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Say hello to my little friend. . .
micronutraceuticals in
neuroenergetics, neuronal
health, and neurodegenerative
diseases
Shayne Mason*

Human Metabolomics, North-West University, Potchefstroom, South Africa

Vitamins and minerals (micronutraceuticals) maintain good health. However,

the specific effects of these micronutraceuticals on brain health are

often overlooked, or not even known. In this review, an overview of

the direct and indirect effects of micronutraceuticals on brain energy

metabolism (neuroenergetics) and neuronal health is provided. Thereafter,

a holistic summary of the existing studies that have shown the impact

of micronutraceuticals on neurodegenerative diseases. Lastly, this review

concludes by identifying several research gaps that remain and provides

suggestions for future research on these hot topics.
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1 Introduction

The term “nutraceutical,” first coined in 1989, refers to dietary foods with medicinal
and health benefits (Andlauer and Fürst, 2002). In the context of this review,
the term “micronutraceuticals” will be used to describe all micronutrients that are
inexplicably intertwined with nutraceuticals. These micronutraceuticals are necessary for
the functionality of nutraceuticals and include vitamins (A, B, C, D, and E) and minerals
(Ca, Cu, Fe, Zn, Mg, etc.). Vitamins encompass a vast array of polar (water-soluble) and
non-polar (fat-soluble) chemical compounds that are classified as either non-essential (can
be synthesized in our bodies) or essential (can only be obtained from exogenous sources—
dietary). While the focus of this review is on vitamins, several minerals are also mentioned
as cofactors of important metabolic reactions. The significance of minerals in brain health
should not be undermined and deserves equivalent attention to vitamins, but perhaps in
another review. Of the vitamins discussed here, most fall into the B group because there is
a paucity of information on the other vitamins.

We should have a well-balanced diet to obtain all the vitamins that are needed for
healthy living. Even if our diet is well balanced, once we reach middle age and progress
to the age of the “elderly,” vitamin supplements are strongly recommended to maintain
healthy neurological function (O’Leary et al., 2012). There is increasing scientific evidence
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that vitamin supplementation can reduce cognitive decline
associated with advanced aging (Aisen et al., 2008; O’Leary
et al., 2012). Moreover, neuropathological diseases often arise
because of perturbed brain energy metabolism (neuroenergetics)
(Mason, 2017) and/or physiological changes that impact neuronal
health. The roles of micronutraceuticals (“the little guys”) in
neuroenergetics and neuronal health are often overlooked.

Hence, the aim of this review is to: (1) give an overview of
the role of micronutraceuticals in neuroenergetics; (2) describe
the physiological association these micronutraceuticals have with
maintaining healthy neuronal cells; (3) relate some of the
major neurodegenerative diseases to altered micronutraceuticals;
and lastly, (4) identify research gaps and directives for future
research on this topic.

2 Micronutraceuticals in
neuroenergetics

Homeostatic neuroenergetics (that is, adequate brain energy
metabolism) are closely linked to normal neuronal function and
brain health. However, homeostasis of the brain is quickly lost
when the metabolic pathways associated with neuroenergetics
are perturbed (Mason, 2017; Falkowska et al., 2015). Quite
often, allostatic overload and/or pathology caused by altered
neuroenergetics can be linked to hypovitaminosis—a deficiency in
one or more vitamins, as shown in this review.

The brain is the highest energy-consuming organ in the
human body, consuming 25% of circulating glucose under
normal conditions (Pellerin, 2010). In the brain, primary energy
metabolism is predominantly glucocentric—relying mostly on
glucose, albeit with shifting paradigms (Mason, 2017). The
catabolism of glucose through primary energy metabolic pathways
involved in neuroenergetics [glycolysis, Krebs cycle, and oxidative
phosphorylation (OXPHOS)] is illustrated in Figure 1. In the case
of inborn errors of metabolism (IEMs), any genetic disorder that
results in a defective enzyme involved in any of these energy
metabolic pathways can lead to serious consequences, often death at
an early age, if left untreated. It is also important to note that many
enzymes involved in neuroenergetics are dependent on coenzymes
and/or cofactors (micronutraceuticals) for their normal functions.
Hence, hypovitaminosis can result in metabolic conditions that
subtly mimic secondary forms of IEMs.

In Figure 1, the glycolysis metabolic pathway is condensed to
that of the primary substrate glucose and the end-product pyruvate.
The net yield of glycolysis from one glucose molecule is two units of
adenosine triphosphate (ATP; the energy currency of the cells) and
two units of reduced nicotinamide adenine dinucleotide (NADH).
The emphasis in Figure 1 is on the Krebs cycle—the “heart” of
metabolism, which will be discussed in greater detail. The OXPHOS
system is also depicted in Figure 1, indicating the entry points of
the all-important reduced coenzymes [NADH and reduced flavin
adenine dinucleotide (FADH2)] into the electron transport chain.
Of note within Figure 1 are the eleven indicated enzymes and
vitamins (shown in bold blue text in Figure 1) associated with these
enzymes. What immediately stands out in Figure 1 is that all these
vitamins are B-group vitamins. Another point of interest in Figure 1
is that seven of the eleven listed enzymes are dehydrogenases.

Dehydrogenases are oxidoreductase enzymes that catalyze
either oxidative or reductive metabolic reactions, depending on the
direction of the metabolic reaction. Each dehydrogenase enzyme
requires a coenzyme that facilitates the transfer of electrons
and hydrogen atoms (H+). The coenzymes that function with
dehydrogenase are typically NAD+

→ NADH + H+ and, to a
lesser extent, FAD+

→ FADH2 + H+. If we look at the chemical
structure of these coenzymes (Figure 2), it starts to become clear
why vitamins (in particular B2 and B3) are important. In Figure 2,
it is shown that vitamin B3 (niacin/nicotinic acid) is converted
to its amide form nicotinamide, which is then incorporated into
the structure of NAD. Similarly, for FAD, vitamin B2 (riboflavin)
forms part of the chemical structure of FAD (shown in Figure 2).
Hence, deficiencies in vitamins B2 and B3 can lead to insufficient
levels of the coenzymes FAD and NAD, respectively. Insufficient
NAD and FAD will result in decreased production of their reduced
forms (NADH and FADH2) and a noticeable decrease in OXPHOS,
leading to impaired neuroenergetics. Additionally, increased
NAD/NADH and FAD/FADH2 ratios are biochemical indicators
of oxidative stress, which will be discussed in the following
sections. Another important coenzyme that is needed for normal
neuroenergetics is coenzyme A (CoA). The metabolic reactions of
pyruvic acid → acetyl-CoA, α-ketoglutaric acid → succinyl-CoA,
and α-ketobutyric acid → propionyl-CoA require the presence of
CoA. Figure 2 shows the chemical structure of CoA, and it is clearly
indicated that the core component of this coenzyme is vitamin
B5 (pantothenic acid). Hence, vitamin B5 deficiency will result in
CoA deficiency and a subsequent perturbation in neuroenergetics.
Lastly, vitamin B1 (thiamine) is also required for the proper
functioning of dehydrogenases. Pyruvate dehydrogenase (Krebs
cycle), α-ketoglutarate dehydrogenase (Krebs cycle), and branched
chain α-keto acid dehydrogenase (involvement of glutamate and
branched-chain amino acids in Krebs cycle), as well as transketolase
(pentose phosphate pathway), are enzymes that are thiamine-
dependent and are important for neuroenergetics (see Figure 1).
Because these four enzymatic reactions involve the creation of
reducing power (NADH), thiamine thus fights oxidative stress (i.e.,
it has anti-oxidative properties), making thiamine neuroprotective
(discussed in more detail in the next section). Downregulation of
pyruvate dehydrogenase and α-ketoglutarate dehydrogenase leads
to an interruption of the Krebs cycle, resulting in reduced ATP
production in the brain (i.e., reduced neuroenergetics). This loss
of ATP also results in calcium overflow in the brain, leading to
neuronal apoptosis. It should also be noted that another important
mineral in neuroenergetics is magnesium because ATP must bind
to magnesium for it to be biologically active. Hence, magnesium
deficiency has a global effect on neuroenergetics.

Two of the eleven enzymes in Figure 1 are carboxylases
(pyruvate carboxylase and propionyl-CoA carboxylase).
Carboxylases catalyze decarboxylation reactions—removal of
carboxyl groups and release of carbon dioxide. These carboxylases
are dependent on vitamin B7 (biotin). Hence, vitamin B7 deficiency
leads to reduced activity of pyruvate carboxylase (pyruvate →

oxaloacetate) and propionyl-CoA carboxylase (propionyl-CoA
→ methylmalonyl-CoA). Both of these metabolic reactions are
also part of the primary energy pathway (Figure 1); hence, a
biotin deficiency can result in perturbed neuroenergetics. Lastly,
vitamin B12 (cobalamine) is required for the proper functioning
of methylmalonyl-CoA mutase, for propionyl-CoA, which is
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FIGURE 1

Primary metabolic pathways involved in neuroenergetics [glycolysis, Krebs cycle and oxidative phosphorylation (OXPHOS)]. Some of the key
enzymes are indicated and their associated B vitamins (given in bold blue text) are required for homeostasis of neuroenergetics. NAD, oxidized
nicotinamide adenine dinucleotide; NADH, oxidized nicotinamide adenine dinucleotide; FAD, oxidized flavin adenine dinucleotide; FADH2, reduced
flavin adenine dinucleotide; GDP, guanosine diphosphate; GTP, guanosine triphosphate; ADP, adenine diphosphate; ATP, adenine triphosphate; CoA,
coenzyme A; CO2, carbon dioxide.

produced by odd-chain fatty acid oxidation, to be incorporated
into the Krebs cycle. It should be noted that the other end-product
of fatty acid oxidation – acetyl-CoA, is also incorporated into the
Krebs cycle for energy production, reinforcing the statement that
the Krebs cycle is the “heart” of neuroenergetics.

Thus, as described above and illustrated in Figures 1, 2,
vitamins B1, B2, B3, B5, B7, and B12, as well as magnesium,
are all necessary micronutraceuticals for the homeostasis of
neuroenergetics. A deficiency in one or a combination of these
micronutraceuticals will result in allostatic overload. If this
allostatic overload is not alleviated (i.e., if this micronutraceutical
deficiency is not corrected), the health of the neurons will begin to
deteriorate, causing neurodegeneration.

3 Micronutraceuticals and neuronal
health

Perturbed neuroenergetics are sufficient to cause neuronal
dysfunction, or even neuronal death; however, beyond
neuroenergetics, micronutraceuticals have direct involvement
in various biological functions that affect the health of neuronal
cells (summarized in Table 1), as discussed here.

Firstly, many micronutraceuticals have anti-oxidative effects.
One way in which these micronutraceuticals function as anti-
oxidants is that they directly or indirectly neutralize free radicals
and excitotoxic compounds in the brain. A good example is
the excitotoxic metabolite glutamate, which is released into the
synapses of neurons when presynaptic neurons polarize and can
initiate the action potential of postsynaptic neurons (Hübel et al.,
2017). Vitamins B1, B6, C, and E, as well as magnesium, are
directly involved in glutamate clearance and have a neuroprotective
role (see Table 1). Another way that micronutraceuticals are anti-
oxidative agents is that they help maintain the redox cycle of other
anti-oxidants, such as the glutathione cycle (see Table 1—vitamins
B2, B6, B12, and D). Hence, micronutraceuticals regulate oxidants
in the brain, protecting neurons.

Secondly, the anti-inflammatory effects of micronutraceuticals
further highlight their neuroprotective effects, which go hand-in-
hand with their anti-oxidant abilities. Vitamins B2, B3, C, D, and
E (Table 1) have been shown to exhibit anti-inflammatory roles
by mitigating oxidative stress and regulating microglial activation
(modulating the release of cytokines/chemokines). Additional
neuroprotective roles of micronutraceuticals arise through the
maintenance of calcium homeostasis (by vitamin D), protection
against uncontrolled calcium ion influx (by magnesium), and
regeneration of neuroprotective vitamin E (by vitamin C).
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FIGURE 2

Chemical structures of coenzyme A [CoA; (A)], nicotinamide adenine dinucleotide [NAD; (B)], and flavin adenine dinucleotide [FAD; (C)], highlighting
the constituents of vitamins B5 (maroon), B3 (gold), and B2 (purple), respectively.

Indeed, micronutraceuticals represent a unique weapon against
the “neurotoxic triad” of excitotoxicity, oxidative stress, and
neuroinflammation (Holton, 2021).

Thirdly, the physical structure of neurons (biogenesis, growth,
and maintenance) is also dependent on micronutraceuticals.
Myelin—the sheath surrounding the axons of neurons—requires
vitamins B1, B5, and B6 (see Table 1) for its synthesis and
maintenance. Vitamins B1 and C are involved in axonal growth and
regeneration (see Table 1). Iron is necessary for neuron dendrite
growth and branching (Bastian et al., 2016; Brunette et al., 2010).
Vitamin B12 plays an all-around role as it is a major component
required for the growth, differentiation, development, and repair
of neurons (Reynolds, 2006). Okada et al., 2010) demonstrated
that methylcobalamine is the most effective analog of vitamin B12
for promoting neurite outgrowth and neuronal survival through
the methylation cycle and that methylcobalamine also promotes
nerve regeneration and functional recovery in a rat model of sciatic
nerve injury. Of note, vitamins B1, B6, and B12 are often termed
“neurotropic B vitamins” due to their joint role in neuronal health
and repair (Calderón-Ospina and Nava-Mesa, 2020; Paez-Hurtado
et al., 2023). Additionally, since vitamins B9 and B12 are also
closely linked with each other, vitamin B9 can also be considered
neurotropic.

Lastly, micronutraceuticals are required for normal neuronal
function. Nerve conduction and stimulation via gated ion channels
are supported by the presence of vitamin B1 (see Table 1). Vitamins
B1 and D also have neuro-modulatory and immune-modulatory
functions, respectively. Furthermore, neurons function through

neurotransmitters, and micronutraceuticals have been linked
to the synthesis and functioning of specific neurotransmitters
(e.g., acetylcholine, dopamine, gamma-aminobutyric acid,
noradrenaline, and serotonin—see Table 1). For example, vitamin
B6 is needed for the functioning of aromatic L-amino acid
decarboxylase, an enzyme required for the decarboxylation of
L-3,4-dihydroxyphenylalanine (L-DOPA) to dopamine and 5-
hydroxytryptophan (5-HTP) to serotonin. Hence, vitamin B6 is
important for normal neuronal function. Vitamins B6, B9, and
B12 are typically discussed together as their complementary roles
are inextricably linked (Kennedy, 2016). One very good example
of this is the homocysteine-methionine cycle and one-carbon
metabolism. For more information, the reader is referred to the
following papers that cover this specific topic in detail: Araújo
et al., 2015; Calderón-Ospina and Nava-Mesa, 2020; Kennedy,
2016; Lauer et al., 2022; Mitchell et al., 2014; Obeid et al., 2007;
Reynolds, 2006; Sechi et al., 2016; Smith, 2008; Vogel et al., 2009
Zhang et al., 2009.

4 Neuropathologies linked to
micronutraceutical deficiencies

It has long been taught at medical schools that deficiencies
of certain B vitamins, e.g., B1 (beriberi), B3 (pellagra) and
B12, contribute to causes of dementia and other neurological
problems. Table 2 presents the results of various studies that
identified micronutraceuticals as playing an important role in
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TABLE 1 Summary of the various roles that micronutraceuticals play in neuronal health.

Micronutraceutical Role in neuronal health References

Thiamine (B1) Neuro-modulatory Beltramo et al., 2008; Hirsch and Parrott,
2012

Formation of synapses, axonal growth, and myelinogenesis Bâ, 2005

Nerve stimulation, structure and function of neuronal membranes, and nerve membrane
functions (i.e., regulates ion channels – Na + gating and activating chloride ion channels)

Bâ, 2008; Bender, 1999; Spector and
Johanson, 2007

Myelin maintenance (contributes to nerve conduction velocity) Martin, 2001

Neuroprotective effects against excess glutamate Geng et al., 1995

Neurotransmitters: acetylcholine, dopamine, gamma-aminobutyric acid, and noradrenaline Beltramo et al., 2008; Hirsch and
Parrott, 2012; Martin, 2001; Moretti and
Peinkhofer, 2019

Riboflavin (B2) Anti-oxidative – glutathione redox cycle Ashoori and Saedisomeolia, 2014;
Moretti and Peinkhofer, 2019; Plantone
et al., 2021

Neuroprotective – direct inhibition of glutamate neuronal release, and anti-inflammatory Moretti and Peinkhofer, 2019

Protects against neurotoxicity by ameliorating oxidative stress, mitochondrial dysfunction, and
neuroinflammation

Marashly and Bohlega, 2017

Niacin/nicotinamide (B3) Anti-inflammatory (modulates neuroinflammation by regulating microglia) Moretti and Peinkhofer, 2019; Wakade
and Chong, 2014

Direct neurotransmitter and increased dopamine synthesis Moretti and Peinkhofer, 2019; Wakade
and Chong, 2014

Anti-oxidative and promotes calcium signaling Moretti and Peinkhofer, 2019

Key mediator in neuronal survival and development Gasperi et al., 2019

Neuroprotective (protects neurons from axonal degeneration) Vaur et al., 2017; Wakade and Chong,
2014

Pantothenic acid (B5) Required for the synthesis of coenzyme A (important for neuroenergetics, acetylation of
metabolites and metabolism of lipids and steroids), neurotransmitters, and steroid hormones

Kennedy, 2016; Moretti and Peinkhofer,
2019; Rucker and Bauerly, 2013

Myelin structure and function Ismail et al., 2020

Core component of acyl carrier proteins (ACPs) used in fatty acid metabolism (important for
neuronal health)

Rucker and Bauerly, 2013

Anti-oxidative Moretti and Peinkhofer, 2019

Pyridoxine (B6) Affects adrenergic, glutamergic, and serotonergic systems Calderón-Ospina and Nava-Mesa, 2020

Sphingolipid (myelin) synthesis Selhub et al., 2000; Spinneker et al., 2007

Anti-oxidative (glutathione metabolism) Wendołowicz et al., 2018

Neuroprotective [regulates glutamate (excitotoxity) levels] Calderón-Ospina and Nava-Mesa, 2020;
Dakshinamurti et al., 2003

Phospholipid metabolism Dakshinamurti and Dakshinamurti,
2013

Protects cerebral endothial cells against oxidative damage and prevents blood-brain barrier
dysfunction

Moretti and Peinkhofer, 2019

Neurotransmitters: dopamine, norepinephrine, serotonin, and gamma-aminobutyric acid Calderón-Ospina and Nava-Mesa, 2020;
Dakshinamurti and Dakshinamurti,
2013

Biotin (B7) Glucose homeostasis Kennedy, 2016

Anti-oxidative and neuroprotective Moretti and Peinkhofer, 2019

Cobalamine (B12) Anti-oxidative (glutathione metabolism) Wendołowicz et al., 2018; Chan et al.,
2018; Manzanares and Hardy, 2010;
Moreira et al., 2011

Growth, differentiation, development, and repair of neurons Reynolds, 2006

Promotes glucose uptake in the brain and stimulates neuronal survival Zhou et al., 2023

(Continued)
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TABLE 1 (Continued)

Micronutraceutical Role in neuronal health References

Ascorbic acid (C) Anti-oxidative García-Krauss et al., 2016; Harrison
et al., 2010; Narne et al., 2017

Regenerates vitamin E to protect neurons against lipid peroxidation Li et al., 2003

Optimal neuronal functioning (neurotransmission, synaptic maturation and neuronal
differentiation), regulates cellular response during hypoxic conditions, and neuroprotective
(glutamate clearance)

Narne et al., 2017

Oxidized form of vitamin C – dehydroascorbic acid, promotes the death of stressed neuronal
cells

García-Krauss et al., 2016

High abundance in brain regions rich in neurons (e.g., hippocampus) Harrison et al., 2010

Calcitriol (D),
ergocalciferol (D2), and
cholecalciferol (D3)

Regulation of neurotransmitters, neuronal differentiation, axonal growth, voltage-sensitive
calcium channels, neurotrophic factors, and ROS

Eyles et al., 2013

Axon regeneration Chabas et al., 2008

Promotes neurite outgrowth Brown et al., 2003; Neveu et al., 1994

Neuroprotective effects reduce excitotoxicity (regulates glutamate and modulates NMDA
receptors) and ROS-induced neurotoxicity, increases glutathione synthesis, and reduces
microglial activation

Garcion et al., 2002; Holton, 2021; Ibi
et al., 2001

Immunomodulatory and involved in the synthesis of neurotransmitters and neurotropic factors Garcion et al., 2002

Maintain Ca2+ homeostasis Manzanos et al., 2022

α-Tocopherol (E) Neuroprotective and anti-oxidative role against ROS Osakada et al., 2003; Tomé et al., 2010

Anti-inflammatory Betti et al., 2011

Magnesium Protects the N-methyl-D-aspartate (NMDA) receptor against uncontrolled calcium ion influx Domitrz and Cegielska, 2022

Neuroprotective (regulates glutamate excitotoxicity) Domitrz and Cegielska, 2022; Murata
et al., 2016

the pathogenesis and progression of neurodegenerative diseases.
Although Table 2 is by no means exhaustive nor comprehensive,
it is quite evident that Alzheimer’s disease (AD) is one of
the more researched neurodegenerative diseases in terms of
micronutraceuticals (Mielech et al., 2020). Missing from Table 2
are psychiatric disorders and other neurological problems, such
as headaches, migraines, epilepsy, neuroinfectious diseases, and
various rarer genetic diseases that present with major neurological
complications. In terms of psychiatric disorders, depression is
one the most common psychiatric problems in our society,
but some studies have shown benefits by supplementation
with vitamins B1 (Amerikanou et al., 2023; Rouhani et al.,
2023), B6 (Almeida et al., 2014), B9 (Almeida et al., 2014,
2015; Obeid et al., 2007; Petridou et al., 2016), B12 (Almeida
et al., 2014, 2015; Moorthy et al., 2012; Obeid et al., 2007;
Petridou et al., 2016), and D (Guzek et al., 2023). Bipolar
disorder and schizophrenia, two other psychiatric disorders, have
been shown to improve with supplementation with vitamin D
(Ashton et al., 2021; Gabriel et al., 2023; İmre et al., 2023;
Marazziti et al., 2023; Späth et al., 2023) and vitamin B9 (Obeid
et al., 2007), respectively. Therefore, these studies show that
micronutraceuticals should be incorporated into the treatment of
psychiatric disorders.

In migraine research, two particular micronutraceuticals have
been investigated: riboflavin (Licina et al., 2023; Marashly and
Bohlega, 2017; Nambiar et al., 2011; Plantone et al., 2021;
Schoenen et al., 1998; Thompson and Saluja, 2017; Yamanaka

et al., 2021) and magnesium (Domitrz and Cegielska, 2022;
Licina et al., 2023; Maier et al., 2020). Various forms of epilepsy,
which are receiving increasing amounts of research, respond
to supplementation with vitamins B6 (Fox and Tullidge, 1946;
Gospe, 2002; Kim and Cho, 2019), and B9 (Obeid et al., 2007),
and D and E (Kim and Cho, 2019). Another well-researched
neurological disorder is Wernicke-Korsakoff syndrome, which
is linked specifically to vitamin B1 deficiency and alcoholism
(Licina et al., 2023; Marashly and Bohlega, 2017; Nambiar et al.,
2011; Plantone et al., 2021; Schoenen et al., 1998; Thompson
and Saluja, 2017; Yamanaka et al., 2021; Isenberg-Grzeda et al.,
2012; Krzysztoforska et al., 2023; Sechi and Serra, 2007). However,
exploring all possible neurological disorders associated with
micronutraceuticals is far too broad and beyond the scope of
this review. Instead, Table 2 presents the major neurodegenerative
diseases.

While minerals are not discussed in detail in this review,
Table 2 shows that AD has been linked to the perturbation
of several minerals. One mineral in particular—iron—has been
observed to accumulate in the plagues of AD cases and to be
neurotoxic; whereas, in Parkinson’s disease (PD) cases, iron is
deficient (Table 2). As shown in Table 2, iron has not been directly
linked to other major neurodegenerative conditions; however,
it should be noted that iron is used in various mitochondrial
enzyme components. Hence, a deficiency of iron (anemia) leads to
perturbed neuroenergetics. Furthermore, various forms of anemia
are often linked to a lack of bioavailability of zinc and vitamins
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TABLE 2 Studies linking deficiencies in micronutraceuticals to major neurodegenerative diseases.

Micronutraceutical Alzheimer’s disease Parkinson’s disease Dementia Multiple sclerosis Huntington’s
disease

Amyotrophic
lateral
sclerosis

Thiamine (B1) X Bender, 1999; Lu’o’ng and Nguy?n, 2011; Kola
et al., 2023

X Kola et al., 2023 X Gibson et al., 2016;
O’Keeffe et al., 1994

X Nemazannikova et al.,
2018

– –

Riboflavin (B2) – X Coimbra and Junqueira, 2003;
Marashly and Bohlega, 2017;
Murakami et al., 2010; Plantone et al.,
2021

X Plantone et al., 2021;
Naghashpour et al., 2017

– – –

Niacin (B3) – X Wakade and Chong, 2014; Wakade
et al., 2015

X Hegyi et al., 2004;
Halubiec et al., 2021

X Hathorn et al.,
2011

–

Pantothenic acid (B5) – X Ismail et al., 2020;
Patassini et al., 2019

Pyridoxine (B6) X Aisen et al., 2008; De Jager et al., 2012; Seshadri
et al., 2002; Smith, 2008; Kola et al., 2023

X Murakami et al., 2010; Onaolapo
and Onaolapo (2023); Kola et al., 2023

X Seshadri et al., 2002;
Smith, 2008

– X Sorolla et al., 2010

Folic acid (B9) X Aisen et al., 2008; De Jager et al., 2012; Seshadri
et al., 2002; Smith, 2008; Araújo et al., 2015; Clarke
et al., 1998; da Silva et al., 2014; Murdaca et al.,
2021; Quadri et al., 2004; Reynolds, 2006; Vogel
et al., 2009; Kola et al., 2023

X Murakami et al., 2010; Dos Santos
et al., 2009; Xie et al., 2017; Obeid
et al., 2007; Obeid et al., 2007; Kola
et al., 2023

X Seshadri et al., 2002;
Smith, 2008; Araújo et al.,
2015; Reynolds, 2006; Vogel
et al., 2009

X Obeid et al., 2007 – –

Cobalamine (B12) X Aisen et al., 2008; De Jager et al., 2012; Seshadri
et al., 2002; Smith, 2008; Araújo et al., 2015; Clarke
et al., 1998; da Silva et al., 2014; Quadri et al., 2004;
Vogel et al., 2009; Douaud et al., 2013; Lauer et al.,
2022; McCaddon et al., 2002; McCaddon, 2013;
O’Leary et al., 2012; Kola et al., 2023

X McCaddon, 2013; Murakami et al.,
2010; Obeid et al., 2007; Kola et al.,
2023

X Seshadri et al., 2002;
Smith, 2008; Araújo et al.,
2015; Vogel et al., 2009;
McCaddon, 2013

X McCaddon, 2013; Obeid
et al., 2007

– X McCaddon, 2013

Vitamin A X da Silva et al., 2014; da Silva et al., 2014 X da Silva et al., 2014 – – – –

Vitamin C X da Silva et al., 2014; Murdaca et al., 2021; Arslan
et al., 2020; Kola et al., 2023

X Miyaue et al., 2022; Nagayama
et al., 2004; Sudha et al., 2003; Kola
et al., 2023

– – – –

Vitamin D X da Silva et al., 2014; Annweiler et al., 2013;
Balion et al., 2012; Chai et al., 2019; Dursun and
Gezen-Ak, 2019; Kang et al., 2022; Littlejohns
et al., 2014; Kola et al., 2023

X Evatt et al., 2011; Luo et al., 2018;
Lv et al., 2014; Pignolo et al., 2022;
Rimmelzwaan et al., 2016; Kola et al.,
2023

X Chai et al., 2019;
Littlejohns et al., 2014;
Sommer et al., 2017

X Bagur et al., 2017; Evans
et al., 2018; James et al.,
2013; Munger et al., 2006;
Pierrot-Deseilligny, 2009;
Smolders et al., 2019

– X De Marchi et al.,
2023

Vitamin E X da Silva et al., 2014; Arslan et al., 2020; Icer
et al., 2021; Kola et al., 2023

X Icer et al., 2021; Kola et al., 2023 – X Salemi et al., 2010 X Peyser et al., 1995 X Icer et al., 2021

Copper X* da Silva et al., 2014; Cilliers, 2021; Fei et al.,
2022; Moynier et al., 2020; Sasanian et al., 2020;
Smith et al., 2007; Socha et al., 2021

– – – – –

(Continued)
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A, B6, B9, B12, C, and E (Bhadra and Deb, 2020; Fishman
et al., 2000). Hence, excessive or insufficient iron is associated
with the pathogenesis and progression of neurodegenerative
conditions.

Further inspection of Table 2 reveals that vitamins B2, B3, B5,
and A are somewhat neglected in research on neurodegenerative
diseases. In their 2014 review, Ashoori and Saedisomeolia (2014)
identified vitamin B2 as a neglected micronutraceutical in neuronal
research. Similarly, Miller and Dulay declared in their 2008 study
that “the function of niacin in the brain has not yet been
studied” (Miller and Dulay, 2008). However, since 2014, studies
using a mouse model (Zhao et al., 2018) and a yeast model
(Chen et al., 2020) have shown that vitamin B2 ameliorates
AD. In 2023, Kodam et al. (2023) used an integrated multi-
omics approach (transcriptomics, proteomics, and metabolomics)
to identify deregulated neuroenergetics in patients with AD
modulated by impaired metabolism involving vitamins B2, B5,
and B6. In 2014 and 2015, studies on PD by the research
team of Wakade, Chong, and Morgan reported the role of
niacin in the management of symptoms of PD (Wakade and
Chong, 2014; Wakade et al., 2015). Thus, the roles of the
coenzymes NAD | NADH, FAD | FADH2, and FMN | FMNH2
in neurodegenerative diseases require more attention. In fact,
recent research strategies have “gone back to basics” and are
(re)examining the role of neuroenergetics in neurological disease.
Two such AD studies, one by Xu et al. (2020) and another by
Sang et al. (2022), took a closer look at the ubiquitous compound
CoA and found a widespread deficiency in vitamin B5 in AD
patients. A 2019 study on deficient neuroenergetics in HD also
identified vitamin B5 deficiency (Patassini et al., 2019). Finally, in
their in-depth and comprehensive systematic review and meta-
analysis of AD, da Silva et al. (2014) found nine AD studies that
measured vitamin A; however, the role of vitamin A in AD is
still inconclusive, with only four studies reporting significantly
decreased levels, whereas nine studies reported no changes. Hence,
the role of these neglected vitamins (B2, B3, B5, and A) in
neurodegenerative diseases should be a focal point for future
research.

The most researched micronutraceuticals in neurodegenerative
diseases are neurotropic B vitamins (B6 | B9 | B12), as well as
vitamins D and E (see the studies listed in Table 2). Onaolapo and
Onaolapo (2023) described the relationship between parkinsonism,
vitamin B6, and the phosphorylated form of B6 (pyridoxal
phosphate) as quite complex. As described in the previous section,
all these vitamins play a significant role in maintaining good
neuronal health; hence, it is no surprise that these vitamins are the
focus of research on neurodegenerative diseases.

As a point of note, it must be noted that several studies have
reported no correlation between vitamin supplementation and the
alleviation of symptoms of neurodegenerative diseases (Kennedy,
2016). This begs the question: Why? Why are there conflicting
outcomes regarding the efficacy of micronutraceuticals against
neurodegenerative diseases and brain health in these studies?
With this question in mind and the hot topics identified in this
review, herein lies the motivation for the last section of this
review: identifying the research gaps that exist in the literature
and articulating the directives needed for future research in this
scientific field.
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5 Research gaps and directives for
future research

Based on this review of the literature on the role of
micronutraceuticals in neuronal health, it is evident that there are
several gaps in the existing knowledge. These research gaps and
suggestions for future studies are articulated here.

1) Many studies examining normal brain function have
focused only on a small subset of the B vitamins (B6
| B9 | B12) (Kennedy, 2016). Other B vitamins and
other micronutraceuticals are largely ignored. Instead of
focusing on a small subset of micronutraceuticals in brain
health, future research should investigate the potential
effects of acute and chronic administration of a full range
of micronutraceuticals and their interactions.

2) Studies that examine neurological diseases often neglect
vitamins such as B2, B3, and B5. The role of these
neglected micronutraceuticals in terms of the allostasis
of neuroenergetics during the early onset, progression,
and establishment of neurological diseases needs to be
examined more closely.

3) The exact mechanisms of action of B vitamins in
neurological diseases are unclear (Calderón-Ospina and
Nava-Mesa, 2020). Future clinical studies that directly
compare the effects of B vitamins in patients with
neuropathology are needed to test their synergistic effects.

4) It is clinically difficult to isolate the effect of a single
micronutraceutical on brain development because studies
typically investigate the combined effects of multiple
micronutrients (Tardy et al., 2020). Robust empirical data
are needed to test the theoretical hypotheses regarding
the effects of individual micronutraceuticals on brain
development and function. Additionally, more validated
experimental models and clinical data on (relatively
ignored) younger and older populations are needed.

5) More studies are needed to identify biomarkers that can be
used to assess the effects of micronutraceutical deficiencies
(Sechi et al., 2016). New and improved methods are
needed for the early detection of dysregulated/deficient
micronutraceutical levels, before the onset of neurological
symptoms, to prompt corrective treatment.

6) There are several conflicting studies on the therapeutic
potential of micronutraceuticals in neurodegenerative
diseases. More validation studies are needed to
determine whether vitamin supplementation improves
neurodegenerative diseases and to determine the optimal
dosage and route of micronutraceutical administration.

7) Lack of application of micronutraceuticals laboratory
findings in neurodegenerative diseases to clinical practice.
Future clinical trials must be designed effectively and
objectively to evaluate the progression, or lack thereof, of
neurodegenerative diseases in patients receiving individual
or combined vitamin supplementation.

8) There is a paucity of clinical studies on the role of
micronutraceuticals in the pathogenesis and potential
treatment of neurological disorders (Lahoda Brodska
et al., 2023; Rai et al., 2021). Clinical studies are needed to

elucidate the mechanism(s) by which micronutraceuticals
affect the (anti)inflammatory and (anti)oxidative
responses in the brain (i.e., evaluate the efficacy and
protective role of micronutraceuticals in neurological
disorders).

9) Explore the interaction between micronutraceuticals and
environmental and lifestyle factors (such as exercise,
stress, sleep, etc.) in neurological health to provide more
comprehensive, personalized health recommendations.

With the abovementioned nine points in mind, research
should be driven to garner mechanistic insights into the role of
micronutraceuticals in neuronal health, validate their potential
in ameliorating neurodegenerative diseases, and drive their
application to personalized medicine (Badaeva et al., 2023).

6 Concluding remarks

This review highlights the role of micronutraceuticals in
neuroenergetics, normal neuronal functioning, and health; and
provides a summary of some of the neurological consequences of
perturbed micronutraceuticals. The focus of this review was on
neurons; however, neurons do not function independently but rely
on support from glial cells (e.g., astrocytes and oligodendrocytes)
to assist in neuronal function. Additional reviews are needed that
cover the topic of neuronal support. It must also be stated that this
review is by no means an exhaustive nor comprehensive overview
of the literature. Specifically, one-carbon metabolism and the role of
B vitamins in the homocysteine-methionine cycle and methylation,
albeit important metabolic functions, were not discussed in this
review. Other related topics not covered in this review include:
various forms of brain cancer (gliomas), physical (traumatic) brain
injury, neuroinfectious diseases (e.g., meningitis, encephalitis),
psychiatric conditions, and cognitive decline, sensory disorders,
and neurodiverse conditions (such as autism). Instead, the novelty
offered by this review is the collective insights into existing research
gaps and the provision of directives for future research.

We are at an inspiring stage in scientific research on the brain
and its disorders. Various studies that have involved controlled
interventions in large cohorts of participants have begun to
demonstrate the mechanistic functions of micronutraceuticals
in the brain. Based on the knowledge presented in this
review, it is clear that the onset and/or severity of the
increasing number of neurodegenerative diseases that occur
in our society can be ameliorated by personalized medicine,
whereby micronutraceuticals are actively monitored and adjusted
accordingly via dietary supplementation. More research, driven
by the research gaps and directives presented in this review,
is needed to validate the roles of micronutraceuticals in
neurodegenerative diseases.
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