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Background: Fall risk prediction is crucial for preventing falls in patients with 
cerebral small vessel disease (CSVD), especially for those with gait disturbances. 
However, research in this area is limited, particularly in the early, asymptomatic 
phase. Wearable sensors offer an objective method for gait assessment. This 
study integrating wearable sensors and machine learning, aimed to predict fall 
risk in patients with covert CSVD.

Methods: We employed soft robotic exoskeleton (SRE) to acquire gait 
characteristics and surface electromyography (sEMG) system to collect 
sEMG features, constructing three datasets: gait-only, sEMG-only, and their 
combination. Using Support Vector Machine (SVM), Random Forest (RF), 
Gradient Boosting Decision Tree (GBDT), and Neural Network (NN) algorithms, 
we  developed twelve predictive models. Furthermore, we  integrated the 
selected baseline data and imaging markers with the three original datasets to 
create three new integrated datasets, and constructed another twelve optimized 
predictive models using the same methods. A total of 117 participants were 
enrolled in the study.

Results: Of the 28 features, ANOVA identified 10 significant indicators. The Gait 
& sEMG integration dataset, analyzed using the SVM algorithm, demonstrated 
superior performance compared to other models. This model exhibited an area 
under the curve (AUC) of 0.986, along with a sensitivity of 0.909 and a specificity 
of0.923, reflecting its robust discriminatory capability.

Conclusion: This study highlights the essential role of gait characteristics, 
electromyographic features, baseline data, and imaging markers in predicting 
fall risk. It also successfully developed an SVM-based model integrating these 
features. This model offers a valuable tool for early detection of fall risk in CSVD 
patients, potentially enhancing clinical decision-making and prognosis.
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1 Introduction

CSVD is a syndrome characterized by a series of pathological and 
imaging changes caused by various factors impacting the small 
arteries, veins, and capillaries within the brain (Mo et al., 2024; Pasi 
and Cordonnier, 2020; Ter Telgte and Duering, 2024). It constitutes 
30% of strokes (Gorelick and Sorond, 2023; Kopczak et al., 2023) and 
can lead to dementia or mobility disorders (Duering et  al., 2023; 
Dupré et al., 2024; Pasi and Cordonnier, 2020; Wardlaw et al., 2019; 
Zwanenburg and van Osch, 2017). Severe gait disorders can lead to 
falls (Sharma et al., 2023), increase the risk of hospitalization and 
disability, and shorten life expectancy (Mo et al., 2024; Mo et al., 2023).

Walking is a demanding activity that requires coordination of 
many different motor skills, cognitive abilities, as well as other 
elements. Numerous studies have confirmed the inextricable link 
between gait and cognition. Moreover, research has shown that dual-
tasking leads to decreased walking speed and increased dual-task cost, 
and it provides a better prediction of dementia and a higher risk of 
falls compared to walking alone (Alzaid et al., 2022; Blumen et al., 
2023; Ceïde et al., 2018; Rosso et al., 2019). In daily life, we often need 
to handle multiple tasks simultaneously, such as talking while walking 
or listening to music while running. Therefore, compared to walking 
alone, Dual-Task Walking (DTW) is regarded as a more accurate 
indicator of one’s ability to perform daily activities (McIsaac et al., 
2018; Wajda et al., 2017).

Historically, owing to the constraints of evaluative methodologies, 
gait assessments have primarily focused on step speed (Markus and 
de Leeuw, 2023). However, advancements in wearable technology have 
led to the development of affordable and efficient sensors. These 
sensors, capable of capturing gait and sEMG data, enable the automatic 
and objective detection of gait impediments (Weizman et al., 2022). 
They are crucial for research in characterizing neurological gait 
patterns (Wuehr et al., 2020). SRE, a portable and lightweight mobility 
aid, can monitor gait parameters continuously during walking and 
aids in the recovery and endurance of impaired limbs (Awad et al., 
2020; Bae et al., 2018; Slade et al., 2022; Xie et al., 2023). In addition, 
sEMG, a non-invasive and real-time monitoring technique, allows for 
the assessment of muscle activation, contraction, and fatigue during 
walking (Wu et  al., 2024). This makes it a valuable tool in 
biomechanical studies. When integrated with machine learning (ML), 
sEMG becomes a promising method for the early detection and 
prediction of freezing of gait (FOG) in Parkinson’s disease patients 
(Elbatanouny et al., 2024; Yu et al., 2023).

CSVD gait disorders can lead to falls, and falls can increase the 
risk of hospitalization and mortality. In Europe, among the population 
aged 65 and above, there are 36,000 fatalities annually attributable to 
falls (Kancheva et al., 2024). The 2019 mortality data from the Chinese 
Center for Disease Control and Prevention indicate that falls are the 
second most common cause of death following traffic accidents, 
ranking 18th overall (Zhou et al., 2019). Moreover, approximately 
one-third of the residents aged 65 and older experience at least one fall 
per year, with some encountering multiple falls (Lewis et al., 2024). 
30% of injuries that result from falls require medical attention, and 5% 
of falls result in fractures. Thus, accurately assessing gait function and 
promptly identifying high-risk CSVD patients prone to falls 
is imperative.

Currently, research on fall risk associated with CSVD is limited, 
mainly focusing on its correlation with imaging markers. Among these 

studies, a significant finding is the correlation between white matter 
hyperintensities (WMHs) and falls (Alzaid et al., 2022; Blumen et al., 
2023; Crockett et al., 2021; Frisoni and van der Flier, 2023; Kancheva 
et al., 2024; Markus and de Leeuw, 2023; Mo et al., 2023; Sharma et al., 
2023). A few studies have found that asymptomatic lacunar infarcts 
are associated with a higher risk of falls (Choi et al., 2012; Sharma 
et al., 2023). Several scholars have applied scales such as Berg Balance 
Scale and Short Physical Performance Battery (SPPB) to assess fall risk 
in older adults (Chan et al., 2024), but these methods have a certain 
degree of subjectivity. In recent years, with the advancement of digital 
technology, an increasing number of scholars have been using digital 
technologies like sensors and mobile applications to predict fall risk in 
the elderly (Koh et al., 2024). However, most of these studies capture 
data during single-task walking, which is not conducive to the early 
detection of the disease’s subtle symptoms.

Research has confirmed that covert CSVD without overt 
neurological manifestations is not silent (Mancuso et  al., 2020; 
Wardlaw et  al., 2021), and they often have mild neurological 
symptoms. To induce the hidden gait abnormalities of covert CSVD, 
this study continuously monitor spatial–temporal gait parameters and 
muscular electromyographic activities of covert patients during dual-
task walking, employing sEMG and SRE. A fall risk prediction model 
for CSVD was constructed based on machine learning technology, 
with the aim of enabling early intervention, improved motor 
programs, and a decrease in fall risk.

2 Materials and methods

2.1 Participants

The data has been gathered at the Neurology Department of Hebei 
Provincial People’s Hospital since July 2023. For this study, the 
following inclusion and exclusion criteria were used to choose 
participants. Inclusion criteria: (1) Aged 50 years or above. (2) All 
participants underwent cranial MRI and satisfied the diagnostic 
standards of the Chinese Expert Consensus on the Diagnosis and 
Treatment of CSVD 2021 as well as the ESO Guideline on covert 
CSVD. (3) Be  able to walk independently and can cooperate to 
complete gait assessments. Exclusion criteria: (1) Exist confirmed 
evidence of large artery atherosclerosis. (2) Residual motor deficits 
due to previous stroke. (3) Inability to walk because of unstable vital 
signs or comorbid serious illness. (4) Conditions such as articular 
deformity, lumbar spondylopathy, traumatic injuries and others that 
can affect gait or balance. (5) Cannot complete cognitive dual-task 
tests owing to severe visual and auditory impairments. (6) Taking 
medicine known to influence walking. All participants gave their 
informed consent to participate in the experiment, with ethical 
approval granted by the local authorities (NO.2023–420). The research 
was conducted in accordance with the standards of the Declaration 
of Helsinki.

2.2 Clinical baseline characteristics 
assessment

Comprehensive medical histories and blood biochemical data 
were collected from all research subjects, with the findings 
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documented using a standardized evaluation protocol. Participants’ 
demographic profiles were compiled, encompassing details such as 
gender, age, height, body mass index (BMI), and educational duration. 
A thorough review of each individual’s medical history was conducted, 
focusing on conditions such as hypertension, diabetes, hyperlipidemia, 
coronary heart disease, and arrhythmias. Lifestyle factors, including 
smoking and alcohol consumption histories, were also recorded. The 
blood biochemical data were acquired, including levels of fasting 
blood glucose, glycated hemoglobin, OGTT2h, lipid profile, and 
homocysteine. During data collection, hypertension was defined as 
systolic blood pressure ≥ 140 mmHg and/or diastolic blood 
pressure ≥ 90 mmHg on three separate occasions without the use of 
antihypertensive medication, or as individuals with a previous 
diagnosis of hypertension who are on antihypertensive medication. 
Diabetes was defined as fasting blood glucose level ≥ 7.0 mmol/L, 
glycated hemoglobin≥6.5% or OGTT2h level ≥ 11.1 mmol/L, or as 
individuals with a previous diagnosis of diabetes who are using 
hypoglycemic medication. Hyperlipidemia was defined as having a 
previous diagnosis of hyperlipidemia and being on lipid-lowering 
medication, or meeting any of the following criteria: fasting lipid 
profile with triglyceride (TG) ≥1.7 mmol/L, total cholesterol (TC) 
≥5.2 mmol/L, low density lipoprotein (LDL) ≥5.2 mmol/L, and low 
density lipoprotein (LDL) ≥5.2 mmol/L. lipoprotein (LDL) 
≥3.4 mmol/L, and high-density lipoprotein (HDL) 
<1.0 mmol/L. Coronary heart disease was diagnosed in individuals 
with a previous diagnosis or those who met the diagnostic criteria 
outlined in the “Guidelines for the Diagnosis and Treatment of Stable 
Coronary Heart Disease 2018 Edition.” Arrhythmia was diagnosed in 
patients with a documented history of the condition or when an 
electrocardiogram performed during hospitalization indicated the 
presence of arrhythmia.

2.3 MRI collection

All participants in the study underwent 1.5 T MRI examinations 
(Signa HD, General Electric Company, USA).The imaging protocol 
encompassed a range of sequences, including T1-weighted imaging 
(T1WI), T2-weighted imaging (T2WI), fluid-attenuated inversion 
recovery (FLAIR), susceptibility-weighted imaging (SWI), diffusion-
weighted imaging (DWI), and magnetic resonance angiography 
(MRA).The assessment of WMHs, cerebral microbleeds (CMBs), 
lacune, and enlarged perivascular spaces (EPVS) was conducted by 
two researchers who were unaware of the patients’ clinical information. 
In instances where there was a divergence of opinion, a third senior 
neurologist, who was also uninformed of the initial findings, provided 
an adjudicating assessment. The documentation of WMHs, lacune, 
CMBs, EPVS, and the total CSVD burden recorded according to the 
following criteria. WMHs refer to areas of abnormal signal within the 
white matter, which appear hyperintense on T2WI and FLAIR 
sequences. The Fazekas scale is utilized to evaluate periventricular 
WMHs (PWMHs) and deep WMHs (DWMHs) as follows. PWMHs: 
① Grade 0: No abnormalities. ② Grade 1: Cap-like or pencil-thin 
lining lesions. ③ Grade 2: Smooth halo-like lesions. ④ Grade 3: 
Irregular lesions extending into deep white matter. DWMHs: ① Grade 
0: No abnormalities. ② Grade 1: Punctate hyperintensities. ③ Grade 2: 
Beginning confluent hyperintensities. ④ Grade 3: Large confluent 
hyperintensities. Lacune manifest as round or oval fluid-filled cavities 

with signal intensities akin to cerebrospinal fluid, measuring 3 to 
15 mm in diameter. Characteristically, these lesions demonstrate 
hypointensity on T1WI and hyperintensity on T2WI. Furthermore, 
on FLAIR sequences, lacunes are characterized by a central 
hypointense core encircled by a peripheral hyperintense rim. CMBs 
are characterized by punctate, round, or oval areas of signal void that 
possess well-defined margins when visualized on SWI (Duering et al., 
2023). These lesions typically remain inconspicuous on FLAIR, T1WI, 
and T2WI sequences. According to the grading method by Lee S H 
and others, LI is graded based on quantity as follows: none, 0; mild, 
1–3; moderate, 4–10; severe, >10. The dimensions of CMBs commonly 
range from 2 to 5 mm in diameter, with the largest not exceeding 
10 mm. Based on the number of CMBs, they are classified into four 
grades: none, 0; mild, 1–5; moderate, 6–15; severe, >15. EPVS are 
characterized by fluid-filled intervals that envelop and parallel the 
trajectory of blood vessels, displaying signal characteristics analogous 
to those of cerebrospinal fluid, with a diameter typically measuring 
less than 3 mm. On MRI, EPVS demonstrate hypointensity on T1WI 
and FLAIR sequences, whereas hyperintensity is observed on 
T2-weighted imaging T2WI. We count the number of EPVS on one 
side of the brain with a higher prevalence and assess at least three 
sections. Based on the grading criteria established by the Edinburgh 
group, EPVS are classified into five levels according to their quantity: 
Level 0, no; Level 1, 1–10; Level 2, 11–20; Level 3, 21–40; Level 4, >40. 
The total CSVD burden is quantified by the aggregate score of four 
MRI markers. 1 point was assigned to each of the following markers: 
① the presence of one or more lacunes; ② a Fazekas score of DWMHs 
≥2 points and/or PWMHs ≥3 points; ③ the presence of one or more 
deep or infratentorial CMBs; ④ the presence of 11 or more basal 
ganglia EPVS. The total score ranges from 0 to 4 points. In this study, 
individuals with a total CSVD burden of 1 point or more are 
considered to have CSVD.

2.4 Test of Timed Up and Go (TUG)

The TUG test has gained widespread recognition as a valuable 
instrument for evaluating fall risk among the elderly (Williams and 
Nyman, 2021), demonstrates broad applicability across various clinical 
and research settings. Characterized by its ease of administration, 
simplicity, and robust reliability, the test effectively measures the 
ability to maintain balance and mobility during movement (Ortega-
Bastidas et al., 2023). Endorsed by the American Geriatrics Society/
British Geriatrics Society Clinical Practice Guidelines, the TUG has 
been recommended as an assessment to determine the fall risk in 
older individuals (Panel on Prevention of Falls in Older Persons, 
American Geriatrics Society and British Geriatrics Society, 2011). 
Furthermore, it has been proven that a cutoff time of 13.5 s for TUG 
test time has strong reliability, with a specificity of 100% and a 
sensitivity of 80% (Shumway-Cook et al., 2000).

In this study, participants were instructed to sit on a chair with a 
seat back and wear their regular shoes, placing their feet on the 
marked tape positioned on the floor directly in front of the chair. 
Upon the evaluator’s command of ‘go,’ participants stood up and 
walked at their normal pace to the marked spot on the floor located 3 
meters away from the chair. They then turned around, walked back to 
the chair, turned once again, and sat down, leaning against the 
backrest (Figure 1). No external physical help was permitted during 
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FIGURE 2

Configuration of the data acquisition platform. Gait characteristics during walking were acquired using the Relink muscle armor, and the signals were 
transmitted to the central processor on the backpack through sensors captured on the foot brackets. Subsequently, the data was analyzed and 
visualized using the Yrobot ANK software. sEMG characteristics were acquired using the 16-channel detector of the FREEEMG300 wireless sEMG 
system.

the exam. The evaluator meticulously documented the time taken for 
participants to transition from standing away from the backrest to 
sitting down and leaning back against it. Before the formal test, 
participants were allowed to practice 1 to 2 times to ensure they 
understood the entire procedure. We  considered TUG detection 
time ≤ 13.5 s as no fall risk and > 13.5 s as fall risk.

2.5 Data collection

2.5.1 Materials
Gait assessment utilizes the Relink muscular exoskeleton (Yrobot 

Inc., Suzhou, China), a type of wearable SRE that can record and transmit 
gait information in real-time during walking, and then visualizes and 

analyzes the data multidimensionally through the Yrobot ANK software. 
In this experiment, gait data were collected by researchers from patients 
performing dual-task walking with the Relink muscular exoskeleton in 
its unpowered state. This approach facilitated the assessment of natural 
walking patterns, free from the influence of external support mechanisms 
typically found in powered exoskeletons.

The FREEEMG300 Wireless Surface EMG System (BTS, Italy), 
operating at a sampling frequency of 1,000 Hz, comprises a laptop 
computer, a WIFI wireless receiver, an HP iPAQ hx4700 pocket PC, 16 
Wireless EMG Probes, and several USB-PDA cables. It is capable of 
accurately collecting and analyzing the sEMG signals from the lower 
limbs during patient ambulation. Ag/AgCl electrodes (Xunda, Hangzhou, 
China) utilized in the test are disposable, with an adhesive area diameter 
of 52 mm and a conductive area diameter of 10 mm, ensuring optimal 
contact and signal transmission during the electromyographic data 
collection process. Figure 2 shows the Relink muscular exoskeleton, Ag/
AgCl electrodes, and wireless detector used for data collection.

2.5.2 Procedures
All participants were briefed on the experimental content and 

procedures, and preparatory activities were initiated once the patients 
had fully understood. The skin over the bilateral tibialis anterior (TA), 
medial gastrocnemius (MG), and lateral gastrocnemius (LG) was 
shaved, followed by abrasion and disinfection with 75% isopropyl 
alcohol to remove superficial dermal oils. Subsequently, the electrodes 
of the FREEEMG300 Wireless sEMG system were placed on the 
muscle bellies of TA, MG, and LG (Figure 3), then participants were 
assisted in donning the Relink Muscular Exoskeleton. The camera of 
the Wireless sEMG system was fixed at the starting point of the middle 
of the walking path to facilitate synchronized video recording, 
enabling identification of each gait cycle’s initiation and termination, 

FIGURE 1

TUG test. ① Stand up. ② Walk forward 3 meters. ③ Turn back. ④ 
Return the walk. ⑤ Turn again and take a seat.
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and then the FREEEMG300 Wireless sEMG system and the Relink 
Muscular Exoskeleton were activated. Before the formal test, subjects 
were asked to walk within the designated area at their natural pace, to 
acclimatize them to the experimental procedure and to allow the 
evaluator to check that the Wireless sEMG system and Relink 
Muscular Exoskeleton were functioning properly. When all 
preparations were complete, formal data collection was initiated.

Participants were asked to walk at their usual pace along a corridor 
of about 25 meters in length, and to simultaneously complete consecutive 
subtractions of 7 from 500 without any pauses during the walking 
process. To avoid acceleration and deceleration effects, subjects were 
asked to take 3 steps before the test and another 3 steps after the test. To 
ensure the reliability of the collected data, at least 20 complete gait cycles 
within the effective camera range were captured, provided that the 
physical condition of the subjects allows. If subjects were physically 
unable to perform 20 gait cycles, they were guaranteed to complete at 
least 10 gait cycles; otherwise, their data were excluded.

2.5.3 Data processing
Gait assessment involved the quantitative evaluation of critical 

kinematic parameters, including gait speed, cadence, stride length, 
and stance phase percentage. The Yrobot ANK software provided an 
advanced visualization tool, enabling the direct graphical 
representation of gait speed, cadence, and the stride lengths of both 
left and right limbs, as well as their respective stance phase percentages. 
The stride length and stance phase percentages were averaged for both 
limbs for statistical analysis. The sEMG signals were collected by the 
sEMG system during the walking process and were saved to a 
computer for further analysis. Stable gait cycles were selected from the 
walking process and the intensity of muscle contractions was assessed 
using time-domain metrics such as root-mean-square (RMS), integral 
electromyography (iEMG) and average electromyography (AEMG). 
To evaluate the degree of muscle fatigue, frequency-domain indicators 
such as Median Frequency (MF) and Mean Power Frequency (MPF) 
were employed. In this study, MATLAB R2023a was utilized to filter, 
rectify, and normalize the raw sEMG signals of the selected gait cycles, 
and to calculate the indicators for each gait cycle. Subsequently, the 

average value of each indicator was calculated for statistical analysis. 
The formulae for the indicators are as follows:
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FIGURE 3

Location of sEMG detectors. sEMG signals were collected at the TA, MG, and LG muscles of both legs. (A) Lower limbs shown from the anterior. 
(B) Lower limbs shown from the posterior.
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PSD (𝑓): Power Spectral Density as a function of frequency f , 
delineating the distribution of signal power across the spectrum 
of frequencies.

df : Represents the differential of the integration variable f .
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2.6 Statistical analysis

We developed three distinct datasets leveraging the collected gait 
and sEMG characteristics: a dataset focused solely on gait, one on sEMG, 
and a comprehensive dataset integrating both. Variables with a p-value 
less than 0.05 were identified as significant predictors for fall-related 
analyses using the ANOVA chi-square test. Subsequently, SVM, RF, 
GBDT, and NN algorithms were applied to establish twelve predictive 
models based on the above three datasets. This study implemented a 
random division of the datasets into training and testing subsets with an 
8:2 ratio, and evaluated the performance of the model using metrics such 
as AUC, sensitivity, specificity, accuracy, precision, recall and F1-score.
Additionally, to further optimize the models, we integrated the selected 
baseline data and imaging markers with the three original datasets, 
creating three new integrated datasets. Subsequently, we constructed the 
models using the same methods. The modeling was performed with R 
software, version 4.4.0. The baseline characteristics of the participants 
were statistically analyzed using IBM SPSS Statistics for Windows, 
version 26.0 (IBM Corporation, Armonk, NY, United States).

3 Results

3.1 Baseline characteristics

The study enrolled 132 participants in total, depending on the 
inclusion and exclusion criteria. The data from 15 participants were 

excluded due to frequent interruptions during the walking process, 
gait posture affected by wearable devices, inability to cooperate in 
completing subtraction calculations, and limited endurance. The data 
of 117 participants were valid, consisting of 61 with fall risk and 56 
without fall risk (Figure 4). Table 1 displays the baseline characteristics 
of these 117 participants. In our study, we compared two groups: those 
with fall risk and those without fall risk. Among the 14 baseline 
characteristics analyzed, we found significant differences (p < 0.05) in 
3—age, height, and education duration—while the remaining 11 
characteristics did not show significant differences.

3.2 Model construction

3.2.1 Variable selection
In this study, variables with p < 0.05 were screened using the 

ANOVA chi-square test method. For the sEMG dataset, the variables 
selected were mean power frequency of the medial gastrocnemius 
(MG_MPF), median frequency of the lateral gastrocnemius (LG_MF), 
and mean power frequency of the lateral gastrocnemius (LG_MPF) 
(Figure 5A). For the Gait dataset, the variables selected were Gait 
speed, Stride length, and Stance phase (Figure 5B). For the combined 
Gait & sEMG dataset, the variables selected were Gait speed, Stride 
length, Stance phase, MG_MPF, LG_MF, and LG_MPF (Figure 5C).

3.2.2 Model performance evaluation
Figure  6 shows the Receiver Operating Characteristic (ROC) 

curves for three datasets applying four algorithms. The AUC values of 
the sEMG dataset applying the SVM, RF, GBDT, and NN algorithms 
were 0.448, 0.552, 0.523, and 0.538, respectively, indicating poor model 
discrimination ability. The AUC values of the Gait dataset applying the 
SVM, RF, GBDT, and NN algorithms were 0.937, 0.682, 0.871, and 
0.682, respectively, showing an improvement in model discrimination 
ability compared to the models constructed from the sEMG dataset. 
The combined Gait &sEMG dataset applying SVM, RF, GBDT, and NN 
algorithms had AUC values of 0.986, 0.860, 0.826, and 0.723, 
respectively, indicating a further enhancement in discrimination ability 
compared to the models constructed from the Gait dataset alone, except 

FIGURE 4

Flow diagram for selecting eligible patients.
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for the GBDT algorithm. Table 2 presents key model performance 
metrics. Of course, we also carried out the modeling process without 
variable selection (details are in the Supplementary material). 
Ultimately, we  found that variable selection using the ANOVA 
chi-square test improved model performance. The model built with the 
SVM algorithm based on the Gait & sEMG dataset was optimal, with 
an AUC value as high as 0.986, indicating excellent discrimination ability.

3.3 Model optimization

On the basis of the sEMG, Gait, and Gait & sEMG datasets, 
we integrated baseline characteristics with p < 0.05 (age, height, and 
education duration) and imaging markers to construct the sEMG 
integration, Gait integration, and Gait & sEMG integration datasets, 
in order to optimize the models.

3.3.1 Variable selection
In this study, variables with p < 0.05 were screened using the 

ANOVA chi-square test method. For the sEMG integration dataset, 
the variables selected were age, height, education duration, PWMHs, 
MG_MPF, LG_MF, and LG_MPF (Figure 7A). For the Gait integration 
dataset, the variables selected were age, height, education duration, 
PWMHs, Gait speed, Stride length, and Stance phase (Figure 7B). For 
the combined Gait & sEMG integration dataset, the variables selected 
were age, height, education duration, PWMHs, Gait speed, Stride 
length, Stance phase, MG_MPF, LG_MF, and LG_MPF (Figure 7C).

3.3.2 Model performance evaluation
The AUC values for the sEMG integration dataset, when 

subjected to SVM, RF, GBDT, and NN algorithms, were 0.825, 
0.699, 0.553, and 0.682, respectively. For the Gait integration 
dataset, the corresponding AUC values obtained from the 

TABLE 1 Baseline characteristics: comparison between patients with fall risk and those without fall risk.

Variables No-fall risk Fall risk χ2/F/Z P

Age(years) 61.00(13.00) 68.00(14.00) −3.596 <0.001***

Height(cm) 168.13 ± 6.95 163.90 ± 7.15 0.284 0.002**

Weight(kg) 71.00(16.85) 69.00(15.00) −2.456 0.014*

BMI(kg/m2) 25.95 ± 2.88 25.29 ± 3.05 0.209 0.233

Education duration(years) 9.00(4.00) 9.00(6.00) −2.071 0.038*

Uric acid(μmol/L) 350.06 ± 72.46 298.47 ± 82.18 1.841 <0.001***

Homocysteine(μmol/L) 14.05(6.97) 14.30(11.15) −0.420 0.674

Gender, n(%) 2.236 0.135

  Male 37(66.1) 32(52.5)

  Female 19(33.9) 29(47.5)

Smoking, n(%) 0.524 0.469

  No 35(62.5) 42(68.9)

  Yes 21(37.5) 19(31.1)

Drinking, n(%) 1.253 0.263

  No 39(69.6) 48(78.7)

  Yes 17(30.4) 13(21.3)

Hypertension, n(%) 2.991 0.084

  No 20(35.7) 13(21.3)

  Yes 36(64.3) 48(78.7)

Diabetes, n(%) 0.003 0.955

  No 37(66.1) 40(65.6)

  Yes 19(33.9) 21(34.4)

Hyperlipidemia, n(%) 0.743 0.389

  No 24(42.9) 31(50.8)

  Yes 32(57.1) 30(49.2)

Coronary Heart Disease, n(%) 0.301 0.583

  No 48(85.7) 50(82.0)

  Yes 8(14.3) 11(18.0)

Arrhythmia, n(%) 1.235 0.266

  No 37(66.1) 46(75.4)

  Yes 19(33.9) 15(24.6)
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FIGURE 5

Variable selection for different datasets. The horizontal axis displays all variables of each dataset, while the vertical axis represents the p-value of each 
variable. (A) Variables and their associated p-values for the sEMG dataset (B) Variables and their associated p-values for the Gait dataset (C) Variables 
and their associated p-values for the Gait & sEMG dataset.
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application of these algorithms were 0.951, 0.846, 0.765, and 
0.735, respectively. Furthermore, For the Gait & sEMG integration 
dataset, the corresponding AUC values obtained from the 
application of these algorithms were 0.986, 0.895, 0.667, and 
0.629, respectively (Figure 8). These results indicate poor model 
discrimination ability with sEMG integration dataset, and the 
model built with the SVM algorithm based on the Gait & sEMG 
integration dataset was optimal, with an AUC value as high as 

0.986. Table 3 presents key model performance metrics. For the 
integrated dataset, we  also conducted the modeling process 
without variable selection (details are in the 
Supplementary material). Similarly, variable selection using 
ANOVA chi-square test can improve model performance, and the 
model built with the SVM algorithm based on the Gait & sEMG 
integration dataset was optimal. Although the AUC values of the 
models constructed using the SVM algorithm were the same for 

FIGURE 6

ROC curves of different models. The AUC values and 95% confidence intervals of different models are shown in the figure. (A) The ROC curves of the 
models built with SVM for three groups of datasets. The p-values for the sEMG, Gait, and Gait & sEMG datasets are 0.731, 0.074, and 0.001, respectively. 
(B) The ROC curves of the models built with RF for three groups of datasets. The p-values for the sEMG, Gait, and Gait & sEMG datasets are 0.271, 
0.271, and 0.074, respectively. (C) The ROC curves of the models built with GBDT for three groups of datasets. The p-values for the sEMG, Gait, and 
Gait & sEMG datasets are 0.419, 0.026, and 0.071, respectively. (D) The ROC curves of the models built with NN for three groups of datasets. The p-
values for the sEMG, Gait, and Gait & sEMG datasets are 0.998, 0.266, and 0.600, respectively.

TABLE 2 Comparison of key performance metrics of different models.

Algorithm Dataset Sensitivity Specificity Accuracy Precision Recall F1-score

SVM

sEMG 0.727 0.308 0.500 0.471 0.727 0.571

Gait 1.000 0.462 0.708 0.611 1.000 0.759

Gait & sEMG 1.000 0.769 0.875 0.786 1.000 0.880

sEMG 0.546 0.692 0.625 0.600 0.546 0.571

RF

Gait 0.909 0.385 0.625 0.556 0.909 0.690

Gait & sEMG 0.727 0.692 0.708 0.667 0.727 0.696

sEMG 0.546 0.583 0.565 0.545 0.545 0.545

GBDT

Gait 0.800 0.769 0.783 0.727 0.800 0.762

Gait & sEMG 0.667 0.727 0.696 0.727 0.667 0.696

sEMG 0.471 0.500 0.478 0.727 0.471 0.571

NN

Gait 0.615 0.700 0.652 0.727 0.615 0.667

Gait & sEMG 0.625 0.857 0.696 0.909 0.625 0.741
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FIGURE 7

Variable selection for different integrated datasets. The horizontal axis displays all variables of each dataset, while the vertical axis represents the 
p-value of each variable. (A) Variables and their associated p-values for the sEMG integration dataset (B) Variables and their associated p-values for the 
Gait integration dataset (C) Variables and their associated p-values for the Gait & sEMG integration dataset.
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both the Gait & sEMG dataset and the Gait & sEMG integration 
dataset, a comparison of key performance metrics revealed that 
the model based on the Gait & sEMG integration dataset 
performed better.The model has high sensitivity (0.909) and 
specificity (0.923), indicating that it performs well in identifying 
both true positive and true negative cases of fall risk. These 

performance metrics, as assessed on the validation set, highlight 
the consistent and robust discriminatory power of the model 
across different datasets, implying that the model can effectively 
discriminate between covert CSVD patients with and without fall 
risk, suggesting that it may have important utility in 
clinical settings.

FIGURE 8

ROC curves of different optimized models. The AUC values and 95% confidence intervals of different optimized models are shown in the figure. 
(A) The ROC curves of the models built with SVM for three groups of integrated datasets. The p-values for the sEMG integration, Gait integration, and 
Gait & sEMG integration datasets are 0.074, 0.001, and 8.91E-05, respectively. (B) The ROC curves of the models built with RF for three groups of 
integrated datasets. The p-values for the sEMG integration, Gait integration, and Gait & sEMG integration datasets are 0.074, 0.010, and 0.030, 
respectively. (C) The ROC curves of the models built with GBDT for three groups of integrated datasets. The p-values for the sEMG integration, Gait 
integration, and Gait & sEMG integration datasets are 0.419, 0.590, and 0.267, respectively. (D) The ROC curves of the models built with NN for three 
groups of integrated datasets. The p-values for the sEMG integration, Gait integration, and Gait & sEMG integration datasets are 0.264, 0.422, and 
0.267, respectively.

TABLE 3 Comparison of key performance metrics of different optimized models.

Algorithm
Integrated 
dataset Sensitivity Specificity Accuracy Precision Recall F1-score

SVM

sEMG 0.818 0.615 0.708 0.643 0.818 0.720

Gait 1.000 0.769 0.875 0.786 1.000 0.880

Gait & sEMG 0.909 0.923 0.917 0.909 0.909 0.909

sEMG 0.546 0.846 0.708 0.750 0.546 0.632

RF

Gait 1.000 0.615 0.792 0.688 1.000 0.815

Gait & sEMG 0.727 0.769 0.750 0.727 0.727 0.727

sEMG 0.546 0.583 0.565 0.545 0.545 0.545

GBDT

Gait 0.571 0.667 0.609 0.727 0.571 0.640

Gait & sEMG 0.583 0.636 0.609 0.636 0.583 0.609

sEMG 0.643 0.778 0.696 0.818 0.643 0.720

NN

Gait 0.667 0.643 0.652 0.545 0.667 0.600

Gait & sEMG 0.583 0.636 0.609 0.636 0.583 0.609
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4 Discussion

In our research, a fall risk prediction model was successfully 
developed for patients with covert CSVD. The model utilizes wearable 
devices to acquire gait characteristics and sEMG features of CSVD 
patients, and combines selected baseline data with imaging markers, 
applying ML techniques for a comprehensive assessment of fall risk. This 
innovative methodology has enhanced the accuracy of fall risk 
prediction, offering significant insights into the evaluation of fall risk in 
CSVD, especially in the initial phases when clinical symptoms are subtle. 
Additionally, our results emphasize that the combination of gait 
characteristics, electromyographic features, baseline data, and imaging 
markers using the SVM algorithm is a reliable predictor of falls in CSVD, 
with an AUC of 0.986.

Walking is the result of coordination among multiple factors and 
systems, primarily due to an individual’s neuromuscular interaction 
abilities. Normal walking is maintained by integrating sensory signals 
from muscles, joints, and skin through the sensory system, which then 
inputs this information into the central nervous system (CNS). The CNS 
integrates this information and issues postural and balance control 
commands that are conducted via the vestibulospinal tract and 
corticospinal tracts, modulating muscle contractions and relaxation 
through nerve fibers to maintain body stability. In CSVD patients, the 
neural networks within the CNS responsible for movement and posture 
control are compromised, leading to impaired regulation of muscle 
contraction and relaxation, and a reduction in muscle strength. The TA 
and gastrocnemius muscles of the lower limbs play crucial roles in 
maintaining gait stability. The TA controls the speed of foot strike 
through eccentric contraction when the heel just touches the ground, 
ensuring the stability of foot landing. Additionally, during the pre-swing 
phase, the TA contracts, reducing ankle plantarflexion when the toes lift 
off the ground, ensuring the smooth completion of foot clearance. The 
gastrocnemius contracts during the terminal stance phase, propelling the 
body forward and upward, ensuring the transfer of body weight (Li et al., 
2020). In CSVD patients, the decline of muscle strength in the lower 
limbs directly affects gait stability and increases the risk of falls. 
Spatiotemporal gait parameters such as stride length, gait speed, cadence, 
and double support phase are important indicators for assessing gait 
stability, and abnormalities in these parameters often indicate gait 
instability, thereby increasing the possibility of falls in patients (Li et al., 
2020; Wang et  al., 2023). Patients with CSVD typically exhibit gait 
disturbances characterized by shortened stride length, slowed gait speed, 
decreased cadence, and a prolonged double support phase (Kancheva 
et al., 2024; Mo et al., 2024; Mukli et al., 2022; Xu et al., 2024),all of which 
are clear signs of impaired gait stability and reduced balance ability (Mo 
et al., 2024; Mo et al., 2023; Shao et al., 2023; Sharma et al., 2023; Wang 
et al., 2023; Xu et al., 2024). The reduction in stride length as one of the 
early features of gait disturbances in CSVD patients, typically associated 
with diminished propulsive force due to decreased muscle strength, 
which can subsequently lead to a decline in gait speed. Reduced gait 
speed not only reflects the decline of individual functional status but also 
serves as an early signal of gait impairment, suggesting an underlying 
system compromise (Studenski et  al., 2011; Wang et  al., 2023).In 
addition, patients with CSVD may also exhibit a reduced cadence and an 
increased percentage of the double support phase, which are considered 
compensatory mechanisms for gait instability, aiming to improve 
stability, prevent falls, or reduce the energy cost of activity. However, 
when a patient progresses to the decompensated phase of the disease, the 
risk of falls escalates significantly. Therefore, spatiotemporal parameters 

associated with fall risk were included in this research to improve the 
prediction of fall risk.

Falls can lead to a cascade of adverse outcomes, particularly for the 
elderly demographic, who are susceptible to serious consequences such 
as increased mortality risk, reduced quality of life, pain, increased 
hospitalization, and long-term lifestyle alterations (Del Din et al., 2019; 
Subramaniam et al., 2022). Beyond the immediate physical repercussions, 
the fear of falling can significantly disrupt a patient’s routine activities 
and impede the pursuit of a healthy lifestyle (Subramaniam et al., 2022). 
Predicting, screening and preventing falls in patients with CSVD who 
may face a significant risk for future gait disorders and fall events is a 
priority, but it remains a formidable challenge for healthcare providers 
(Chen et  al., 2022). Although a history of falls is the most reliable 
predictor of future falls (van Schooten et  al., 2015), it has limited 
effectiveness for the early identification and intervention of initial fall 
events (Bargiotas et al., 2023). Currently, there is still a lack of predictive 
models for fall risk based on gait monitoring systems in CSVD patients, 
which restricts our capacity for early detection and timely intervention.

As wearable technology continues to evolve, real-time gait 
monitoring has become possible. These technologies enable data 
collection in natural and daily activity settings and have been utilized for 
fall detection and fall risk assessment (Subramaniam et al., 2022; Wuehr 
et al., 2021). Gait analysis, an alternative approach to identify fall risk in 
the elderly (Chen et al., 2022; García-de-Villa et al., 2023; Lonini et al., 
2022), has seen increased usage over the past few decades. Inertial 
Measurement Units (IMUs) have shown good consistency with 
traditional gait analysis in certain spatiotemporal parameters, enabling 
the monitoring and analysis of gait characteristics, and several 
IMU-based fall prediction factors have been introduced (Berner et al., 
2020; Nishiyama et al., 2024; Ruiz-Ruiz et al., 2021; Saadeh et al., 2019; 
Yıldız, 2023).The rapid advancement of ML has significantly improved 
fall risk prediction and classification through the integration of ML with 
gait characteristics captured by inertial measurement units (IMUs) 
(Subramaniam et al., 2022). Additionally, sEMG, known for its ability to 
reflect the subtle manifestations of abnormal gait, has been widely used 
in identifying and forecasting FOG in Parkinson’s disease. However, its 
application has been limited in studies of gait disturbances and fall risk 
associated with CSVD. Further investigation in this field is needed to 
advance knowledge of the underlying mechanisms and their clinical 
implications. To confront this challenge, our study employed portable 
sEMG for data collection during the natural ambulation of subjects and 
applied it to predict fall risk, significantly expanding and enhancing the 
predictive model from a microstructural and deeper mechanism 
perspective. Moreover, Feature capture under dual-task conditions more 
closely resembles daily activities, laying the foundation for assessing fall 
risk in natural environments.

Our study presents several limitations. Firstly, while cognitive 
impairment is known for its complex relationship with gait 
disturbances, potentially increasing the risk of falls (Dubbioso et al., 
2023; Pieruccini-Faria et al., 2020), our research did not incorporate 
established measures of cognitive function such as the Mini-Mental 
State Examination (MMSE) or Montreal Cognitive Assessment 
(MoCA), despite examining gait and electromyographic data during 
tasks that required cognitive engagement. Although cognition was 
not the primary focus, its influence on gait dynamics and fall 
incidents underscores the complexity of mechanisms underlying gait 
disorders and falls, highlighting the need for a broader consideration 
of contributing factors. Furthermore, a wide range of factors, such as 
physiological, psychological, and environmental ones, can affect falls 
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and either work alone or in concert to increase an individual’s 
vulnerability to falls (Subramaniam et al., 2022). The psychological 
and environmental factors not considered in this study will be the 
direction of our subsequent research. In terms of gait characteristics, 
our research selected a range of commonly used spatiotemporal gait 
parameters, which are crucial for providing insights into critical gait 
attributes such as stride length and gait speed. Additionally, 
we included time-domain and frequency-domain indicators closely 
related to muscle activity and fatigue. These indicators provide 
valuable insights into muscle function and its effect on gait stability. 
However, we  did not explore kinematic parameters or nonlinear 
sEMG metrics, which could offer further insights into joint dynamics 
and muscle activity. Unfortunately, no sensors were worn during the 
TUG examination in this study because the wearable SRE, equipped 
with shank and foot brackets, is prone to collisions. These collisions, 
particularly during the turning phase of the TUG test, may lead to 
falls and affect the results. The development of brackets that more 
closely conform to the shank and foot is key to resolving this issue. 
Although the SRE can monitor gait information in real-time, patients 
and untrained physicians still face some difficulty in wearing it 
correctly. Further development of a smaller, easier-to-wear integrated 
power supply and brackets may enhance patient compliance.

Despite these limitations, our study still holds significant 
importance, offering clinicians a simple and effective tool to identify 
fall risk in covert CSVD. These limitations do not diminish its 
contribution to clinical practice and future research. In fact, they 
provide direction for future work, indicating that our future research 
should consider employing more convenient devices to capture gait 
information and should account for more factors affecting falls, such 
as cognition and psychological factors, and should incorporate more 
gait assessment indicators. This will contribute to developing a more 
comprehensive and precise tool for assessing fall risk in patients with 
covert CSVD and provide a stronger scientific basis for formulating 
targeted intervention measures.

5 Conclusion

In conclusion, our research offers a useful method for identifying fall 
risk early in those with covert CSVD. Although the study has certain 
limitations, such as the non-consideration of cognitive scales, 
psychological factors and environmental elements, which may exert 
some influence on the results, these limitations do not detract from its 
significant contribution to clinical practice. This tool has the potential to 
significantly enhance clinical decision-making and prognostication, 
thereby reinforcing the efficacy of healthcare practices.
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