers needed between FPGAs. They

also offer low-latency data transmission, key for efficient inter-

FPGA communication, and include error-handling features for

dependable data flow (Stackler et al., 2018; Venkata et al., 2013). To

clarify the system’s timing approach, the proposed design operates

as a locally synchronous architecture with a single, shared clock

domain. All components in the system are synchronized to this

clock, ensuring consistent timing across the design. The system

operates at a frequency of 100 MHz.

3.1 Router structure

The block diagram of the router structure is shown in

Figure 2. As shown in Figure 2, each router handles nine inputs

and nine outputs, forming eighteen input-output ports for data

transmission. The key advantage of the router is that it can

be configured for any level of hierarchy in the system by

specifying the level and index of the router as a configurable

parameter. This configuration flexibility allows the same router

to be used at multiple levels of the hierarchy, eliminating the

need to create multiple routing models for different levels of

the system. Therefore, a configurable router provides greater

flexibility and scalability in the design of a system, allowing for

easier modifications and adjustments to changing design scalability

requirements. It is important to note that in this context, changes

necessitate recompilation of the design, as it does not support

runtime reconfigurability. The router consists of eight input

ports designed to receive data from a lower level, forming a

configuration resembling a star cluster. Moreover, one input port

is exclusively designated for communication with the upper or

higher-level router. Employing a store-and- forward flow control

mechanism, the router stores incoming data within nine FIFOs,

subsequently forwarding this data based on the corresponding

control mechanism. Specific threshold levels are defined for each

input FIFO to ensure data integrity. For instance, if the FIFO width

is set at 1,024 (1k), the threshold is established at 1,012 to ensure

there is enough room to accommodate another packet, as each

packet contains twelve flits. Once this threshold is reached, a signal

is triggered to indicate that the FIFO is reaching its capacity. This

signal warns the transceiver’s RX FIFO, prompting it not to read

out data to prevent the loss of incoming data. Importantly, data is

only written to the input FIFOs if they are not already nearly full.

The incoming data’s format is referred to as “flits,” as described

in more detail under the Data Transfer Format section. These
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FIGURE 2

Simplified block diagram of the router: this diagram illustrates the architecture of the router, showcasing nine input FIFOs and nine output FIFOs

responsible for managing 18 input-output ports, ensuring smooth data transmission. The RW_Controllers block facilitates data reading from the

input FIFOs and exerts control over data writing toward the specified output direction. In every clock cycle, the Arbiter utilizes the input data usages

from the read FIFOs to make decisions regarding granting requests.

flits possess a width of 64 bits, aligning with the chosen 64-

bit width of the input FIFOs. The read FIFOs function under

an Asynchronous First Word Fall Through condition, ensuring

that data is available at the output port before the read request

signal is asserted. Consequently, both the routing logic and the

RW_Controllers block receive the subsequent read-ready data from

the input FIFOs.

The routing logic component in the block diagram presents

the responsibility of hierarchical tree-based network routing or

hierarchical addressing. In hierarchical routing, the address space is

divided into a hierarchical structure, with each level of the hierarchy

denoting a distinct level within the network topology. When a

packet flit undergoes routing via the hierarchical approach, the

decision on where to route it depends on the hierarchical address

of the target node. The routing algorithm first checks whether

the destination node is in the same cluster or subnetwork as

the current node. If it is, the packet is directly forwarded to the

destination node. If not, the packet is forwarded to the next level

of the hierarchy, either higher or lower, depending on the address

of the destination node. Based on the routing logic decisions,

each input FIFO-related routing logic block keeps sending the

requests to the arbiters. There are nine arbiters for the output

and nine port directions to grant requests for multiple access

to the relevant side. Based on that, the RW_Controllers receive

the grant signals and decide which FIFOs’ read requests should

be asserted to avoid conflicts. Moreover, RW_Controller is also

responsible for writing requests asserted for output FIFOs based

on the read data asserted and which direction output FIFO should

be asserted.

Each input FIFO is linked to a separate routing logic and

RW_Controllers block from the other input FIFOs. During each

clock cycle, the stochastic process takes into account the number

of words stored in each input FIFO. This consideration aids in the

selection of a priority port. In essence, every clock cycle involves

the shuffling and comparison of the number of words in each

FIFO. In cases where all FIFOs contain an equal number of words,

a random selection process determines which one gains priority

for sending data in a specific direction. This comparison-based

procedure leads to a scenario in which mostly filled FIFOs are

more likely to be granted an opportunity to read out and write in a

particular direction during each clock cycle.

The Arbiter efficiently manages the simultaneous granting of

selection requests for output port directions, effectively avoiding

conflicts that may arise from multiple write accesses to the same

output direction. The arbitration and control mechanism’s function

is detailed under the Arbiter sub-section.

3.2 Data transfer format

In our custom protocol designed for use in a neuromorphic

system, spikes are transmitted between neurons and synapses

using an efficient AER-based NoC packet transmission method.

The protocol transforms AER data messages into 64-bit width

units, known as flits, which are compatible with the parallel

inputs/outputs of the physical layer (PHY) transceiver link. The

number of flits that comprise a message depends on total data

capacity of the message itself. For instance, a message containing
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FIGURE 3

Routing logic pseudocode. Here, “Level” is the signal received for each router; for instance, it can be 1, 2, or 3, corresponding to the respective level,

and the “index” is the router’s index in each level of the hierarchy. For level 1, this is 0 to 7; for level 2, this is 0 to 1. Once the destination node’s level

range is determined based on [59:57], [62:60], and the 63rd bit of FIFO_read_data, respectively, for level 1, level 2, and level 3, the destination index is

further determined.

512 bits of event data, along with an additional 100 bits for header

information, would be broken down into one header flit and

nine tail flits for transmission. The header flit, which contains the

source and destination address, is transmitted first, followed by

the tail flits, resulting in a total of ten flits for a 612-bit message.

The position and sequence of these flits are indicated by Tail

bits/Control bits in the four least significant bits of each flit. The

control bit “0000” signifies a header flit, and subsequent control

bits from “0001” to “1001” represent the sequence of the tail flits,

ensuring the correct encoding and ordering of the message data.

3.3 Routing logic

Routing logic is the heart of the routing function and

is responsible for hierarchical tree-based network routing or

hierarchical addressing. The initial seven bits of the header flit

represent the data read from FIFO_read_data [63:57], with these

bits indicating the destination address within the hierarchy of

128 nodes. Consequently, the role of the routing logic block

encompasses decoding the destination address from the header flit

and initiating a request to the designated output port.

The “level” and “index,” shown in red in Figure 2, are

configurable parameters that allow the same router to be used at

multiple levels of the hierarchy. Every FIFO reads data directed to

the routing logic block to determine its output port direction. The

pseudocode used in the routing logic block is shown in Figure 3.

Based on the seven destination bits in FIFO_read_data [63:57], the

first three least significant bits can be taken as the Level 1 index

number. The subsequent three bits represent the Level 2 index

number, while the final most significant bit represents Level 3. If

a specific router level matches the readout data level, one should

first verify if the node direction belongs to the same router cluster.

If so, the output direction is chosen based on the FIFO_read_data

[59:57] bits.

3.4 Arbiter structure

This work proposes a novel arbiter technique to address the

latency issue caused by the contention congestion and improve

the design’s latency performance. The Arbiter receives nine sets

of FIFO Usage Data from all nine input FIFOs and a nine-bit

Request signal, which indicates which FIFO is requesting access in

the Arbiter-assigned direction. The Arbiter stochastically compares

the FIFO Usage Data and identifies the highest priority channel,

referred to as the “Priority Channel.” If all the FIFO Usage Data

are the same, and the Request is high for a specific direction, the

Arbiter stochastically selects which one should be designated as

the “Priority Channel” during that clock cycle. In this manner,

the Arbiter continuously monitors data within the input-side

FIFO queues using these signals and grants write requests to the

appropriate output ports based on the number of words available in

each FIFO that is requesting access. Furthermore, the Arbiter takes

into account the availability of buffer space in a specific direction

during each clock cycle when making a decision.

A critical component of this system is the Read Write State

Machine (RW_SM), as depicted in Figure 4. Specifically, it manages

read request grants from input FIFOs and write request grants for

the desired output ports. The objective is to attain conflict-free

access for every port. Within the context of a nine-port router,

there exist nine RW state machines denoted as RW_SM_0 through

RW_SM_8, where the number corresponds to the respective input

port.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2025.1493623
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Perera et al. 10.3389/fnins.2025.1493623

FIGURE 4

Conflict control state machine diagram for handling conflicts when multiple inputs access a single output direction. (A) illustrates a scenario where

conflicts arise when multiple input FIFOs attempt to send packets to the same output direction. Each “In_FIFO” represents a queue holding packets

waiting to be routed. The numbers on the right-hand side of each FIFO indicate the intended output direction of the packet. The red numbers

highlight cases where multiple FIFOs are targeting the same direction, resulting in contention. (B) provides a simplified overview of the RW_SM state

machine. The RW_State determines the input FIFO read operation based on the “released” signal from a specific output and a write grant for reading

data in that direction. The “Busy_Indicator” signal is a global signal within a single router node that continuously monitors the write bus.

Each RW_SM relies on a signal called the “Busy_Indicator,”

which monitors the write-busy state of output FIFOs. By utilizing

the Busy_Indicator and Priority Channel signals, which represent

grant signals from Arbiters, the RW_SM determines whether to

activate the write signal for the target output channel of the

currently requested data. While the RW state machine is in the

read state, granting aWrite request for the desired output direction

requires satisfying at least one of two conditions. First, the input

port number must match the input port number of the currently

selected Priority Channel. Second, the requested output direction

must not be busy, as signaled by the Busy_Indicator. This signal

continuously monitors for conflicts when accessing the same

direction. The RW_SM facilitates the transfer of read data to the

intended output direction through the crossbar by utilizing the

asserted write signal. Simultaneously, another read request can be

granted. If neither condition is met, both the read and write request

signals continue to persist until one of the conditions becomes true.

This approach minimizes data loss and eliminates the need for

intermediate buffer switches. Efficiency is improved by deferring

the reading of new data until the current data are successfully

written in the intended direction.

Simultaneous operation of all RW state machines leads to

parallel processing, allowing for the simultaneous reading of

multiple input channels and writing to the maximum feasible

number of grants in each clock cycle. Additionally, prioritizing

the most densely-populated input FIFOs (those containing the

maximum number of words) during each clock cycle effectively

contributes to alleviating buffer congestion.

Our arbitration process simultaneously supports many inputs

and output channel read-write grants by computing buffer-used

indexes. Supporting multiple-read request grants to avoid conflicts

is not a novel concept. Still, the novelty of our arbiter mechanism

is that the arbitration process involves the router FIFO’s data

levels for the multiple-read grants using a stochastic process. This

simultaneous multi-output channel request grant causes a decrease

in latency and throughput performance because considering the

buffer utilization levels reduces congestion in the buffers.

3.5 Computational core: function and
interface

In our design, the routing architecture is intended to support

the implementation of SNNs. For testing and validation purposes,

we utilize dummy processors to inject traffic into the system,

simulating the behavior of neural networks.

Within this context, when a neuron receives sufficient input

from its incoming signals within a short period of time, the

membrane potential crosses a threshold, which initiates an

electrical signal called an action potential. An action potential is

also referred to as an “event” or a “spike.” The Computational cores

in the design are responsible for generating event data based on the

firing rates and engine connection parameters. We employ a Leaky

Integrate-and-Fire (LIF) (Brunel and Rossum, 2007; Lu and Xu,

2022) neuron model in the computing nodes or dummy processors

to generate event data. The dummy processors, adapted from the

work presented in Wang et al. (2018), are used to inject traffic

into the proposed routing architecture, to verify the architecture’s

correct operation. Each dummy neural processor consists of a
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FIGURE 5

Overview of the dummy processor in the computation core. Sixteen

neural engines are arranged in parallel within the system to enhance

the processing capacity. Each dummy processor contains an

interface module responsible for converting AER data into random

event packets.

total of 512,000 (512k) LIF neurons, distributed across its neural

engines using a Time-Multiplexed (TM) approach. These engines

generate stimuli by adjusting firing rate parameters. Additionally,

by employing dummy processors instead of complete processors,

we can optimize resource utilization to test processing nodes’ inter-

communication for a scalable system emulation. This optimisation

enables the implementation of more dummy processor nodes in

the loopback prototype system on the same FPGA board, effectively

illustrating a scalable system. In future work, the dummy processors

will be replaced by actual neural processor nodes.

The LIF network modeling integrates input currents over time

and generates a spike when the membrane potential reaches a

threshold. After spiking, the membrane potential is reset to a

resting state. The dummy processor overview is shown in Figure 5.

There are 16 neural engines connected in parallel in the system.

Each neural computing core receives incoming address event data

and generates outgoing address event data. Linear Feedback Shift

Registers (LFSRs) are used to generate a pseudo-random sequence

of bits, which compare with the firing rate configurable parameter

given to each processor to generate the events. This allows the firing

rate parameter to control the probability of spike generation per

time step.

This Computational core module consists of an interface

module for each dummy processor, which generates random event

packets. Each eventmessage data has a header (101 bits) and 512-bit

event data. These data flits are transferred to the Router to send it to

the corresponding destination. The bits [67:64] of the header define

the index of the destination FPGA board. We use only one header

when transmitting data to simplify the data structure and minimize

overhead. By examining bits [67:64], we determine the destination

of the incoming message data. Subsequently, we modify the

message to align with the data transfer format, ensuring it includes

just one header. The different experimental setups measure the

performance of the design with different traffic forward directions.

To demonstrate our concept, we utilized the Arria 10

FPGA board. The Arria 10 SoC FPGA is designed explicitly

for high-performance networking applications and supports a

broad range of high-speed interfaces, including transceiver links

(Hitek Systems LLC, 2021). This makes the Arria 10 particularly

suitable for prototype development and concept testing, as it can

efficiently handle the demanding requirements of these early-stage

applications. However, the proposed concept will be used to scale

up and experiment with large-scale neuromorphic supercomputer,

called DeepSouth, which is built to enable the emulation of large

networks of spiking neurons to simulate processing in the human

brain (DeepSouth, 2024). DeepSouth hosts 92 Bittware cards with

an Intel Stratix 10 FPGA each. The FPGAs are configured to

emulate spiking neural networks in parallel (DeepSouth, 2024).

4 Experimentations and results

4.1 Experimental setup

The PC used for all the experiments in this work had the

following specifications: a MacBook Pro with a 2.7 GHzQuad-Core

Intel Core i7 processor and 16GB of RAM. Intel Quartus Prime

18.0 SE was utilized for FPGA design, synthesis, and programming.

The Intel Quartus Prime software was installed on a Linux-based

operating system that ran as a virtual machine on the PC. SignalTap

was used for design verification and data collection.

A prototype design was implemented to demonstrate the proof

of concept for a scalable architecture using four FPGA boards.

This setup employs two FPGAs from the Arria 10 device family:

10AS066 and 10AX115. Additionally, the design incorporates two

Terasic DE5-NET boards, each featuring the Intel Stratix V 5SGX

EA7N2F45C2model. For each of the lower-end FPGAs, the Terasic

DE5-NET board is equipped with four 10G transceiver links.

Consequently, we can implement four processors on one board.

Using two boards we can accommodate eight processors in the

Level 1 (L1) cluster. This is why we selected two Terasic DE5-

NET boards for the prototype design. For the next level, specifically

Level 2 (L2), our requirement was an FPGA board specifically

designed for high-performance networking applications. It should

possess ten 10G high-speed interfaces. This includes transceiver

links: eight to connect to the lower dummy processors and one

to communicate with the upper-level router, thus establishing a

single cluster prototype design. Therefore, we chose the Arria 10

SoC FPGA for Level 2, which allows us to utilize 12 10G transceiver

links on a single board. Furthermore, for our final design in the

future, we plan to use the Arria 10 SoC board for Level 3 as well.

When dealing with 128 nodes, one L2 board consists of eight L1

routers and should be able to communicate with neighboring L1

boards; therefore, it requires nine links per board. However, for

the current prototype with eight dummy designs, we used the

Arria 10-GX board for the Level 2 hierarchy since it only requires

a single transceiver interface for one L1 cluster. The 10G High-

speed transceiver optical fiber cables facilitate communications

between the implementation nodes and routers, as well as inter-

router communications. High-speed transceiver optical fiber cables

are used for the prototype implementation for both node-to-router

and inter-router communications.
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FIGURE 6

Experimental setup. (A) High-Level Tra�c Flow: Each dummy processor sends tra�c data to node two as its destination. Arrowheads represent the

flow of tra�c between nodes. (B) Hierarchical Representation of Routing Topology: A circle marked with an “R” signifies an L1 or L2 router, and each

L1 cluster comprises eight dummy processors. Numbered circles in the L1 cluster represent processor nodes. Consistent node labeling and clear

arrows are used to improve clarity. Note that nodes are numbered sequentially within each L1 router, starting from node 0 in the first L1 router and

progressing to subsequent nodes in the next routers. The “R” circles indicate routers at di�erent levels of the hierarchy.

The proposed hierarchical architecture is designed to support

one-to-many and many-to-one communication. Fan-in (all nodes

to one node) is achieved by aggregating data through hierarchical

levels, where each L1 router collects packets from its connected

nodes and forwards them to its parent L2 router, ensuring delivery

to the target node. Similarly, fan-out (one node to all nodes)

is inherently facilitated by leveraging intermediate routers for

packet replication and forwarding. For instance, in the 32-node

system illustrated in Figure 6, the hierarchical levels enable efficient

communication. Each L1 router handles eight connected nodes,

and the L2 router connects the four L1 routers. In a fan-in scenario,

all nodes can communicate with a single target node by routing

packets through their respective L1 routers, which aggregate the

data and forward it to the L2 router. In a fan-out scenario, a single

source node can send data to all 32 nodes by replicating packets at

the L2 router, which forwards them to the appropriate L1 routers

for distribution to the connected nodes. For example, in a 32-node

system, the fan-out is 32, allowing a single node to send data to

all other nodes. Similarly, in a 128-node configuration, the fan-out

scales to 128, enabling communication with all nodes in the system.

4.2 Latency analysis

The prototype design is depicted in Figure 7. The right side

of Figure 7 illustrates the block diagram of the prototype design,

which is presented in a hierarchical architecture as depicted on the

left side. The three hierarchical levels are illustrated in the prototype

system where one level one router and one level two router and the

lowest level eight traffic injecting nodes are implemented. Board 1

and Board 2 communicate with 10 G fiber optic cable, and lowest

level Board 3 and 4 communicate with Board 2 using two 40G to

4x10G breakouts optical fiber cables. Both Arria 10 GX and SoC

devices support a chip-to-chip data rate ranging from 1.0 to 17.4

Gbps per lane in different configurations. For the purposes of this

work, all FPGAs utilize the 10.3125 Gbps data rate configuration.

In our research, we implemented an experimental setup for data

collection, referred to simply as “Experimental Setup.” This setup

features 32 dummy processor nodes which indicate the direction

of traffic injection. While the initial representation may suggest a

32-node system, it is important to note that the actual experiments

were conducted using a variety of node systems, all configured

in the same manner as the described “Experimental Setup” in

Figure 6. The intricacies and outcomes of this singular setup form

the basis of our experimental analysis.

4.3 The PHY latency emulation

As a proof of concept, we implemented an alternative setup

to test the proposed architecture with a different number of

nodes on the same Arria 10 SoC FPGA board. We measured
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FIGURE 7

The system setup. In the diagram, Board 1 is Arria 10 GX, Board 2 is Arria 10 SoC and lower Board 3 and Board 4 are StratixV FPGAs. 10G and 40G into

4x10G breakout cables are respectively in blue and orange colors.

the transceiver loopback experimental latency using the setup

illustrated in Figure 1. In this loopback system design, the inter-

node interconnects also communicate via 10G transceiver links.

The latency was calculated by measuring the number of cycles

transmit data took to reach the receiver side of the transceiver at

its loopback mode. The simulations were executed over 131,072

cycles, representing the maximum capacity for SignalTap. All the

transmit data was captured at both the TX and RX sides. Latency

was determined by exporting this captured SignalTap data. The

average latency of all packets processed by the router is depicted

in the histogram presented in Figure 8.

The average latency was 13.42 clock cycles, with the reference

clock frequency of SignalTap set at 100MHz. Therefore, the average

latency was 134.2 n seconds.

The experimental setup is based on Experimental Setup shown

in Figure 6. To calculate latency, we monitored the number of

cycles required for packets to travel from the source node to the

destination node. This process involved counting the clock cycles

until the data reached its destination. To facilitate this calculation,

we introduced a counter block, incrementing its value until the

expected data reached the destination. Once the precise data was

received, the next sending value was latched, the counter value was

reset, and the process continued.

Latency analysis was conducted for the four FPGA setup,

referred to as the Non-Loopback setup and the Loopback setup,

as shown in Figure 9. In the figure, the blue line represents the

Non-Loopback System, and the yellow dashed line represents the

Loopback System. The setup is similar to the experimental setup

shown in Figure 6, with the main difference being that it employs

up to eight dummy processor nodes. In this scenario, Node 0

initiates traffic injection at its maximum traffic ratio of 100%.

Subsequently, other nodes begin injecting traffic at the same 100%

ratio one after another, and the average latency is calculated.In the

Non-Loopback Setup, the 0th processor node on FPGA Board 3, as

depicted in Figure 7, sends traffic to the third node at its maximum

capacity, while all other nodes on both Board 3 and Board 4

sequentially begin sending traffic to the system at 100% capacity.

Both setups utilized eight nodes. In both systems, Node 0

initiates traffic injection at a 100% traffic ratio when the other nodes

are silent. Subsequently, the remaining nodes sequentially initiate

traffic injection at the same 100% ratio. The X-axis represents

the number of nodes initiating traffic at a 100% traffic injection

ratio, while the Y-axis represents the average latency in seconds.

Noticeably, the latency exhibits an increasing pattern as the number

of nodes increases. Both plots exhibit similar characteristics, with

latency values ranging approximately from 0.9×10−6 to 2.9×10−6

s. The results display latency for the case when the system operates

at 100 MHz.

The comparison between Non-Loopback and Loopback

systems, which were implemented on the Arria 10 SoC board,
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FIGURE 8

Latency histogram of PHY emulation. The X-axis shows latency clock cycles, and the Y-axis shows bin count per Y-axis value. The accompanying

box plot below illustrates the distribution of latency values, highlighting the median (red line), interquartile range (light orange box), and potential

outliers (black circles).

FIGURE 9

Comparison between Non-Loopback System and Loopback System. The Non-Loopback system is the design setup used in Figure 7, and the

Loopback system is shown in Figure 1. Both setups used eight nodes. Node 0 initiates tra�c injection at a 100% tra�c ratio when other nodes are

silent. Subsequently, the remaining nodes sequentially initiate tra�c injection at the same 100% ratio.

reveals that the latency of the Loopback system is slightly

greater than that of the Non-Loopback system. This difference

is reasonable, considering that in the FPGA setup, each node

has its dedicated duplex transceiver link for transmitting and

receiving data without sharing. In contrast, the loopback

system involves shared utilization of the same link among

multiple nodes. Consequently, in the loopback system,

each data set experiences a certain amount of waiting time

before it can be transmitted or received due to the shared

nature of the link. Despite the slight difference in latency,
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FIGURE 10

Latency analysis of a 16-node system. The experimental setup for latency analysis and tra�c injection direction is similar to the setup depicted in

Figure 6. In this scenario, Node 0 initiates tra�c injection at a maximum tra�c ratio of 100%. Subsequently, other nodes sequentially inject tra�c at

the same 100% ratio. Latency trends in a loopback system as nodes are sequentially activated. The results show that latency increases incrementally

with up to seven active nodes. Beyond this point, latency transitions into a stabilization phase, likely due to the system’s ability to e�ciently distribute

load and reach steady-state performance.

FIGURE 11

Latency comparison between designs with 1k and 4k input FIFO lengths, as a function of tra�c injection percentage across all nodes (from 10% to

100%). The blue plot represents the latency of the design with 1k input FIFOs, while the orange dash plot represents the latency of the design with a

4k input FIFO system. The results indicate that the 4k FIFO design achieves slightly lower latency at most tra�c injection rates, suggesting an

incremental advantage in handling network loads.

the actual latency can be predicted based on the analysis

conducted.

Figure 10 presents the latency analysis for the 16-node system,

where each node initiates traffic injection at a 100% rate, one

by one. In the plot, nodes 1 through 15 sequentially commence

packet data injection into the network in the direction of

Node 2. Subsequently, the average latency is computed for each

traffic scenario. These experiments are performed using the

experimental setup depicted in Figure 6 and are conducted on the

Loopback Setup.

Figure 10 illustrates a latency variation pattern among 16 nodes,

where traffic injection begins at a 100% rate. Latency significantly
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FIGURE 12

This figure shows how bandwidth changes as the tra�c injection percentage increases from 10% to 100% for a single node. It give insights how the

system performs under di�erent tra�c conditions, from average to maximum load.The linear trend aligns with the theoretical maximum bandwidth

of the system, confirming its e�ciency under full load conditions when operating at 100 MHz.

increases up to the seventh node and subsequently stabilizes at

∼2.25× 10−6 s.

The latency corresponding to two FIFO depth configuration

scenarios for a 32-node system is depicted in Figure 11. We have

used the setup of Figure 6 for this measurement with all nodes

injecting traffic data into the system at incremental percentages

of 10%, 20%, etc. The blue line in the graphs represents latency

measurements as they vary with different traffic ratios for the

routing architecture utilizing 1,023 (1k) data flow FIFOs in the

router. Conversely, the orange line illustrates latency variation with

different traffic ratios for the routing architecture employing 4,096

(4k) data flow FIFOs in the router.

In both scenarios, latency increases as the traffic injection ratio

rises. The average maximum latencies recorded are 2.07 × 10−6 s

for the system utilizing 1k FIFOs, and 3 × 10−6 s for the system

using 4k FIFOs. We can define these as the worst case of latency

since in these experimental setups, we identified the worst-case

scenario as all nodes operating at their maximum traffic injection

rate (100%), fully utilizing the system’s bandwidth. This condition

represents the highest load the system can handle and provides a

reference for evaluating its performance limits.Furthermore, there

is no significant latency variation between these two scenarios

respectively.

In this context, we have further analyzed the bandwidth

variation as the traffic injection percentage increases from 10

to 100% for a single node. This is presented in Figure 12,

which highlights how the system’s bandwidth utilization evolves

under varying traffic conditions. By illustrating the bandwidth

trends, the figure provides insights into both average and

high-load conditions.

When all processor nodes simultaneously inject traffic at

their maximum capacity (100%) toward a single destination,

we consider the system to be operating under its maximum

load condition for that direction. This situation represents the

highest load the system can handle and defines its performance

limits. This scenario, referred to as the worst-case scenario,

aligns with the experimental setup as shown in Figure 6, where

the full system bandwidth is utilized for traffic directed into a

single destination.

4.4 Round robin vs. stochastic

The proposed architecture, featuring a stochastic arbiter, is

compared with an equivalent hardware setup that utilizes round-

robin arbiters. A 32-node routing architecture was employed for

the latency analysis. In this data collection setup, each dummy

processor sequentially sends traffic data to the subsequent node

as its destination. Both experiments were conducted on the same

setup, and data collections were carried out in an identical

architecture, with the only variable being the arbitration techniques

employed.

Figure 13 presents a comparison of the latency between the

routing architecture with the round-robin arbitration technique

and our stochastic arbitration technique, with both data sets

plotted on the same graph. By examining this combined graph,
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FIGURE 13

Latency measurements for the design using round-robin arbiters vs.

stochastic arbiters.

TABLE 1 Resource utilization on Arria 10 SoC FPGA (including

processors).

Node
configuration

Logic utilization
(ALMs) 251,680

Total block
memory bits
43,642,880

16 nodes 50,558 (12%) 3,026,944 (7%)

32 nodes 96,790 (22%) 3,387,392 (8%)

64 nodes 189,335 (44%) 4,108,288 (9%)

we can analyse and compare the results to better understand the

worst-case latency when all nodes inject traffic into the system.

It is evident that the stochastic process has less than half the

latency of the round-robin arbitration technique. To provide a

robust statistical comparison, we conducted a series of t-tests

at each traffic injection rate to assess the significance of the

observed differences between the two arbitration techniques. The

p-values resulting from these tests were evaluated, and data points

where the stochastic arbitration outperformed the round-robin

arbitration with statistical significance (p< 0.05) are marked on the

graph with an asterisk (*). This analysis highlights the consistent

latency reduction achieved by the stochastic arbitration technique

while validating that the observed improvements are statistically

significant.

4.5 Resource analysis

This section delves into the resource analysis for various

process nodes and routing configurations within the loopback

prototype design implemented on the Arria 10 SoC FPGA. The

analysis includes resource utilization metrics for systems both

with and without dummy processor computing cores, as well as a

comparison of logic size and complexity between the Round-Robin

and Stochastic arbiters (Tables 1–3). Specifically, Table 1 presents

the resource utilization on the Arria 10 SoC FPGA, including

processors, for different node configurations. Table 2 provides the

resource utilization excluding processors, and Table 3 compares the

logic utilization and total registers between the Round-Robin and

Stochastic arbiters.

TABLE 2 Resource utilization on Arria 10 SoC FPGA (excluding

processors).

Node
configuration

Logic utilization
(ALMs) 251,680

Total block
memory bits
43,642,880

16 nodes 12,928 (5%) 3,043,328 (7%)

32 nodes 17,817 (7%) 3,403,776 (8%)

64 nodes 27,667 (11%) 4,124,672 (9%)

TABLE 3 Logic utilization and total registers comparison between round

robin and stochastic arbiters.

Round robin
arbiter

Stochastic
arbiter

Logic utilization (ALMs) 47/251,680 (<1%) 182/251,680 (<1%)

Total registers 13 53

5 Discussion

Ourmotivation for this work is to develop a scalable design that

achieves low-latency communication, which is crucial for effective

inter-FPGA communication in brain-scale simulations. A scalable

design ensures that the system can handle the growing complexity

and volume of data, while minimizing delays in data transfer is

essential for managing the extensive interactions required in such

simulations. To this end, our arbitration technique is designed

to minimize buffer congestion by considering the buffer depth at

each clock cycle. This approach directly reduces latency. According

to authors’ knowledge, Astrobyte and SNAVA do not deploy any

specific strategies to handle congestion on their designs; the work

presented in Bluehive aims to keep the network lightly loaded

to reduce the risk of congestion and achieve low-latency routing

based on that strategy. However, it is difficult to find sufficient

information to compare latency and throughput analysis with

Bluehive and SNAVA, as there is limited data available.

In summary, this paper details the multi-FPGA architecture

proposed in our work. The proposed architecture employs a NoC-

based hierarchical routing approach with a unique arbitration

technique. The design covers several aspects. These include router

structure, routing logic, data transfer protocol, and arbitration

technique. It also focuses on inter-FPGA data communication

methods and computing cores used within the design’s nodes.

This paper evaluates the performance of the multi-FPGA platform.

A sample prototype design using two Arria 10 FPGAs and two

Stratix V FPGAs illustrates the hierarchical-level communication

and scalable routing platform. The prototype design is evaluated

with relevant metrics and data. The data from our four-

FPGA non loopback prototype design has been compared with

a loopback prototype design implemented on Arria 10 SoC

FPGA. We explain the experimental setups used for performance

calculations, showcasing figures on latency. According to the

latency performance, our architecture guarantees low latency for

various experimental setups.

The work we have presented here compares a routing

architecture using round-robin arbiters by replacing our proposed
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TABLE 4 Comparison between Bluehive, SNAVA and AstroByte.

Bluehive SNAVA AstroByte This work

Topology 3D Torus Ring Mesh Hierarchical

Tree

Boards/nodes 16 2 4 128*

Arbitration N/A N/A Round-

robin

Stochastic

approach-

based

arbitration

tequenique

Routing

scheme

Dimension-

ordered

New XY Dimension-

ordered

HDL

language

BSV-

Bluespec

System

Verilog

N/A VHDL Verilog

Board to

board

bandwidth

(per link)

6Gbps N/A 4.8Gbps 10.3Gbps

Interconnect

method

SATA cable Ethernet

cable

SATA cable Optical fiber

cable

FPGA-to-

FPGA mean

latency

10 clk cycles N/A N/A 13 clk cycles

∗The proposed architecture consists of 128 nodes. A system with up to 104 nodes on the

prototype loopback system has been implemented and analyzed in our work.

stochastic arbiters with round-robin arbiters. When comparing the

latency performance of two routing architectures under maximum

load, our proposed stochastic arbiter-based work shows a notable

improvement over the round-robin system. The worst-case latency

for a system utilizing round-robin arbiters reaches up to ∼6.75 ×

10−6 s when all nodes are sending traffic at 100% capacity. On the

other hand, our system exhibits a worst-case latency of around 2.7×

10−6 s under the same conditions. Hence, our proposed system

reduces the worst-case latency by about 60% compared to the

system that utilizes round-robin arbiters, highlighting its efficiency

in managing high-traffic loads. Additionally, a comparison of

design specifications is provided for the proposed system and

three other approaches: AstroByte (Karim et al., 2020), SNAVA

(Sripad et al., 2018), and Bluehive (Moore et al., 2012). These

multi-FPGA platforms are designed for SNN simulations and

offer varying levels of programmability. Since these systems were

implemented with a diverse range of approaches, each has its

advantages and disadvantages. The comparison of specifications is

shown in Table 4.

The primary innovation of the proposed architecture, aimed

at achieving low latency, resides in a stochastic process-based

arbitration technique. This technique monitors the number of

awaiting queues in each input-output FIFO at every clock cycle,

effectively controlling FIFO reading and thereby enhancing latency.

Through the combination of the arbitrator technique and the

hierarchical routing flexibility, the system demonstrates significant

improvements in latency performance.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

SP: Investigation, Methodology, Software, Validation, Writing

– original draft, Writing – review & editing, Conceptualization.

YX: Supervision, Writing – review & editing, Conceptualization,

Methodology, Project administration, Resources. AS: Supervision,

Writing – review & editing, Conceptualization, Funding

acquisition, Methodology, Project administration, Resources.

RW: Supervision, Writing – review & editing, Conceptualization,

Funding acquisition, Methodology, Project administration,

Resources, Investigation.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bos, H., and Muir, D. (2022). Sub-mw neuromorphic SNN audio processing
applications with rockpool and xylo. arXiv [Preprint]. Available at: https://arxiv.org/
abs/2208.12991

Brunel, N., and Rossum, M. C. V. (2007). Quantitative investigations of
electrical nerve excitation treated as polarization. Biol. Cybern. 97, 341–349.
doi: 10.1007/s00422-007-0189-6

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2025.1493623
https://arxiv.org/abs/2208.12991
https://arxiv.org/abs/2208.12991
https://doi.org/10.1007/s00422-007-0189-6
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Perera et al. 10.3389/fnins.2025.1493623

CablesAndKits (2023). What are the differences between SFP, SFP+, QSFP
and QSFP+? Available at: https://www.cablesandkits.com/learning-center/differences-
between-sfp-qsfp (accessed March 31, 2023).

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-
Icaza, R., et al. (2013). “Cognitive computing building block: a versatile and
efficient digital neuron model for neurosynaptic cores,” in Proceedings of the
International Joint Conference on Neural Networks (Dallas, TX: IEEE), 1–10.
doi: 10.1109/IJCNN.2013.6707077

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

DeepSouth (2024). The world’s first neuromorphic supercomputer at the scale of the
human brain. Available at: https://www.deepsouth.org.au/ (accessed March 19, 2024).

Fang, H., Shrestha, A., Ma, D., and Qiu, Q. (2018). “Scalable noc-based
neuromorphic hardware learning and inference,” in Proceedings of the International
Joint Conference on Neural Networks, volume 2018 (Rio de Janeiro: IEEE), 1–8.
doi: 10.1109/IJCNN.2018.8489619

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S.,
et al. (2013). Overview of the spinnaker system architecture. IEEE Trans. Comput. 62,
2454–2467. doi: 10.1109/TC.2012.142

Hitek Systems LLC (2021). Arria 10 SoC Development Module. Technical PDF
Available at: https://hiteksys.com/fpga-and-soc-development-boards/intel/arria10-
soc-development-module (accessed May 10, 2024).

Hu, W.-H., Lee, S. E., and Bagherzadeh, N. (2008). “Dmesh: a diagonally-linked
mesh network-on-chip architecture,” in Conference on Embedded and Ubiquitous
Computing (EUC) (Irvine, CA), 123–130.

Innatera (2024). Spiking Neural Processor T1. Available at: https://innatera.com/
products/spiking-neural-processor-t1 (accessed November 28, 2024).

Intel Corporation (2021). Taking neuromorphic computing with loihi 2 to the
next level technology brief. Technical report. Intel Corporation. Available at: https://
www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-
technology-brief.html (accessed July 4, 2024).

Javanshir, A., Nguyen, T. T., Mahmud, M. A., and Kouzani, A. Z. (2022).
Advancements in algorithms and neuromorphic hardware for spiking neural networks.
Neural Comput. 34, 1289–1328. doi: 10.1162/neco_a_01499

Kamal, R., Nehra, V., and Goyal, P. (2012). Network on chip: topologies, routing,
implementation. Int. J. Adv. Sci. Technol. 4.

Karim, S., Harkin, J., McDaid, L., Gardiner, B., and Liu, J. (2020). Astrobyte:
multifpga architecture for accelerated simulations of spiking astrocyte neural networks.
Des. Autom. Test Europe 1568, 1568–1573. doi: 10.23919/DATE48585.2020.9116312

Karim, S. H. (2020). AstroByte: Programmable and Scalable Multi-FPGA
Interconnect infrastructure for Accelerated Simulations of Self-Repairing Spiking
Astrocyte Neural Networks (Phd thesis). Coleraine: Ulster University.

Kayarkar, A. V., and Khurge, D. S. (2016). a review on arbiters in router for the. Int.
J. Adv. Comput. Eng. Netw. 4, 32–34.

Liu, J., and Wang, C. (2009). “A survey of neuromorphic engineering -
biological nervous systems realized on silicon,” in 2009 IEEE Circuits and Systems
International Conference on Testing and Diagnosis, ICTD’09 (Chengdu), 1–4.
doi: 10.1109/CAS-ICTD.2009.4960772

Lu, S., and Xu, F. (2022). Linear leaky-integrate-and-fire neuron model based
spiking neural networks and its mapping relationship to deep neural networks. Front.
Neurosci. 16:857513. doi: 10.3389/fnins.2022.857513

Mayr, C., Hoeppner, S., and Furber, S. (2019). Spinnaker 2: A 10 million core
processor system for brain simulation andmachine learning. arXiv [Preprint]. Available
at: http://arxiv.org/abs/1911.02385 (accessed July 4, 2024).

McDaid, L., Harkin, J., Hall, S., Dowrick, T., Chen, Y., Marsland, J., et al. (2008).
“Embrace: emulating biologically-inspired architectures on hardware,” in Proceedings
of the 9thWSEAS International Conference on Neural Networks (NN’08) (Stevens Point,
WI: WSEAS), 167–172.

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar,
A. (2012). “Bluehive - a field-programable custom computing machine for
extreme-scale real-time neural network simulation,” in Proceedings of the 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2012 (Toronto, ON: IEEE), 133–140. doi: 10.1109/FCCM.20
12.32

Narayanan, P., Cox, C. E., Asseman, A., Antoine, N., Huels, H., Wilcke, W.W., et al.
(2020). Overview of the ibm neural computer architecture. arXiv [Preprint]. Available
at: http://arxiv.org/abs/2003.11178 (accessed July 15, 2024).

Park, J., Yu, T., Joshi, S., Maier, C., and Cauwenberghs, G. (2017). Hierarchical
address event routing for reconfigurable large-scale neuromorphic systems. IEEE
Trans. Neural Netw. Learn. Syst. 28, 2408–2422. doi: 10.1109/TNNLS.2016.
2572164

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al. (2013). Six
networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 1–17.
doi: 10.3389/fnins.2013.00011

Richter, O., Xing, Y., Marchi, M. D., Nielsen, C., Katsimpris, M., Cattaneo, R.,
et al. (2024). Speck: A Smart Event-Based Vision Sensor with a Low Latency 327K
Neuron Convolutional Neural Network Processing Pipeline. arXiv [Preprint]. Available
at: https://arxiv.org/abs/2304.06793

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S.,
et al. (2017). A survey of neuromorphic computing and neural networks in hardware.
arXiv [Preprint], 1–88. Available at: http://arxiv.org/abs/1705.06963 (accessed June 20,
2024).

Sharp, T., Galluppi, F., Rast, A., and Furber, S. (2012). Power-efficient simulation
of detailed cortical microcircuits on spinnaker. J. Neurosci. Methods 210, 110–118.
doi: 10.1016/j.jneumeth.2012.03.001

Sheldon, R. (2000). What is SerDes (serializer/deserializer)? Available at: https://
www.techtarget.com/searchstorage/definition/SerDes# (accessed October 10, 2023).

Sripad, A., Sanchez, G., Zapata, M., Pirrone, V., Dorta, T., Cambria, S.,
et al. (2018). Snava—a real-time multi-fpga multi-model spiking neural network
simulation architecture. Neural Netw. 97, 28–45. doi: 10.1016/j.neunet.2017.
09.011

Stackler, M., Glascott-Jones, A., Pilard, R., and Chantier, N. (2018). Interfacing
FPGA with high-speed data converter using parallel and serial interface. Signal Integr.
J.

SynSense (2024). SynSense DYNAP-CNN. Available at: https://www.synsense.ai/
products/dynap-cnn/, (accessed November 28, 2024).

Venkata, S., Srilatha, K. M., Chakrapani, M. Y. S., Kamaraju, M., Pankaj, M. S. R.,
and Scientist ’f ’, K (2013). Design and implementation of high speed data transmission
over dual independent aurora channels on one gtx dual tile usingvirtex-5 FPGA. Int. J.
Sci. Eng. Res. 4.

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-
based massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.
doi: 10.3389/fnins.2018.00213

Wang, Z., Ma, S., Huang, L., Lai, M., and Shi, W. (2015). “Chapter 1: Introduction,”
in Networks-on-Chip. Elsevier. Available at: https://learning.oreilly.com/library/view/
networks-on-chip/9780128009796/B9780128009796000019.xhtml#s0035 (accessed
June 23, 2023).

Williams, L. (2023). Types of Network Topology: Bus, Ring, Star, Mesh,
Tree Diagram. Available at: https://www.guru99.com/type-of-network-topology.html
(Accessed October 10, 2023).

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2025.1493623
https://www.cablesandkits.com/learning-center/differences-between-sfp-qsfp
https://www.cablesandkits.com/learning-center/differences-between-sfp-qsfp
https://doi.org/10.1109/IJCNN.2013.6707077
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/IJCNN.2018.8489619
https://doi.org/10.1109/TC.2012.142
https://hiteksys.com/fpga-and-soc-development-boards/intel/arria10-soc-development-module
https://hiteksys.com/fpga-and-soc-development-boards/intel/arria10-soc-development-module
https://innatera.com/products/spiking-neural-processor-t1
https://innatera.com/products/spiking-neural-processor-t1
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.23919/DATE48585.2020.9116312
https://doi.org/10.1109/CAS-ICTD.2009.4960772
https://doi.org/10.3389/fnins.2022.857513
http://arxiv.org/abs/1911.02385
https://doi.org/10.1109/FCCM.2012.32
http://arxiv.org/abs/2003.11178
https://doi.org/10.1109/TNNLS.2016.2572164
https://doi.org/10.3389/fnins.2013.00011
https://arxiv.org/abs/2304.06793
http://arxiv.org/abs/1705.06963
https://doi.org/10.1016/j.jneumeth.2012.03.001
https://www.techtarget.com/searchstorage/definition/SerDes#
https://www.techtarget.com/searchstorage/definition/SerDes#
https://doi.org/10.1016/j.neunet.2017.09.011
https://www.synsense.ai/products/dynap-cnn/
https://www.synsense.ai/products/dynap-cnn/
https://doi.org/10.3389/fnins.2018.00213
https://learning.oreilly.com/library/view/networks-on-chip/9780128009796/B9780128009796000019.xhtml#s0035
https://learning.oreilly.com/library/view/networks-on-chip/9780128009796/B9780128009796000019.xhtml#s0035
https://www.guru99.com/type-of-network-topology.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Low-latency hierarchical routing of reconfigurable neuromorphic systems
	1 Introduction
	2 Related works
	3 Architecture
	3.1 Router structure
	3.2 Data transfer format
	3.3 Routing logic
	3.4 Arbiter structure
	3.5 Computational core: function and interface

	4 Experimentations and results
	4.1 Experimental setup
	4.2 Latency analysis
	4.3 The PHY latency emulation
	4.4 Round robin vs. stochastic
	4.5 Resource analysis

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


