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Knowledge concept recognition (KCR) aims to identify the concepts learned in

the brain, which has been a longstanding area of interest for learning science and

education. While many studies have investigated object recognition using brain

fMRIs, there are limited research on identifying specific knowledge points within

the classroom. In this paper, we propose to recognize the knowledge concepts in

computer science by classifying the brain fMRIs takenwhen students are learning

the concepts. More specifically, this study made attempts on two representation

strategies, i.e., voxel and time di�erence. Based on the representations, we

evaluated traditional classifiers and the combination of CNN and LSTM for KCR.

Experiments are conducted on a public dataset collected from 25 students

and teachers in a computer science course. The evaluations of classifying fMRI

segments show that the used classifiers all can attain a good performance when

using the time-di�erence representation, where the CNN-LSTM model reaches

the highest accuracy. This research contributes to the understanding of human

learning and supports the development of personalized learning.

KEYWORDS

knowledge concept recognition, deep learning, fMRI classification, brain identification,

learning science

1 Introduction

The recognition of knowledge concepts in the brain aims to identify the contexts that

are learning or thinking, which is critical for human learning understanding (Seguin et al.,

2023). It is useful in many current research fields, including the neural pattern in education

(Meshulam et al., 2021), intelligent human-machine interface (Allen et al., 2022), and brain

disorder treatment (Chianese et al., 2021). Hence, knowledge concept recognition (KCR)

has become an emerging direction in recent years due to the quick development of brain

science and its applications.

In general, KCR involves scanning the active brain to acquire imaging data during

different task states and using classification techniques to identify the corresponding brain

images for various task states (Zhang et al., 2023). The techniques of brain imaging

acquisition can be invasive or non-invasive, such as functional magnetic resonance imaging

(fMRI) and positron emission tomography (PET) (Chang et al., 2022). Wherein, fMRI

is widely used in investigations of brain functions due to its high spatial resolution and

non-invasive acquisition. The fMRI images are often acquired by brain scanning for many

timestamps, where one picture is obtained at each timestamp (Allen et al., 2022; Meshulam

et al., 2021). Hence, fMRI data usually involves a sequence of images, where each pixel

in the image measures the Blood Oxygenation Level Dependent (BOLD) signal at a brain
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location. With the time-series fMRI, we acquire the brain

activity using the changes of BOLD values in the brain

(Allen et al., 2022).

With the assumption of different BOLD patterns in fMRI

for different cognitive concepts, the KCR focused is usually

formulated into fMRI classification (Feng et al., 2022). In

recent years, many approaches have been developed to identify

fMRI images. Zhang et al. (2022b) proposed a multi-instance

model with contrastive learning to identify non-math students

and Alzheimer’s disease. Qiang et al. (2023) knitted the VAE-

GAN method by integrating variational auto-encoder(VAE) and

generative adversarial net(GAN) to implement fMRI augmentation

for Attention Deficit Hyperactivity Disorder(ADHD) classification.

Zhang et al. (2022a) used a novel feature selection method by the

difference between step distribution curves and utilized amultilayer

perception pre-trained by a VAE for identifying the Autism

spectrum disorder (ASD). However, the current studies of fMRI

classification rarely consider the problems in the classroom (Mason

and Just, 2016). Li et al. (2023) used spatio-temproal graph neural

networks to identify the learning disability from brain graphs, while

the identification of concepts learned is few touched (Lei et al., 2023;

Mason and Just, 2016). Wang et al. (2013) developed a multi-voxel

fMRI pattern analysis to identify the difference between abstract

and concrete concepts by using a logical regression classifier, where

the fMRIs are yielded by asking different words. Mason and Just

(2016) used the naive Bayes classifiers to identify the physics

concepts from fMRI, showing the discriminability of the brain

activation signature.

The recent study shows neural representation could predict

learning outcomes in students taking a computer science (CS)

course (Meshulam et al., 2021). To explore the process, in this

paper, we use machine-learning-based fMRI classification methods

for KCR in the CS classroom. Our KCR tasks are focused on

identifying those concepts learned in student learning, where

the concepts involve basic knowledge points of programming

(Meshulam et al., 2021). Our study framework is shown in Figure 1.

The contributions are 3-folds:

(1) This paper contributes to the topic of KCR from fMRI

in education, which aims to discover the cognitive pattern in the

learning brain. It can help trace the knowledge in the brain (Zhang

et al., 2020) and make a personalized learning plan.

(2) Two strategies of fMRI classification are discussed,

including voxel-based and temporal difference-based methods. For

the two methods, traditional machine learning models and deep

neural networks are evaluated, respectively.

(3) The CNN-LSTM model integrating convolutional neural

networks (CNN) and long short-term memory (LSTM) are

utilized to extract the spatial and temporal features from

the BOLD variances, resulting in a better performance than

other methods.

The remainder of this paper is organized as follows. Section

2 investigates related works of the KCR and fMRI classification.

The used dataset is introduced in Section 3. The traditional

classifiers and CNN-LSTM are introduced in Sections 4, where both

voxel-based and difference-based representation are also given,

respectively. Experimental results are presented and analyzed in

Section 5. Finally, Section 6 concludes this study.

2 Related work

2.1 Concept recognition

Recognition of knowledge concepts in brain imaging data

involves scanning the brain under different learning task states

to obtain brain imaging data. Then, utilizing classification

techniques to identify the corresponding brain images for different

task states. This is crucial for understanding human learning

(Bréchet et al., 2019) and represents a new direction emerging

in recent years. According to different types of brain imaging

data, KCR can be implemented via different techniques, including

functional magnetic resonance imaging (fMRI), structural

magnetic resonance imaging (sMRI), and electroencephalography

(EEG). In recent years, with the development of fMRI and sMRI

(Khvostikov et al., 2018) technologies, researchers have been

able to obtain detailed information about brain function and

structure, leading to significant advances in the field of cognitive

neuroscience. Zeithamova et al. (2019) proposed a geometric

deep learning framework for cross-modal brain anatomy and

functional mapping, which is important for understanding the

relationship between brain structure and function, as well as

studying neurological disorders. Additionally, in the identification

of EEG images, Li et al. (2016) encapsulated multi-channel

neurophysiological signals into grid-like frames through wavelet

transform and spectrogram transform. They further designed a

hybrid deep learning model, combining Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN), to

extract task-related features, explore inter-channel correlations,

and incorporate contextual information from these frames.

However, there is few studies of recognizing the KC from fMRIs in

a classroom (Zhang et al., 2022c). In general, KCR can be cast as a

fMRI classification problem simply (Zhang et al., 2023).

2.2 FMRI classification

Currently, there are many pathological analyses (Wang et al.,

2021), neuro-disease diagnoses (Ronicko et al., 2020), and pattern

recognition (Wang et al., 2019) methods based on fMRI data.

They are mainly divided into traditional machine learning-based

methods and deep learning-based methods, where deep learning

methods can be further categorized into voxel-based classification

methods based on convolutional neural networks and graph-

based representation classification methods based on functional

connectivity.

Traditional machine learning methods were initially applied to

the correlation analysis of brain regions and cognitive functions

in fMRI data. By examining the response of each voxel in the

fMRI data of subjects under different stimuli (whether the voxel is

“activated,” measured by the change in neural metrics at that point),

mapping the voxels to cognitive stimuli was attempted. However,

this approach ignored the correlation between voxels in different

locations. Multi-voxel pattern analysis (MVPA) (Weaverdyck et al.,

2020) applies multivariate analysis to multiple voxels in fMRI

data to improve the representation of voxel relationships. Therein,

linear discriminant analysis and support vector machines are also
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FIGURE 1

The framework of our study. From courses, the brain receives stimulation of concepts, resulting in fMRIs. This study explore creating the mapping f

to identify what concept is learning in the brain.

used in the comparisons. Kuncheva et al. (2010) proposed a

support vector machine model based on random subspaces and

compared its performance with other machine learning classifiers

for fMRI classification. Ryali et al. (2010) achieved the dual

objectives of discriminating brain regions and classifying fMRI data

using logistic regression combined with L1 and L2 regularization

and other machine learning techniques. However, the traditional

machine learning-based fMRI classification is insufficient in

representation learning.

Deep learning algorithms, benefiting from the power of

neural networks, show the better performance in the fMRI

classification. On the one hand, voxel-based deep learning methods

have achieved research results in various fields. Feng et al.

(2022) proposed a method that combines Deep Feature Selection

(DFS) and Graph Convolutional Networks (GCN), to classify

ASD and developing control groups, significantly improving the

prediction performance. Researchers then focused on the temporal

nature of fMRI data, integrating sequence learning ideas such as

LSTM and Markov processes into fMRI data classification. These

deep learning methods have shown improvement compared to

traditional machine learning methods, but generally ignored the

structure information, such as the interregional correlations of the

brain (Li et al., 2023). On the other hand, functional connectivity

(FC) is achieved based on the voxel-wise time series of fMRI images,

reflecting the functional spatio-temporal relationships between

brain regions (Lurie et al., 2020). Dynamic connectivity analyses

(Zarghami and Friston, 2020) are investigated the neuronal basis

of metastability. Generally, two main methods are often used

to calculate FC: correlation analysis (Liégeois et al., 2020) and

clustering decomposition (Cribben and Yu, 2017). In the former,

brain regions with strong correlations are generally considered

to be functionally connected, such as Pearson product-moment

correlation and Spearman’s rank correlation (Lei et al., 2023). The

latter clusters brain regions to be functionally connected. FC has

been utilized for diagnosing Autism Spectrum Disorder (ASD)

(Shao et al., 2021), Alzheimer’s disease (AD) (Zuo et al., 2024b,

2023a), and cognitive impairment (Zuo et al., 2024a, 2023b).

Besides, graph-based learning methods have been developed to

identify the brain status, since the brain graph can be conducted by

functional connectivity matrix (Bessadok et al., 2022; Zong et al.,

2024). Kim and Ye (2020) develop an approach for graph analysis

based on resting-state fMRI to diagnose the spectrum disorders.

To consider the sequential features, Lei et al. (2023) developed

a Spatio-Temporal Graph Convolutional Network (ST-GCN) for

brain representation.

However, there is few studies that are to diagnose whether a

KC from a computer course has been mastered by student (Zhang

et al., 2022c). Inspired by this, this study aims to learn and encode

both temporal and spatial information into the graph structure for

subsequent spectral graph convolution methods to learn concepts

from the graph structure. With the different representation, the

study is to recognize the KC from brain fMRI, exploring a novel

possibility of knowledge diagnoses for education (Zhang et al.,

2020).

3 Problem definition and the used
public dataset

To be more clear, we definite the problem of KCR here. Let X

be a input fMRIs and y be the knowledge concept (KC) learned in

the brain. The KCR problem finds a function f to :

minimize||f (X)− y||22 (1)

such that f can identify the KC in the brain. The studies on data

analysis has been develop in the work of Meshulam et al. (2021).

But they did not develop the KCR in their works while focusing on

analyzing the relationship between students and experts.

Inspired by the research work of Meshulam et al. (2021), this

study uses their published datasets collected brain images from 25

participants,1 as shown in Figure 2. The participants in this study

consisted of 20 students and 5 teachers. The short description is

as follows: The students underwent six scans, while the teachers

participated in a single fMRI scan. During the first five scans,

students viewed lectures from the course “An Introduction to

Computer Science,” which covered topics such as conditions and

loops, libraries and functions, abstract data types, performance,

and the theory of computing. In the sixth scan, both students

and teachers watched a knowledge review video summarizing

the material from the previous weeks and then took an exam.

NOTE THAT there are many limitations in data collection, such

as student’s requirements and the number of students in the

classroom, leading to the small size of dataset. More details about

1 https://openneuro.org/datasets/ds003233/versions/1.2.0
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FIGURE 2

An example fMRI (left), MRI (right upper), and hippocampus (right down).

this dataset is refereed to the paper published by Meshulam et al.

(2021).

Due to the complexity, this study focuses on the hippocampus.

Learning in the brain is a complex system, which is affected

by many brain regions, such as the hippocampus, the prefrontal

cortex, and the parietal lobe (Gavazzi et al., 2023). However,

this study aims to recognize the abstract concepts learned in

the brain. Since the hippocampus is one of the most important

brain regions in concept abstract (Courellis et al., 2024), we here

focused on hippocampus for learning KC from videos and extracted

the corresponding fMRI patches. For the convenience in model

training, we extracted 668 fMRI voxels for the hippocampus. To

mitigate the small sample issue, we divided the fMRI sequence into

short fragment along time with about 15 time stamps per segment.

The category labels correspond to five computer-science concepts.

4 The used fMRI classification
methods

4.1 Traditional voxel-based machine
learning methods

4.1.1 Data pre-processing
The fMRI images were here pre-processed as follows. First,

motion correction was applied using MCFLIRT (Jenkinson et al.,

2002) to address rearrangements between images, correcting

for motion both within and across questions. Next, a joint

registration of functional and anatomical images was performed

for each participant using a 12-degree linear transformation. The

anatomical images were then normalized to the standard brain

template defined by theMontreal Neurological Institute’s 152-brain

average, followed by a 6-degree-of-freedom non-linear registration

from structural to standard space. Finally, slice timing correction

was conducted.

Given the complex spatial structure of the hippocampus

examined in this study, the 668 voxels were flattened into a one-

dimensional format. The entire dataset was divided into different

time steps, usually with a time step of 15. This process generated

the preliminary data required for the model, where each sample

is represented as a tensor of size 668 × 15, where the 668 voxels

represent the hippocampus and 15 represents the data fragment

having 15 time steps. To mitigate the dimensional impact between

metrics and enhance the comparability of data indicators, data

standardization is essential. This paper employs the following

normalization formula:

x′ =
x− µ

σ
(2)

where x indicates the raw data, µ and σ are the mean and standard

deviation of x, and x′ is the normalized data. In addition, we used

two normalizations for individual samples and the entire category.

4.1.2 Traditional machine learning models
The traditional classificationmodels utilized in this research are

the Support Vector Machine (SVM) and the k-Nearest Neighbors

(KNN) algorithm (Bhutta et al., 2023). Both methods are often

employed for classification (Zhang et al., 2021). The parameters

used in experiments are introduced in the specific evaluations.

4.2 BOLD di�erences-based
spatio-temporal deep neural networks

4.2.1 Data processing for di�erence computation
In the preceding experiments, the flattening of all voxels into a

one-dimensional format resulted in the loss of their overall spatial
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FIGURE 3

The used CNN-LSTM framework, where the input size is depended on the classification tasks in hand, while the loss function is the cross entropy

(Mao et al., 2023). The dashed arrows in the figure indicate the direction of back-propagating.

TABLE 1 Results of using SVM and KNN algorithms with di�erent normalizations, where the empirical parameters are set for high prediction accuracy.

Classifier Parameter setting Accuracy

Region normalization Category normalization

SVM decision_function_shape = “ovr,”

kernel = “linear,” C = 10,

max_iter = 1,000

0.76 0.78

KNN n_neighbors = 30,

weights = “uniform,”

p = 2

0.39 0.42

FIGURE 4

Confusion matrixes of SVM (right) and KNN (left) with category normalization. The vertical axis is the actual labels, while the horizontal axis is the

predicted labels.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2025.1499629
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2025.1499629

TABLE 2 Comparison of SVM and KNN with di�erent time steps, where the empirical parameters are set to obtain higher classification accuracy.

Classifier Parameter setting Category normalization

Time step

5 3 1

SVM decision_function_shape = “ovr,”

kernel = “linear,”

C = 10, max_iter = 1,000

0.65 0.68 0.69

KNN n_neighbors = 30, weights =

“uniform,” p = 2

0.53 0.61 0.71

TABLE 3 Parameters and comparison of MLP and (CNN+LSTM) × MLP,

where the empirical parameters are set to obatin higher classification

accuracy.

Classifier Parameter setting Accuracy

MLP (10,020,512,256,128,64,5), optimizer =

“adam,” Epoch = 3,000

0.74± 0.023

(CNN1D+LSTM)

×MLP

Conv1d(in_channels = 668,

out_channels = 100, kernel_size = 1)

LSTM(input_size = 668, hidden_size =

100,

num_layers = 5, bias = True, batch_first

= True,

dropout = 0.25, bidirectional = False)

(3,000,512,256,64,5),

Dropout = 0.2, Epoch = 3,000

0.81± 0.031

characteristics. To account for spatial features, this study employed

a two-dimensional representation of fMRI images. To account for

temporal features, this paper implements differential operations

on the original data within the temporal dimension, expressed

mathematically by Xdiff = Xt − Xt−1 where Xt is the t-slice in a

fMRI. Then, normalization is performed on the time-difference.

4.2.2 The CNN-LSTM model
To extract robust spatio-temporal features, we develop a spatio-

temporal network model, CNN-LSTM, as illustrated in Figure 3.

This model comprises five distinct components: data enhancement,

convolutional neural network (CNN), long short-term memory

neural network (LSTM), feature fusion, and fully connected neural

network. In CNN-LSTM, Convolutional neural networks (CNN)

can extract spatial features of the model; long short-term memory

neural networks (LSTM) can extract the temporal sequence features

of the data; combining CNN and LSTM together can achieve the

extraction of model spatio-temporal features.

Given a set of fMRI dataX = {X1,X2,X3, ...,Xn}, eachXi = [Xi,j]

represents the BOLD value of the j-th voxel in the hippocampus at

the time step ti. The model we proposed tries to learn an optimal

model F so that F(Xi) is directly mapped to its corresponding

label yi. There are five concept types of yi, which correspond to

the fMRI images under specific computer course tasks. The CNN-

LSTM model described in this paper can be outlined through the

following steps:

1. Process the fMRI images using a time difference operation to

obtain the data X.

2. Apply a convolution to the enhanced X through the CNN layer

to yield XC .

3. Pass the enhanced X through the LSTM layer with kmodules to

obtain XL.

4. Fuse XC and XL to obtain XM .

5. Feed the obtained XM into a fully connected neural network

(FCN) for classification.

In summary, the prediction results of this framework are

achieved by

yi = MLP(CNN(Xi,j)+ LSTM(Xi,j)) (3)

where yi is the label; MLP indicates the Multi-Layer Perceptron,

while LSTM is Long Short-Term Memory. Note that LSTM is a

traditional approach to handle the time sequence data, while the

Transformer has been well known for their strong capabilities in

parallel computation, global context modeling, and adaptability

to sequence data (Han et al., 2021). However, the fMRI datasets

used here is hard to train Transformer due to its complexity.

Hence, in this study, we just explored the KCR by using LSTM

(Zhang et al., 2022c).

5 Experiment results

5.1 Evaluation metrics

We evaluated the used classification methods for KCR by

common metrics. For this multi-label classification, we calculated

the metric by considering the samples belonging to the target class

as positive samples. Let TP, TN, FP, and FN be true positive, true

negative, false positive, and false negative for classification result,

respectively. The following metrics evaluate model performance on

the test set:

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FNi

F_1 Scorei = 2 ·
Precisioni · Recalli

Precision+ Recall

Accuracy =
TP + TN

TP + TN + FP + FN

Cohen’s Kappa Coefficient =
Po − Pe

1− Pe
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FIGURE 5

ROC curves of MLP (left) and (CNN+LSTM) × MLP (right).

where i indicates the i-th class, Po is the observed agreement,

and Pe is the expected agreement by chance. The 10-fold cross-

validation is adopted to achieve the classification accuracy. The

process is as follows: we randomly divided the datasets into 10

folds where 9 folds are for training classifiers and the rest fold

is for computing test accuracy. Finally, we reported the average

values from the 10 folds. To evaluate the data imbalance issue, we

also computed the Micro-average and Macro-average computed

as in the previous work (Zhang et al., 2022d). In this study, we

tried to ensure that the number of samples across classes was

approximately balanced, leaving the issue of data imbalance for

future consideration.

5.2 Voxel-based classification evaluation

5.2.1 Evaluations on traditional classifiers
We classified fMRI data under five concept categories using

traditional classification models, i.e., SVM and KNN. The

classification results are shown in Table 1, together with their

parameter settings. From the results, it can be seen that the SVM

model performs well, achieving an accuracy of 78%. While the

performance of KNN is relatively poor, with only 42% accuracy.

This might be because the KNN model is relatively simple and

considers only the “distance” factor, leading to lower accuracy.

Figure 4 presents the confusion matrices of SVM and KNN

obtained from the experiments. The results indicate that the SVM

achieves relatively high classification accuracy across all classes.

On Category “2,” i.e., abstract data types, SVM has relatively

lower performance. The classification accuracy for the remaining

categories exceeds 80%. While, KNN’s overall performance is

relatively poor from the left matrix. Category “1” is significantly

misclassified into Category “2.”

Table 2 presents the experimental results of the investigation of

the impact of time step {1, 3, 5}. It is observed that reducing the

time step can result in an increase in training accuracy for KNN and

SVM. That is due to the increasing number of training samples.

TABLE 4 Parameters and accuracy of the combinations of MLP, CNN,

LSTM, and LSTM.

Classifier Parameter setting Accuracy

MLP (10,020,512,256,128,64,5), optimizer =

“adam,” Epoch = 3,000

0.88± 0.016

CNN+MLP Conv[1(3,3), strides=1, padding =

“same,”

use_bias = False] Conv2D[1,(3,3),

strides = 1,

padding = “same,” use_bias = False]

(20,040,512,256,64,5), Dropout = 0.2,

Epoch = 500

0.91± 0.024

LSTM+MLP LSTM(input_size = 668, hidden_size =

100,

num_layers = 5, bias = True, batch_first

= True, dropout = 0.25,

bidirectional = False)

(11,520,512,256,64,5) Dropout = 0.2,

Epoch = 500

0.92± 0.021

(CNN+LSTM)

×MLP

Conv(in_channels = 668, out_channels

= 100, kernel_size = 1)

LSTM(input_size = 668, hidden_size =

100,

num_layers = 5, bias = True, batch_first

= True,

dropout = 0.25, bidirectional = False)

(3,000,512,256,64,5),

Dropout = 0.2, Epoch = 500

0.94± 0.029

The standard deviation are obtained by 10 folds.

5.2.2 Evaluations on deep learning models
We conducted experiments by using MLP and

(CNN1D+LSTM) × MLP to show the prediction performance.

The results are shown in Table 3 with their using parameters.

As is shown, we could achieve the following observations and

conclusions. (1) MLP consisting of a 5-layer neural network was

trained to directly classify the flattened data vector, achieving

an accuracy of 74%. (2) Considering the temporal features, we

evaluated the model (CNN1D+LSTM) × MLP which combines
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TABLE 5 Evaluation metrics of compared methods, where the accuracy is from Table 4.

Classifier Precision Accuracy Recall F1 Score Cohen’s Kappa
coe�cient

MLP 0.90 0.88 0.84 0.867 0.67

CNN+MLP 0.89 0.91 0.86 0.875 0.76

LSTM+MLP 0.91 0.92 0.90 0.905 0.74

(CNN+LSTM)×MLP 0.93 0.94 0.91 0.935 0.81

CNN1D and LSTM on flattened vectors and then connect to MLP,

achieving 81%.

Figure 5 displays the ROC curves obtained from the

experiment. The results manifest that (CNN1D+LSTM) ×

MLP reaches the better performance than MLP in terms of ROC

and AUC. Besides, we aggregate the per-class metrics into the

micro/macro-average ROC curve and AUC. Their results show

that (CNN1D+LSTM)×MLP is better than MLP. All results imply

the effectiveness of integrating spatial and temporal features.

5.3 Time-di�erence based classification
evaluation

This subsection evaluates the time difference based methods.

To check effectiveness of each component, we employed four

different models for comparisons, shown in Table 4, together with

their used parameters. Note that we adjusted the model in the

training process to seek their best performance in our experiments.

From Table 4, these observations reveal that both CNN+MLP

and LSTM+MLP reach better performance than MLP, while

(CNN+LSTM)×MLP achieves the best performance. Besides, the

MLP model attained good results after 3,000 training iterations,

while other models achieved comparable performance after only

500 training iterations. This implies that more powerful feature

representations not only enhance the classification accuracy of the

models but also accelerate their convergence. However, the less

steps likely incurs higher standard deviations.

In Table 5, we computed the performance evaluation results

of each model utilizing time difference in terms of precision,

accuracy, recall, F1 score, and Cohen’s Kappa coefficient. The

results indicate that considering either spatial or temporal features

enhances classification performance. Moreover, the integration of

both types of features appears to yield superior results compared

to the use of either feature type alone. That implies that learning

concept in the brain is not only a structural activity but also a

temporal activity.

6 Conclusion

In this study, we proposed utilizing learning methods for

knowledge concept recognition (KCR), a compelling problem

in brain decoding. We implemented two approaches to data

preprocessing: raw voxel sequences and time-difference sequences.

When utilizing time-difference sequences, the results show

significantly improved performance, compared to using the voxel

sequences. Experimental results show the consideration of both

spatial and temporal features proves to be particularly effective in

fMRI classification for KCR.

In future work, we will consider a bigger fMRI datasets

for learning science and use more explainable feature extract

model and deep models (Ning et al., 2023). To address the

small data-size problem, we will adopt the federated learning

framework to have fMRI analyses with many other institute (Zhang

et al., 2025, 2024). Finally, toward a personalized learning plan,

the variability between students will be worthy to consider in

the future.
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