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A sleep staging model based on 
adversarial domain generalized 
residual attention network
Pengwei Zhang , Sijia Xiang , Kailei Hu , Jialing He  and 
Jingxia Chen *

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and 
Technology, Xi’an, China

To solve the problem of poor generalization ability of the model on unknown data 
and the difference of physiological signals between different subjects. A sleep 
staging model based on Adversarial Domain Generalized Residual Attention Network 
(ADG-RANet) is designed. The model is divided into three parts: feature extractor, 
domain discriminator and label classifier. In the feature extractor part, the channel 
attention network is combined with the residual block to selectively enhance the 
important features and the correlation between multi-channel physiological signals. 
Inspired by the idea of U-shaped network, the details and context information in 
the input data are effectively captured through up-sampling and skip connection 
operations. The Bi-GRU network is used to further extract the deep temporal 
features. A Gradient Reversal Layer (GRL) is introduced between the domain 
discriminator and the feature extractor to promote the feature extractor to obtain 
the invariant features between different subjects through the adversarial training 
process. The label classifier uses the deep features learned by the feature extractor 
to perform sleep staging. According to the AASM sleep staging criterion, the five-
classification accuracy of the model on the ISRUC-S3 dataset was 82.51%, the 
m-F1 score was 0.8100, and the Kappa coefficient was 0.7748. By observing the 
test results of each fold and comparing with the benchmark model, it is verified 
that the proposed model has better generalization on unknown data.
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1 Introduction

Sleep, driven by the circadian rhythm, is a crucial means to improve bodily functions and 
alleviate fatigue (Foster, 2020). Both the duration and quality of sleep play pivotal roles in 
physical and mental health. Assessing sleep stages and conducting research related to sleep 
staging is of significant importance for human health and clinical disease diagnosis. 
Polysomnography (PSG) is a technique widely used in sleep medicine research and sleep 
disorder diagnosis, which continuously synchronizes the recording of biological electrical 
changes and physiological activities during sleep. It mainly records various physiological 
indicators including Electroencephalogram (EEG), Electrooculogram (EOG), 
Electrocardiogram (ECG), Electromyograp-hy (EMG), Blood Oxygen Saturation (SpO2 
Saturation), Pulse, Nasal-oral Air Flow, and Thoracic Abdominal Effort (Chinese Medical 
Association Neurology Physicians Branch Sleep Disorders Specialty Committee, Chinese Sleep 
Research Society Sleep Disorders Specialty Committee, Chinese Medical Association 
Neurology Branch Sleep Disorders Study Group, 2018). The early classification standards for 
sleep stages divided sleep into three stages: Wake (W), Non-Rapid Eye Movement sleep 
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(NREM sleep), and Rapid Eye Movement sleep (REM sleep). In 1968, 
Rechtschaffen and Kales from the United  States proposed and 
formulated the “Manual of Standardized Terminology, Techniques 
and Scoring System for Sleep Stages in Human Subjects,” abbreviated 
as the R&K criteria. This criterion divides sleep stages into six stages: 
W stage, Stage 1(S1), Stage 2(S2), Stage 3(S3), Stage 4 (S4), and REM 
stage. Based on this, the American Academy of Sleep Medicine 
published the “AASM Manual for the Scoring of Sleep and Associated 
Events: Rules, Terminology and Technical Specifications,” abbreviated 
as the AASM criteria. The AASM criteria merge stages S3 and S4 from 
the R&K criteria, dividing sleep stages into W stage, Non-Rapid Eye 
Movement 1(NREM 1, N1) stage, Non-Rapid Eye Movement 2(NREM 
2, N2) stage, Non-Rapid Eye Movement 3(NREM 3, N3) stage, and 
REM stage, totaling five stages (Moser et al., 2009).

The early staging of sleep relied on manual assessment of sleep 
data by sleep experts, a process that was not only time-consuming 
and labor-intensive but also prone to errors due to subjective 
factors. With the continuous development of computer technology, 
automatic sleep staging techniques have gradually become 
prevalent. Machine learning based automatic sleep staging methods 
require manual feature extraction and use classifiers such as 
Random Forest (RF) for sleep staging tasks (Memar and Faradji, 
2018). With the ongoing advancement of deep learning, deep 
learning techniques rely on deep neural networks for end-to-end 
feature extraction, avoiding the subjectivity of manual 
feature extraction.

Traditional deep learning methods mostly conduct experiments 
on specific subject data (Li et  al., 2022). However, due to the 
non-stationarity of EEG signals and significant differences between 
biological signals of different individuals, the generalization 
performance of models on test sets decreases. To address this issue, 
some studies employ contrastive learning methods to capture the 
correlation information between data of the same category. For 
example, attention mechanisms are incorporated into bidirectional 
Recurrent Neural Network (RNN), and feature extractors are trained 
using triplet loss to learn the similarity between the same sleep stages 
and the differences between different stages (Kumar, 2023). The model 
achieved a five-class classification accuracy of 94.11% on the public 
dataset Sleep-EDF. Some researchers further obtain common features 
between the source domain and the target domain through Domain 
Adaptation (DA) methods. Suppose we take several research efforts as 
an example. They used a conditional adversarial domain generalization 
method, feeding the classifier’s output back to the discriminator as a 
condition to learn domain-invariant features (Zhao et al., 2021). The 
proposed model was validated on the migration between different 
channels of the Sleep-EDF dataset and between different datasets, 
demonstrating the superiority of unsupervised model migration to the 
sleep staging problem. Although existing domain adaptation methods 
can address domain shift problems, they rely on training with target 
samples. Domain Generalization (DG) methods aim to improve 
model generalization by leveraging the diversity of the source domain. 
Models assume access only to the source domain during training, and 
improve model generalization performance by leveraging the diversity 
of the source domain, which is more realistic. For example, some 
studies reinforced spatiotemporal features learned by the feature 
extractor using adversarial domain generalization methods, enhancing 
the globality of features and further strengthening the robustness of 
the model (Jia et al., 2021).

In addition, some studies have further refined adversarial training 
methods from a theoretical perspective. MADG designs a novel 
discrepancy metric based on margin loss, which has been theoretically 
proven to be  more optimizable and robust compared to the 
conventional 0–1 loss, thereby significantly enhancing domain 
generalization performance (Dayal et al., 2023). Other studies focus on 
the generalization ability of internal neural network mechanisms. EVIL 
identifies stable and variant parameters at the parameter level to extract 
a robust subnetwork, improving the model’s adaptability under 
distribution shifts (Huang et  al., 2025). In a seemingly opposite 
direction, H-NTL addresses non-transferable learning by disentangling 
content and style through a causal model and proposes a controllable 
feature modeling framework, which inspires us to design structured 
constraints for feature learning (Hong et al., 2024).

Inspired by previous studies, this study proposes a sleep staging 
model—Adversarial Domain Generalized Residual Attention Network 
(ADG-RANet)—by integrating domain generalization strategies into 
the DANN (Ajakan et al., 2014) framework. The model consists of 
three main modules: a feature extractor Gf, a domain discriminator 
Gd, and a label predictor Gcla. During training, the dataset is divided 
into multi-source domains containing data from multiple subjects and 
a target domain containing data from one subject. The feature 
extractor is responsible for extracting useful information from the 
multi-source domain data, while the domain discriminator attempts 
to distinguish the input data’s domain based on the extracted features. 
The label predictor performs sleep stage classification based on the 
extracted features. A Gradient Reversal Layer (GRL) is deployed 
between the feature extractor and the domain discriminator to ensure 
that the feature extractor learns more generalized shared features 
through adversarial learning strategies.

2 Methods

The main purpose of proposed ADG-RANet is to acquire shared 
features with better generalization performance. Since domain 
generalization methods require the model to be agnostic to the test set 
during training, each subject’s data is treated as a sub-domain, with 
the training set composed of multiple sub-domains called multi-
source domains, and the test set composed of one sub-domain called 
the target domain. The overall architecture of the network is depicted 
in Figure 1, where Figure 1a illustrates the training process of the 
model using multi-source domain data, and Figure 1b illustrates the 
process of testing the model on the target domain.

During the training phase: Firstly, the original multimodal signals 
for each sub-domain are divided into several segments of 30 s each, 
referred to as epoch, and each epoch is transformed into a time-
frequency graph representing the time-frequency features via Short-
Time Fourier Transform. Next, useful information is extracted from 
the spectrograms by the feature extractor. Then, the label predictor is 
utilized to further learn deep feature representations and predict sleep 
stages. Meanwhile, the domain discriminator uses the features obtained 
by the feature extractor to distinguish which domain the input data 
belongs to. By deploying the GRL between the feature extractor and 
the domain discriminator, an adversarial game is conducted between 
them to learn features that are relevant to sleep stages but domain-
independent (Liu et al., 2023). During the testing phase, the trained 
model is evaluated using unknown target domain data.
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2.1 Feature extractors

During the process of constructing deep models, researchers have 
observed that the deeper the abstraction level of semantic feature 
information, the stronger the expression capability. However, a problem 
arises as the model deepens, where gradient issues occur. ResNet 
addresses this problem to some extent by introducing residual 
connections, which enable the model to preserve the original features 
while learning deep features (He et al., 2016). However, for image data, 
the output is represented by the sum of matrices across all channels. 
Therefore, it is necessary to embed the dependency relationships 
between channels into the features, enhancing useful feature channels 
and reducing redundant feature channels, thus exploring the information 
contained in multi-channel spectrogram data (Gai, 2020). Inspired by 
this, this study introduces a channel attention module into residual 
blocks, forming Residual Channel Attention Blocks (Res_CAB). The two 
structures of Res_CAB are shown in Figure 2. By stacking multiple 
Res_CABs, the encoder part of the feature extractor is constructed.

The implementation process of Res_CAB is as follows:
Define the input data as XTF. First, perform a convolution 

operation on XTF to obtain the feature map oc ∈ RH × W × C, as shown in 
Equation 1:

 =

′
= ∗ = ∗∑

1

C
TF s s

c c c
s

o v X v x
 

(1)

Where vc is the c-th convolution kernel, and xs is the s-th input.
Next, the obtained feature oc is input into the squeeze module fsq, 

where global average pooling is applied to each channel, resulting in 

the feature vector zc ∈ R1 × 1 × C, where C is 10, as shown in Equation 2. 
Through this operation, information between channels is retained, 
further determining the global features of the c-channel 
feature maps.
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Next, the obtained channel information zc is input into the 
excitation module fex to obtain interchannel correlation information. 

FIGURE 1

Overall structure of the ADG-RANet model.

FIGURE 2

Two model structures of Res_CAB.
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Firstly, it passes through the first fully connected layer, reducing the C 
channels to C/r, where r represents the dimension reduction ratio. 
Then, it undergoes a non-linear activation function Relu and is fed 
into the second fully connected layer, where the number of feature 
channels is restored to C. Through this operation, each channel feature 
obtains weight parameters s with attention weights, as shown in 
Equation 3:

 ( ) ( )( ) ( )( )σ σ δ= = = 2 1, ,exs f z W g z W W W z  (3)

Where W, W1, W2 are learnable parameters, δ represents the 
ReLU activation function, and σ represents the Sigmoid 
activation function.

Next, the obtained attention weights are multiplied channel-wise 
with the feature map oc, completing the re-calibration of the input 
features in the channel dimension. This is shown in Equation 4:

 ( )= = ⋅~ ,c scale c c c co f o s s o
 (4)

Finally, the recalibrated features are added to the input data and 
passed through the ReLU activation function. For the standard 
Res-CAB, its implementation process is shown in Equation 5:

 
δ
 

= +  
 

~ TF
cy o X

 
(5)

For the Res-CAB with 1 × 1 convolution, its implementation 
process is shown in Equation 6:

 
( )δ

 
= +  

 

~ ,TF
cy o f X W

 
(6)

The Res-CA-FE model structure is illustrated in Figure  3. To 
further learn the features contained in the spectrogram data and 
obtain a more robust model, the design philosophy of the U-Net is 
employed in this study, dividing the feature extractor into encoder and 
decoder parts (Yang et al., 2022). In the encoder part, the feature 
extractor utilizes stacked Res-CAB for feature extraction. The residual 
blocks effectively mitigate the problem of performance degradation in 
deep learning networks, while the channel attention mechanism 
adaptively adjusts the weights of different channels. By integrating the 
SE-block into the shortcut connection before the Res-block, feature 
recalibration on the branch’s features is achieved. This allows the 
network to better fit the correlations between channels while obtaining 
local information for each channel, thereby enhancing the model’s 
expressive power and generalization ability. In the decoder part, 
upsampling operations are used to increase the feature maps to a 
higher resolution, enhancing the feature extractor’s ability to extract 
detailed information from the spectrogram. By concatenating the 
contextual information from the encoder with the local information 
from the decoder, feature fusion is achieved. Subsequently, temporal 
features related to sleep stages are obtained through a Bi-GRU network.

Define the feature extractor module, which maps the input data 
to the feature space, as shown in Equation 7:

 ( )θ =;f fG F   (7)

Where F is the input feature matrix, 𝜃f represents the learnable 
parameters, and F is the obtained feature matrix.

2.2 Label predictor

Label predictor Gcla passes the features learned by the feature 
extractor through three fully connected layers to fully mine the 
abstract semantic features in the input data. And after the last fully 

FIGURE 3

Overall Res_CA_FE model structure.
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connected layer, the softmax activation function is used for the five-
class sleep stage classification task, as shown in Equation 8:
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Where Fi is the features obtained by sample i through the feature 
extractor, is the prediction result obtained by the label predictor, Wcla 
is the learnable parameter, and bcla is the bias term.

In this study, sleep stages are categorized into five categories based 
on the AASM criterion, therefore, the difference between the true 
category labels and the model predictions is evaluated using the cross-
entropy loss function, and the loss ℒcla of the labeling predictor is 
shown in Equation 9:
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Where M is the number of samples, J is the number of labels, yi,j 
is the true sleep stage j for the i-th sample, and  ,i jy  is the predicted 
sleep stage for the i-th sample.

2.3 Domain discriminator

Similar to the label predictor, the domain discriminator Gd inputs 
the features learned by the feature extractor into a network consisting 
of three fully connected layers stacked on top of each other, fuses the 
input features and extracts higher-level feature representations, and 
introduces a softmax activation function after the last fully connected 
layer to compute the probability value that the input data belongs to a 
certain domain, as shown in Equation 10:
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Where id  is the prediction obtained by the domain discriminator, 
Wd is the learnable parameter and bd is the bias term.

In this study, data from different subjects can be  considered as 
candidates for multi-source or target domains, Define …1 2, , ,s s s

nD D D  and 
tD  denote the multi-source domain (training set) containing data from n 

subjects and the target domain (test set) containing data from one subject, 
respectively. The multi-source s

nD  and target domains tD contain the 
corresponding features as well as labels, with the difference that the source 
domain data contains its domain label, as shown in Equations 11, 12:
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Where, ms is the sample size of the source domain, mt is the sample 
size of the target domain, Fs is the features of the source domain, Ft is 

the features of the target domain, ys is the category labels of the source 
domain, yt is the category labels of the target domain, and di is the 
domain labeling, and in this study, we set the domain labels as 1 ~ 9, 
which denote each subject in the training set, respectively.

Similar to the label predictor, this study uses the cross-entropy loss 
function to evaluate the difference between the real domain labels and 
the model predictions. The loss ℒd of the domain discriminator is 
shown in Equation 13:
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Where di,j is the true domain label j for the i-th sample and  ,i jd  is 
the predictive domain label for the i-th sample.

2.4 Overall loss

To address the variability between different subjects and construct 
a model structure more suitable for actual clinical diagnosis, this study 
introduces the domain generalization theory, motivated by the fact 
that learning is a migration invariant feature to multi-source domain 
data, and the model should be robust to the migration of any unknown 
target domain (Zhou et  al., 2023). Therefore, the model in the 
backpropagation process, the domain discriminator will domain 
classification loss of the gradient through the GRL layer for automatic 
inversion, so that the model to achieve in the maximization of the loss 
of the domain discriminator at the same time, minimize the loss of the 
label predictor (Fan et al., 2022). Through this operation, the feature 
extractor learns domain-invariant feature representations that can 
deceive the domain discriminator, which is unable to distinguish 
which domain the data comes from, but the label predictor is able to 
discern the labels of the input data.

By combining the DANN network with the domain generalization 
theory and introducing an adversarial learning strategy, feature 
learning and domain generalization are integrated into a unified 
framework (Jia et  al., 2021), which enables adversarial training 
between the domain discriminator and the feature extractor, and 
motivates the model to acquire subject-independent common features 
to improve the model’s generalization performance on unknown data.

Therefore, the overall loss of the model is shown in Equation 14, 
where λ is the weight parameter:
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3 Experiments and results

3.1 Datasets and preprocessing

In this study, the proposed model is validated using the publicly 
available dataset ISRUC-S3, which contains data from 10 subjects, and 
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each subject’s data contains physiological signals from 6 EEG channels, 
3 EMG channels, 1 ECG channel, and 2 EOG channels, as well as 
physiological information on snoring, abdominal breathing, oxygen 
saturation, and body position (Khalighi et al., 2016). In this study, the 
data from a total of 10 channels collected by EEG, EMG, EOG, and 
ECG were selected, following the international sleep medicine 
standards (AASM) and field-specific conventions.

First, we downsample the data to 128 Hz to reduce the computational 
load while preserving the key features of the signals. Then, we apply the 
Short-Time Fourier Transform (STFT) to convert the data into 2D time-
frequency spectrograms, which serve as the model’s input (Jadhav and 
Mukhopadhyay, 2022). The STFT is implemented using the scipy.signal.
stft function, with a Hamming window, a window length of 128 samples, 
an overlap rate of 50%, and the number of FFT points set to None 
(default is the window length). The output magnitude spectrum is used 
for subsequent feature extraction.

To evaluate the generalization ability of the proposed model, 
we additionally employed the ISRUC-S1 dataset, which contains PSG 
recordings from 100 subjects. Although ISRUC-S1 follows the same 
sleep staging protocol, signal configuration, and preprocessing 
pipeline as ISRUC-S3, it comprises an entirely different subject 
population and exhibits independent data distributions. To conduct 
the fine-tuning experiments, we  randomly selected data from 20 
subjects to form a representative and diverse subset, enabling a 
meaningful evaluation of the model’s adaptability under 
distributional shift.

3.2 Experimental environment and 
evaluation metrics

To evaluate the performance and cross-subject generalization 
ability of the proposed model, each subject’s data is treated as an 
independent domain. Since the dataset used in this study contains 
data from 10 subjects, a 10-fold cross-validation approach is employed, 
where all the data from one subject is selected as the test set for each 
fold, and the remaining data is used as the training set. No subject 
overlap occurs between training and test sets, and the test set remains 
unseen during training. The performance on the test set of each fold 
is averaged as the final performance of the model.

To further evaluate the model’s adaptability to new subjects, the 
model pre-trained on the ISRUC-S3 dataset was fine-tuned using data 
randomly selected from 20 subjects in the ISRUC-S1 dataset. During 
fine-tuning, the same hyperparameters used in ISRUC-S3 were 
retained, and 10-fold cross-validation was applied to assess the model’s 
performance, ensuring the reliability and robustness of the 
experiment. Additionally, most of the convolutional layers were 
frozen, and only the final layers were fine-tuned to preserve the 
general features learned from the ISRUC-S3 dataset and adjust the 
high-level features to fit the ISRUC-S1 dataset.

All experiments were conducted on a workstation equipped with 
an NVIDIA RTX 3090 GPU and 128 GB of RAM. The experiments 
were implemented using Tensorflow-gpu2.5.0, with the experimental 
parameter settings listed in Table 1.

In this study, we evaluate the overall performance of the model 
using Accuracy (Acc), Cohen’s Kappa coefficient (Kappa), and the 
macro-average F1 score. Additionally, Precision (Pre), Recall (Rec), 
and F1 score are employed as subcategory evaluation metrics.

3.3 Results

3.3.1 Original results
The classification performance of the proposed model 

ADG-RANet on the ISRUC-S3 dataset pairs is shown in Table 2.
Observing Table 2, it can be seen that the F1 score of the proposed 

model is above 0.8 in most of the sleep stages, and the F1 score in the 
most difficult to classify N1 stage is 0.6124.

Figure 4 demonstrates the classification accuracy per fold of the 
proposed model using Res-CA-FE as the feature extractor of 
ADG-RANet.

Since the data of each subject is treated as a separate domain in 
this study during the experimental process, all the data of one subject 
is selected each time to test the model. Therefore, the test results of 
each fold can indicate the classification accuracy of each subject’s data 
on the model. As can be seen in Figure 4, the model achieved above 
80% classification accuracy on most of the subjects’ data.

3.3.2 Fine-tuning results
After fine-tuning on the ISRUC-S1 dataset, the model achieved an 

accuracy of 77.38%, an F1 score of 0.7478, and a Cohen’s Kappa of 
0.7075 on previously unseen subject data. These results indicate that 
the model retains a certain level of generalization capability on 
new data.

The differences between ISRUC-S1 and ISRUC-S3, including 
variations in data distribution, signal quality, and annotation 
consistency, present additional challenges for cross-dataset 
generalization. Nevertheless, the results demonstrate that the model 
retains transferable features, providing a solid foundation for future 
research on broader domain generalization and its clinical applications.

3.3.3 Confidence intervals
In the experiments, bootstrap sampling was used to calculate the 

confidence intervals for each model with a 95% confidence level to 
assess their performance stability. The results show that the RF model 
has an accuracy confidence interval of (0.648, 0.729), indicating 
relatively high variability; the GraphSleepNet model has an accuracy 
confidence interval of (0.741, 0.799), demonstrating more stable 
performance; and the ADG-RANet model has an accuracy confidence 
interval of (0.775, 0.825), outperforming MSTGCN with stable 
performance. These confidence intervals reveal the superior and stable 
performance of ADG-RANet across different data subsets.

3.4 Model ablation experiments

To verify the ability of the feature extractor Res-CA-FE in the 
proposed model, the following two models are designed in the 
encoder part of the feature extractor:

TABLE 1 Experimental parameter setting.

Hyperparameter Value

Number of training sessions 150

Batch size 16

Learning rate 2e-5

Optimizer Adam
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Model 1: The SE-block is integrated with the residual block of 
Res2Net (Gao et al., 2021) to form a residual channel attention block 
based on Res2Net. This block is designed to extract multi-scale 
features and is used to replace the residual blocks in the encoder of the 
Res-CA-FE model.

Model 2: First, the time-frequency map is input into the ResNet18 
network to learn local information. After downsampling in the last 
layer, the parallel Position Attention Module (PAM) and Channel 
Attention Module (CAM) proposed in literature (Fu et al., 2019) are 
used to further extract spectral and channel features from multi-
channel time-frequency data. The obtained features are then fused.

The comparison results are shown in Table 3. From the table, it 
can be seen that the classification performance using the Res-CA-FE 
model is optimal; the overall accuracy of Model 1 is 1.99% lower than 
that of the method proposed in this study. Analyzing the reason may 
be that the feature extractor constructed in this study obtains rich 
multi-scale information through jump-join operation. When the 
residual block proposed by Res2Net is introduced, the model fails to 
mine more useful information and increases the parameters required 
for model training; the overall accuracy of Model 2 is reduced by 
0.75% compared with the method proposed in this study. Analyzing 
the reason may be  that Model 2 first uses ResNet18 to learn the 
spectral information of multi-channel time-frequency map data, and 
then enhances the feature representation by combining the parallel 
channel and spectral self-attention mechanism, but does not pay 
attention to the correlation between the channels in the pre-feature 
extraction, which leads to the loss of important information.

To verify the validity of the modules of the model proposed in this 
study, the following two models were designed to carry out 
ablation experiments:

Model 3: Remove the SE-block introduced in Res_CAB in the 
Res-CA-FE model to verify the effectiveness of the channel attention 
mechanism in capturing feature correlations between multi-channel 
feature maps.

Model 4: Remove the domain discriminator, perform feature 
extraction only through a feature extractor, and use a label predictor 
to classify the sleep stages and verify the effectiveness of using the 
adversarial domain generalization approach.

The results of the ablation experiment are shown in Table 3. From 
the table, it can be seen that model 3 removes the channel attention 
module, and its accuracy rate is 81.76%, compared with the model 
proposed in this study, the accuracy rate is reduced by 0.75%, which 
proves that, for multi-channel time-frequency map data, using the 
channel attention mechanism can further explore the intrinsic 
correlation between the channels of the multi-channel physiological 

signals, which helps to increase the accuracy rate of sleep staging; 
model 4removes the domain discriminator module is removed, and 
the model becomes a conventional deep learning structure with an 
accuracy of 81.15%, which is 1.36% lower than that of the model 
proposed in this study, which proves that the use of the adversarial 
domain generalization method helps the model to learn domain 
invariant features by training the adversarial training between the 
domain discriminator and the feature extractor, which then improves 
the model’s generalization performance on the unknown data.

3.5 Comparison with benchmark models

In order to verify the superiority of the proposed model, the 
classification results of the model on the ISRUC-S3 dataset were 
compared with other benchmark models, and an overview of the 
benchmark models is shown below:

 (1) RF (Memar and Faradji, 2018): using unimodal EEG signals, 
eight sub-bands of each epoch EEG signal are obtained, feature 
selection is performed by Kruskal-Wallis test and minimum 
redundancy-maximum correlation, and finally sleep staging is 
performed using RF.

 (2) GraphSleepNet (Jia et al., 2021): using EEG, EOG, EMG, and 
ECG signals, a functional connectivity map of the brain was 
constructed, features were acquired through a deep learning 
model, and sleep staging was performed using a label classifier 
to train and validate the model.

 (3) MSTGCN (Jia et al., 2021): using EEG, EOG, EMG, and ECG 
signals, two views, based on brain function and based on 
physical distance, were constructed, and features capable of 
generalizing to unknown domains were obtained through 
domain generalization methods.

The comparison results are shown in Table 4. From the table, it 
can be seen that the RF uses machine learning methods for sleep 
staging, and its accuracy rate is relatively low. The reason for this is 
analyzed because the machine learning method requires manual 
feature extraction, which is unable to obtain the potential deep 
information in the data, which makes it easy to lose important 
information related to sleep in the process of feature extraction. The 
model proposed in the GraphSleepNet uses a traditional deep learning 
approach to obtain sleep-related temporal features by constructing a 
functional brain connectivity map using a spatio-temporal attention 
graph convolutional network with an accuracy of 79.9%. However, the 
model did not take into account the domain bias due to the variability 
among different subjects. MSTGCN constructed two views based on 
brain functional connectivity and physical distance, which effectively 
solved the domain bias problem by introducing the domain 
generalization method and accuracy rate reached 82.1%. This proves 
that the introduction of the idea of domain generalization can improve 
the model’s generalization performance on unknown data. In this 
study, by constructing multimodal physiological signals into grid-
structured data suitable for CNN, RNN, and other models, 
we constructed a residual attention network based on antagonistic 
domain generalization to mine the salient features of each stage of 
sleep, and the overall classification accuracy reached 82.5%. Although 
the overall accuracy is not much improved over the literature (Jia 

TABLE 2 Overall classification performance of the ADG-RANet model.

Category Subcategory 
performance

Overall classification 
performance

Pre Rec F1 
score

Acc m-F1 Kappa

W 0.8988 0.9091 0.9039 0.8251 0.8100 0.7748

N1 0.6217 0.6033 0.6124

N2 0.7994 0.8551 0.8263

N3 0.9254 0.8620 0.8925

REM 0.8258 0.8047 0.8151
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et al., 2021), the classification performance in N1 stage which is the 
most difficult to classify is improved by 0.016, and all other sleep 
stages are significantly improved.

3.6 Computational efficiency analysis

In this experiment, we evaluated the computational efficiency of 
the model by measuring its total inference time, per-sample latency, 
throughput, and the configuration of each module. The results for 
each experimental condition are summarized in Table 5.

On average, the model’s total inference time was 2.6175 s, while 
the per-sample latency averaged 0.003051 s. The throughput was 
329.64 samples per second across all experimental conditions.

Furthermore, the input and output dimensions, as well as the 
number of parameters for each module, are provided in Table 6. The 
model has a total of 15.12 M parameters, making it lightweight and 
efficient for deployment in resource-constrained environments.

4 Summarize

In this study, based on the idea of adversarial domain 
generalization, the original dataset is divided into a training set 
containing data from multiple subjects, and a test set containing data 
from another subject. First, the original multimodality of each epoch 
is represented with 2D time-frequency graph of 10 channels, and a 
residual network with an attention mechanism is designed, in which 

FIGURE 4

Test results per fold.

TABLE 3 Performance comparison of different feature extraction networks.

Method Overall performance F1 score for each category

Acc m-F1 Kappa W N1 N2 N3 REM

Model 1 0.8052 0.7902 0.7498 0.8835 0.5853 0.7917 0.8900 0.8004

Model 2 0.8176 0.8010 0.768 0.8861 0.5831 0.8078 0.8912 0.8368

Model 3 0.8176 0.8068 0.7653 0.8766 0.6188 0.8105 0.8906 0.8374

Model 4 0.8115 0.7965 0.7574 0.8843 0.5865 0.8063 0.8932 0.8121

Ours 0.8251 0.8100 0.7748 0.9039 0.6124 0.8263 0.8925 0.8151

Bold values represent the optimal results, and underlined numbers represent the second-best results.

TABLE 4 Performance comparison with benchmark models.

Method Overall performance F1 score for each category

Acc m-F1 Kappa W N1 N2 N3 REM

RF 0.729 0.708 0.648 0.858 0.473 0.704 0.809 0.699

GraphSleepNet 0.799 0.787 0.741 0.878 0.574 0.776 0.864 0.841

MSTGCN 0.821 0.808 0.769 0.894 0.596 0.806 0.890 0.856

ADG-RANet 0.825 0.810 0.775 0.904 0.612 0.826 0.893 0.815

Bold values represent the optimal results, and underlined numbers represent the second-best results.
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the feature extractor is to extract the key information from the multi-
source domain data for the label predictor and the domain 
discriminator is to perform sleep-stage 5 classification task and 9 
domain discriminative classification task, respectively. During the 
backpropagation process, a GRL reverses the gradient of the domain 
discriminator, which prompts the feature extractor to further optimize 
the acquired features and improve the generalization ability of the 
model over the unknown domain. Through ablation experiments 
conducted on the ISRUC-S3 dataset and comparisons with the 
baseline model, the proposed domain generalization method, 
combined with the residual attention-based feature extraction 
network, was shown to effectively improve the model’s generalization 
ability to unseen data. Furthermore, after fine-tuning on the ISRUC-S1 
dataset, the model maintained a high classification accuracy on 
previously unseen subjects, indicating a certain level of cross-dataset 
transferability and generalization performance.

The experimental results demonstrate that the proposed sleep 
staging model achieves strong classification performance on the 
ISRUC-S3 multi-channel PSG dataset, providing a solid foundation 
for practical applications in sleep disorder diagnosis. With efficient 
inference, the model supports preliminary screening and personalized 
interventions, thereby improving diagnostic accuracy and reducing 
clinical workload. Its computational efficiency further enables broad 
deployment across medical institutions, home monitoring systems, 
and primary care terminals. The model also facilitates automated 
generation of structured sleep reports, enhancing the accessibility and 
reach of sleep health services. Future integration with multimodal data 
(e.g., fMRI, PET) may enhance the model’s capacity to identify 
complex sleep disorders and distinguish between their subtypes.

While the model demonstrates promising results in classifying 
most sleep stages, further improvements are needed in handling fine-
grained transitions and boundary samples. Future research will 
explore advanced techniques such as contrastive learning to build a 
more robust and discriminative feature space, improving sensitivity to 
subtle sleep state changes. Given its effectiveness in scenarios with 
limited labels, class imbalance, and noisy data, contrastive learning is 
particularly suitable for complex, high-dimensional sleep signals. 
Incorporating transfer learning, attention mechanisms, and few-shot 
learning strategies will also help the model adapt to diverse patient 
groups and device settings, advancing its applicability in intelligent 
sleep medicine.
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TABLE 5 Computational efficiency evaluation of the model.

Fold Total inference 
time (s)

Latency per 
sample (s)

Throughput 
(samples/s)

1 3.3367 0.003611 276.92

2 2.7115 0.002976 335.98

3 2.5239 0.003179 314.59

4 2.3775 0.003112 321.34

5 2.4109 0.002638 379.11

6 2.4919 0.003028 330.27

7 2.4526 0.003128 319.66

8 2.7848 0.002871 348.32

9 2.7849 0.002966 337.18

10 2.3000 0.003003 333.04

TABLE 6 The structure configuration of the ADG-RANet model.

Module Network 
layer

Inputs Outputs Params 
(Million)

Res_CA_FE Encoder (128,128,10) (8,8,256) 11.25

Decoder (8,8,256) (32,256) 3.83

Label Classifier (32,256) (5,) 0.02

Domain 

Discriminator

(32,256) (9,) 0.02

Total 15.12
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