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A short investigation of the e�ect
of the selection of human brain
atlases on the performance of
ASD’s classification models

Naseer Ahmed Khan* and Xuequn Shang

School of Computer Science and Technology, Changan Campus, Northwestern Polytechnical

University, Xi’an, China

This study investigated the impact of brain atlas selection on the classification

accuracy of Autism Spectrum Disorder (ASD) models using functional

Magnetic Resonance Imaging (fMRI) data. Brain atlases, such as AAL, CC200,

Harvard-Oxford, and Yeo 7/17, are used to define regions of interest (ROIs) for

fMRI analysis and play a crucial role in enabling researchers to study connectivity

patterns and neural dynamics in ASD patients. Through a systematic review,

we examined the performance of di�erent atlases in various machine-learning

and deep-learning frameworks for ASD classification. The results reveal that

atlas selection significantly a�ects classification accuracy, with denser atlases,

such as CC400, providing higher granularity, whereas coarser atlases such as

AAL, o�er computational e�ciency. Furthermore, we discuss the dynamics

of combining multiple atlases to enhance feature extraction and explore the

implications of atlas selection across diverse datasets. Our findings emphasize

the need for standardized approaches to atlas selection and highlight future

research directions, including the integration of novel atlases, advanced

data augmentation techniques, and end-to-end deep-learning models. This

study provides valuable insights into optimizing fMRI-based ASD diagnosis

and underscores the importance of interpreting atlas-specific features for an

improved understanding of brain connectivity in ASD.
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1 Introduction

Autism Spectrum Disorder, commonly known as ASD, is a human brain disorder

characterized by lack of communication skills, impairment in cognitive abilities, repetitive

behavior, and restrictive social interaction (American Psychiatric Association et al., 2013).

It is referred to as a “spectrum" because of the wide range of characteristics in the subjects

who suffer from ASD. The global burden of ASD is also significant, as ASD has been found

in 204 countries worldwide (Solmi et al., 2022) across diverse groups of communities. A

comprehensive review (Qiu et al., 2020) of 12 studies consisting of more than 2.0 million

people found the prevalence of ASD in Asia to be 0.36%.
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1.1 Resting state functional magnetic
resonance imaging (rs-fMRI)

fMRI studies (Walsh et al., 2021; Zhang et al., 2020; Liu et al.,

2021) on human brain disorders are getting popular recently as they

are being used in a range of human brain disorders such as ASD,

ADHD (Tang et al., 2018), schizophrenia (Hoptman et al., 2024)

and Alzheimer’s (Lajoie et al., 2017). The fundamental idea behind

fMRI is to study the Blood Oxygenation Level Dependent (BOLD)

signal from the voxels (the volume of the human brain is divided

into smaller cubes to extract signals) of the human brain, which acts

as a proxy for the original neuronal activity in a particular region.

Resting-state fMRI studies (Cole et al., 2010; Santana et al., 2022;

Van Den Heuvel and Pol, 2010) are different from task-based fMRI

studies because in these studies, subjects did not perform any task,

and the BOLD signalmeasured in this case extracts the intrinsic and

spontaneous activities of the human brain. The raw fMRI dataset

acquired from the human subject’s brain is 4D, as it consists of a 3D

set of images taken across the time dimension, therefore, there is a

preprocessing stage that follows after acquiring the fMRI data on

a particular brain disorder. These preprocessing steps include slice

time correction, motion correction, normalization, co-registration,

and noise removal. Some of the most crucial preprocessing steps

are shown in Figure 1 where the “co-registration" step, in which the

human brain is mapped to the known brain atlases and the Regions

of Interests (ROIs) are selected, is the main area of focus of the

current short investigation.

1.2 Brain atlases

Brain atlases are essential tools in neuroimaging studies

and serve as reference frameworks that divide the brain into

distinct regions of interest (ROIs). These atlases facilitate the

study of connectivity patterns and neural dynamics by enabling

the standardized analysis of fMRI data. In the context of

Autism Spectrum Disorder (ASD), brain atlases provide critical

insights into underlying neural disruptions, allowing researchers

to systematically examine abnormalities in brain connectivity that

are characteristic of the disorder. These brain atlases are used to

standardize and simplify the process of analyzing complex brain

data using neuroimaging techniques, such as fMRI. Brain atlases

can be categorized into two classes, “Anatomical” and “Functional”

where the anatomical atlas is related to the physical structures of

the brain and the functional atlas is related to the connectivity

patterns and functional networks in the brain. The commonly used

human brain atlases used in the fMRI prep-processing pipeline

are listed below: Each human brain is anatomically different, and

without an atlas, it would be difficult to compare brain regions

across different individuals. These listed atlases segment the brain

into regions of interest (ROIs) based on structural (e.g., AAL

Atlas Tzourio-Mazoyer et al., 2002) or functional characteristics

(e.g., Yeo’s Networks Yeo et al., 2011), allowing researchers to

consistently study specific regions across subjects. Associating

an ROI with a group of voxels helps aggregate the data from

small units (voxels) into meaningful brain regions, making the

analysis more interpretable and reducing noise. Voxels, as already

defined, represent small volumetric pixels in the brain, but by

grouping them into ROIs, researchers can capture the activity

or connectivity of larger, anatomically or functionally coherent

brain regions, which is especially useful for understanding how

different parts of the brain interact (functional connectivity) and

for studying disease-related changes in specific brain areas. It also

allows for reproducibility across studies, because the same ROIs

can be studied using different datasets. Standardizing analyses

using these atlases improves the reliability of findings in fields

such as neurodevelopmental disorders, cognitive neuroscience, and

brain mapping.

Mapping brain atlases in defining ASD relies on their ability to

isolate and quantify alterations in brain connectivity. As discussed

in Ribeiro da Costa et al. (2022), Chiong et al. (2013), and

Harikumar et al. (2021), disruptions in functional networks, such

as the Default Mode Network (DMN), Salience Network, and

Social Brain Network, are well documented in ASD. Atlases with

finer granularity, such as the CC400, provide high-resolution

insights into these networks, allowing researchers to capture subtle

variations in connectivity. Conversely, coarser atlases, such as AAL,

offer computational efficiency by the summarizing brain activity

across broader regions. Both approaches provide complementary

insights, underscoring the need to select an appropriate atlas

based on a specific research question. The dynamics between

different atlases also play a crucial role in the understanding of

ASD. Each atlas captures distinct aspects of brain organization,

and their selection can significantly influence the outcomes of

classification studies; coarser atlases such as AAL may miss fine-

grained connectivity details but are less prone to overfitting

in small datasets, and denser atlases such as CC400 offer

detailed connectivity patterns but require larger datasets and more

computational resources. Recent studies (Hasana et al., 2024;

Heczko et al., 2023) have suggested that combining multiple

atlases may yield a more comprehensive understanding of ASD by

leveraging the strengths of both anatomical and functional atlases.

For instance, researchers could use a coarse atlas such as AAL to

identify broad connectivity disruptions and then apply a dense atlas

such as CC400 to examine specific regions in detail. This layered

approach could provide a deeper understanding of complex neural

interactions in ASD.

Furthermore, the process of mapping brain atlases in ASD

studies is closely tied to the choice of machine learning and

deep learning methods. Feature-based approaches often rely on

predefined connectivity metrics extracted from these atlases,

whereas end-to-end learning models can directly leverage raw

fMRI data, incorporating atlas-based parcellation (“parcellation" is

the process of dividing the brain into smaller regions) as input

layers. These methodological differences highlight the need to

carefully align atlas selection with the study’s objectives and the

computational framework employed. The five commonly used

brain atlases in the reviewed studies are as follows.

1. Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer

et al., 2002), which divides the brain into 116 ROIs.

2. Harvard-Oxford (Desikan et al., 2006) which is anatomical and

divides the brain regions into 48 ROIs.

3. The Craddock-200 (Craddock et al., 2012) is functional and

divides the brain regions into 200 ROIs.
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FIGURE 1

fMRI preprocessing pipeline.

4. CC400 (Craddock et al., 2012) is functional and divides the brain

regions into 400 ROIs.

5. Yeo 7/17 (Yeo et al., 2011) is functional and divides the brain

regions into 114 ROIs.

1.3 Role of atlases

Wenow briefly explain the state-of-the-art approaches from the

literature, the choice of atlas, and the performance of the proposed

approach in relation to the selected atlases. An enumeration of

various studies, their methodologies, selection of atlas, results, and

limitations are also mentioned in Table 1.

In Chen et al. (2022), the authors used adversarial graph

neural networks for fMRI feature extraction and ASD classification.

They applied the Harvard-Oxford atlas to 900 subjects from

the ABIDE and HCP datasets and achieved 83.1% accuracy.

The approach was based on feature selection, with a focus on

robust fMRI feature extraction. One limitation is that adversarial

methods may introduce instability in training, require hand-

crafted features (hand-crafted features are manually chosen by the

researchers, like picking the best), and require careful balancing

during optimization.

ASD-SWNet (Zhang et al., 2024) proposed a shared-weight

feature extraction and CNN-based classification model for ASD

diagnosis. Using the CC200 atlas of the ABIDE dataset (871

subjects), an accuracy of 76.52% was achieved. The approach was

end-to-end; however, a limitation is the challenge of generalizing

shared-weight networks to other neuroimaging datasets.

ASD-GANNET (Khan and Shang, 2024), study used a GAN-

inspired model with multi-head attention for ASD classification,

based on 884 ABIDE subjects. The AAL atlas was used for

parcellation of brain regions. The method was feature based and

achieved an accuracy of 82%. One limitation is the complexity of

the GAN architecture, which can make training difficult, especially

with smaller datasets and augmentation of subjects based on fixed-

size connectivity features.

In a previous study (Hasana et al., 2024), the authors applied

ensemble learning techniques with multi-view fMRI features to

ASD diagnosis using 871 subjects from ABIDE. The Yeo 7/17

Network Atlas was used for segmentation. The approach is feature-

based, combining multiple views of the data and achieving 85%

accuracy. The main limitation of ensemble methods is that they

can be computationally intensive and require large datasets to

perform better.

In a previous study (Yang et al., 2023), the authors

used a Graph Neural Networks (GNN) with Recursive
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TABLE 1 Related studies on the classification of ASD.

References Method Atlas Dataset size Results (Accuracy) Limitations

Chen et al. (2022) An adversarial approach consisting

of Graph Neural Networks, in

which the authors extracted not

only node features but also edge

features

Harvard-Oxford 1,007 74.70% Extracted edge features although

promising but still did not achieve

promising results

Zhang et al. (2024) An unsupervised approach that

uses shared weights and feature

selection

CC200 871 76.52% Generalization of shared weights

is hard and handcrafted feature

selection

Khan and Shang

(2024)

A GAN inspired approach that

uses the architecture of Generative

Adversarial based approach to

augment the dataset to reduce

over-fitting

AAL 884 82.00% Data Augmentation was based on

the connectivity features and not

on the original time dimension

Hasana et al. (2024) Ensemble learning with multi-view

fMRI features for ASD diagnosis

Yeo 7/17 871 85.00% Hand crafted features were used

in the first stage

Yang et al. (2023) GNN with recursive feature

elimination for ASD classification

AAL 872 80.00% Recursive feature selection

approach was first used to select

features

Qiang et al. (2023) Behavioral data combined with

fMRI for ASD diagnosis

AAL 871 82.10% Adding behavioral data has a

complex interpretation, which is

difficult to justify

Ahammed et al.

(2021)

DarkASDNet using a CNN for

fMRI-based ASD classification

AAL 871 94.70% A multi-layer CNN model is too

simplisitc approach for the

challenging task of ASD

classification. Did not report

results on site wise comparison

which are considered more

challenging

Shao et al. (2021) DCNNs for ASD diagnosis using

fMRI and structural MRI data

Harvard-Oxford 1,200 79.50% Feaures ranking base hand crafted

features and Did not report results

on site wise comparison which are

considered more challenging

Almuqhim and

Saeed (2021)

DStacked autoencoders for

fMRI-based ASD classification

Craddock 200 1,035 76.00% A first stage Autoencoder based

approach followed by a DNN is

hard to tune

Sherkatghanad et al.

(2020)

CNN model for fMRI-based ASD

classification

AAL 800 70.20% CNN based multi-layer approach

is considered too simplisitic as

authors did not report site wise

results

Liu et al. (2020) Ensemble learning with

autoencoders for ASD classification

Yeo 7/17 1,200 76.80% Computationally intensive

ensemble methods.

Eslami et al. (2019) A correlation and partial

correlation based approach

ROI estimation 871 67.00% ROI estimation using a

customized approach is

challenging.

Hasana et al. (2024) A multi-atlas deep ensemble

network that integrates multiple

brain atlases of fMRI data through

a weighted deep ensemble network.

AAL, CC200 and

EZ

1,035 75.20% Only reported results on the

whole dataset

Heczko et al. (2023) Develops an automated system

leveraging a novel lightweight

quantized one-dimensional

Convolutional Neural Network

(Q-CNN) model to analyze fMRI

data, incorporating federated

learning for data privacy.

AAL, CC200 and

DOSENBACH

1,112 83.70% ROI estimation using a

customized approach is

challenging

Feature Elimination (RFE) for ASD classification, using

fMRI data from 872 subjects (ABIDE). The AAL atlas was

employed, and the approach involved feature selection

before classification, achieving 80% accuracy. One limitation

is that GNN models tend to be sensitive to the quality

of feature selection and require careful tuning to achieve

optimal performance.

In a previous study (Qiang et al., 2023), the authors combined

behavioral data with fMRI data for ASD diagnosis using 871

subjects (ABIDE). The AAL atlas was used to define these regions.
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This approach included feature extraction from behavioral data

before classification and, improved the overall model accuracy. One

limitation is that integrating behavioral data adds complexity to the

model, requiring careful feature engineering.

In (Ahammed et al., 2021), the authors developed the

DarkASDNet framework, a deep learning approach using CNNs for

fMRI-based ASD classification on 871 subjects (ABIDE). The AAL

atlas was used for the ROI selection. The method is end-to-end and

focuses on the extraction of key features directly from the data. The

model achieved 94.7% accuracy, although one limitation was the

high computational cost of CNN-based models.

In a previous study (Shao et al., 2021), the authors applied

CNNs to ASD diagnosis using both fMRI and structural

MRI data. The Harvard-Oxford atlas was used to define the

brain regions. The dataset included 1,200 subjects (ABIDE),

and the approach was end-to-end. The method achieved high

classification accuracy, but a limitation is that multimodal

approaches tend to be computationally intensive and require

significant data preprocessing.

In Almuqhim and Saeed (2021), the authors developed a

stacked autoencoder (SAE) for ASD classification using fMRI

data from 1,035 subjects (ABIDE). The Craddock 200 atlas

was used for the ROI selection. This approach is feature-based,

extracting low-dimensional representations before classification.

The method achieved a classification accuracy of 76%. A limitation

of autoencoders is that they often require large datasets and careful

tuning to avoid overfitting.

In a previous study (Liu et al., 2020), the authors used an

ensemble learning method combined with autoencoders for ASD

classification from 1,200 ABIDE subjects. The Yeo 7/17 Network

Atlas was used for brain region segmentation. This approach

involved feature extraction before classification and achieved state-

of-the-art accuracy. However, the complexity of ensemble models

can lead to overfitting, particularly when the dataset is small.

In a previous study (Eslami et al., 2019), the authors

utilized an autoencoder for feature extraction and classification

on the ABIDE dataset (871 subjects). The Craddock 400

parcellation atlas was used for the ROI definition. The

approach is feature-based, as the autoencoder reduces

the dimensionality of the input before classification. It

showed a 1% improvement over the baseline accuracy, but a

limitation was the computational cost associated with training

the autoencoder.

In (Sherkatghanad et al., 2020), the authors used a CNN model

for ASD classification from 800 subjects in the ABIDE dataset. The

AAL atlas was employed to define the ROIs, and the proposed

approach was end-to-end without explicit feature selection. The

model achieved 70.2% accuracy. One limitation is that the CNN

architecture is extremely simplistic and requires more data for

optimal generalization and feature learning.

In Hasana et al. (2024), authors introduced a multi-atlas

deep ensemble network that integrates multiple brain atlases of

fMRI data through a weighted deep ensemble network. On the

ABIDE I dataset, comprising resting-state fMRI data from 17

international research sites, their approach achieved 75.20%. But a

major limitation of their approach is lack of results reporting on the

site wise comparison.

In Heczko et al. (2023), the authors proposed a novel

Multi-Atlas Enhanced Transformer framework (METAFormer)

for ASD classification, employing a multi-atlas approach with

self-supervised pretraining. On the ABIDE I dataset, including

406 ASD and 476 typical control subjects, they achieved

an average accuracy of 83.7% and an AUC score of 0.832.

However, a major limitation of their approach was the lack of

on-site comparisons.

2 Future directions

Based on the short review discussed in the previous sections, the

following areas need to be explored by the research community. A

brain atlas like AAL can also be referred to as coarser than the brain

atlas CC400 because the former has only 116 ROIs as compared to

the 400 in the latter case.

1. The performance of the proposed approach should be verified

with denser and coarser atlases. If the selection of a coarser atlas

such as AAL-116 has better classification performance, then the

reasons and the significance of this should be analyzed.

2. The relationship between different atlases should also be

explored; for example, the AAL-116 and C200 atlases are

different atlases, but if combining these atlases results in better

classification performance, the dynamics and significance of this

should also be further analyzed. It is highly possible that some

regions of the brain require coarser parcellation, such as AAL-

116, but other regions need denser parcellation atlases, such

as CC400.

3. The effects of parcellation atlases across various sites should also

be explored because the ABIDE dataset on ASD is pooled over

17 sites globally. It is highly possible that some sites provide

better classification performance when the AAL-116 atlas is

selected and some sites might result in better classification

performance when the CC400 atlas is selected. If this association

is established, then it would be interesting to determine the

reasons for these dynamics.

4. The association of atlas selection and dataset size should also be

explored not only on the combined dataset but also on the site-

wise dataset. This analysis would provide interesting insights

into why the selection of the brain atlas is not consistent in these

two comparisons.

5. The relationship between the time dimension and the selected

atlas should also be explored; for example, the effect of the time

dimension and coarser atlas, such as AAL-116, on classification

accuracy. If a smaller time dimension with a coarser atlas, such

as AAL-116, results in poorer accuracy as compared to the

selection of a denser atlas, CC400, with smaller time dimensions,

then potential reasons should be investigated from this analysis.

6. Various data augmentation techniques, and a selected brain

atlas are related to the classification accuracy of the proposed

approach. If data augmentation techniques work better only

when a denser atlas such as CC400 is selected, then what can

be inferred from this observation?

7. The effect of the selection of the brain atlases on the handcrafted

features-based approaches and the end-to-end approaches

should also be explored. If the denser atlas such as CC400 results
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in better classification performance only when the handcrafted

features selection approach is used, then what are the potential

reasons for this observation?

8. It would also be very interesting to explore how exactly atlases

should be combined, should they be stacked, and then the

features should be simultaneously selected from different atlases,

or should the feature selection process be sequential, that is, first

selecting features from AAL-116 and then from the CC400.

9. It should also be interesting to analyze whether there are

recent updates in the development of atlases in other brain

disorders like Alzheimer’s which resulted in better classification

performance, which could motivate the research community to

come up with some updated atlases ASD.

10. Finally, and most importantly, there should be a genuine effort

in developing a web-based tools that researchers can use to

map the selected features to the different brain atlases for

interpretability. For example, if someone has used an AAL-

116-based dataset and got obtained classification results and

now wanted to see the interpretation of the brain regions for

the selected atlas, the web-based tools should annotate those

features on the selected atlas to interpret those features on brain

lobes and hemispheres.

3 Conclusions

These investigations delineate the importance of the

selection of different kinds of human brain atlase effects on

the classification accuracy of various proposed algorithms

for human ASD. We believe that we have raised some

important questions regarding the selection of commonly

used brain atlases. Future studies need to analyze not only

the classification accuracy of the proposed algorithm but also

the intrinsic nature of the parcellation atlases, and there is a

need for a dedicated sections in future studies on the ASD

classification problem regarding the various dynamics of the

chosen brain atlases.
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