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The detection and quantification of coupling strength and direction are important 
aspects for achieving a deeper understanding of physiological regulatory 
processes in the field of network physiology. Due to the limitations of established 
approaches, we developed directionality indices based on simple mathematical 
symbolization principles and simple computational procedures that allow a quick 
and comprehensive understanding of the underlying couplings. We introduced 
a new directionality index (DHRJSD) derived from the pattern family density matrix 
of the High-Resolution Joint Symbolic Dynamics (HRJSD) approach and its 
multivariate version (mHRJSD) to determine coupling direction and driver-response 
relationships. The mHRJSD approach contains the multivariate directionality index 
DmHRJSD (DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x)), allowing us to determine 
the primary driver **DmHRJSD, the secondary driver *DmHRJSD, and the dominant 
responder −DmHRJSD in multivariate systems that are at least weakly coupled. 
Different linear and non-linear bi- and multivariate coupled systems (Gaussian 
autoregressive models) with different mutual influences were generated to validate 
these indices. The simulation results showed that DHRJSD was able to correctly 
detect the dominant coupling direction in linear bivariate coupled systems 
but was partly able to detect the dominant coupling direction in non-linear 
bivariate coupled systems. The proposed directionality index DmHRJSD derived 
from the mHRJSD approach is able to correctly detect the driver-responder 
relationships in linear coupled systems. The main advantages of the newly 
introduced directionality indices include their insensitivity to non-stationary 
time series, their ability to capture couplings through a simple, fast, and easy-
to-implement symbolization procedure, and their scale invariance. Additionally, 
they are independent of time series length, model order selection, and the 
procedure for determining their significance level.
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1 Introduction

The complex interplay between the central nervous system (CNS) 
and autonomic nervous system (ANS) with their large number of 
subsystems (parasympathetic and sympathetic activity) is also known 
as the central autonomic network (CAN) (Bashan et al., 2012; Bartsch 
et al., 2015; Ivanov et al., 2016). It has been shown that the output of 
CAN is directly linked to ANS (heart rate) as well and that sensory 
information from peripheral end organs provides feedback to the 
CAN (i.e., baroreceptor reflex). Information transfer between the CNS 
and ANS operates as a feedback-feedforward system, dynamically 
responding to the body’s significant demands. These brain-heart 
interactions are involved in multiple bodily processes, including 
sensing, integration, and activity regulation, to maintain homeostasis 
(Craig, 2002). Communication between the brain and the heart is 
bidirectional and occurs through different neural mechanisms, such 
as the vagal and spinal pathways (Chen et al., 2021). Moreover, the 
relationships between cortical network segregations and cardiac 
dynamics as cardiac sympathetic–vagal oscillations may provide 
valuable insights into the affective state of healthy and diseased-related 
alterations in network physiology (Candia-Rivera et al., 2024).

The role of the cerebral cortex in autonomic control of the 
cardiovascular system is gaining increased attention in medicine. 
Different cardiovascular control centers in the brainstem deal with 
different reflex mechanisms of cardiovascular adjustment (i.e., the 
cardiopulmonary reflex, the chemoreflex, and the baroreflex) 
(Dampney, 1994). Here, neurons in the caudal and rostral ventrolateral 
medulla affect efferent sympathetic reflexes and contribute to the 
maintenance of heart rate and blood pressure via the intermediolateral 
cell column of the spinal cord. The two medullary areas, the 
ambiguous nucleus and the vague nerve’s dorsal motor nucleus, are 
preganglionic parasympathetic neurons mediating the efferent 
parasympathetic reflex mechanism (McAllen, 1976; Taylor 
et al., 2001).

The parasympathetic nervous system is responsible for the “rest 
and digest” function while sitting, resting, and relaxing. It constricts 
the pupils, slows the heart rate and contractility, contracts the 
bronchial musculature, stimulates bronchial secretions, and 
enhances gut motility for digestion. The preganglionic neurons 
synapse with postganglionic neurons in the parasympathetic 
ganglion located next to or in the effector end organs. The 
sympathetic nervous system dominates during “fight-or-flight” 
reactions and during exercise and thus prepares the body for 
stressful physical activity. Sympathetic nervous activity increases the 
flow of well-oxygenated blood and is rich in nutrients to the tissues 
that need it, particularly the working skeletal muscles. The 
preganglionic sympathetic neurons arise from the thoracic and 
lumbar regions of the spinal cord (segments T1 through L2) and are 
located about halfway between the CNS and the effector tissue 
(McCorry, 2007). The preganglionic neurons of both the sympathetic 
and parasympathetic divisions release the neurotransmitter 
acetylcholine. The postganglionic neurons of the parasympathetic 
system also release acetylcholine, whereas the postganglionic 
sympathetic neurons release norepinephrine (Rea, 2016). The 
cardiac or respiration-related activity (parasympathetic) is connected 
to preganglionic neurons. It has been shown that brain regions like 
the insula, thalamus, hypothalamus, amygdala, and medial 
prefrontal cortex are involved in autonomic regulation at rest and 

during cognitive or emotional stress conditions, proven by 
functional brain imaging (Ziegler et  al., 2009; Shoemaker et  al., 
2015). Beissner et  al. (2013) showed that largely divergent brain 
networks were associated with sympathetic and parasympathetic 
activity. The ventromedial prefrontal cortex (VMPFC), the 
perigenual anterior cingulate cortex (pACC), the dorsal anterior 
cingulate cortex (dACC), the posterior cingulate cortex (PCC), the 
insular cortices, and the amygdala seem to be the main cortical and 
subcortical areas involved in ANS regulation processes that are 
created by a network of interactions related to the task and 
autonomic division.

Investigating the coupling between these ANS subsystems, their 
variability, and brain activity may lead to a better understanding of 
pathophysiological regulatory processes within the central autonomic 
network. For the quantitative analysis of the brain-heart (CNS-ANS) 
network coupling pathways and its integrated interacting subsystems, 
such as the cardiovascular and cardiorespiratory systems, several 
linear/non-linear univariate and multivariate approaches 
are available.

These approaches focus on characterizing the multivariate 
information transfer. These concepts (Schulz et al., 2013a; Bartsch 
et al., 2015; Faes et al., 2015; Ivanov et al., 2016) are applicable in 
the following domains: entropy, Granger causality, non-linear 
prediction, phase synchronization, symbolization, recurrence 
quantification analysis (RQA), and functional connectivity analysis 
techniques (Marwan et al., 2013; Aguirre et al., 2018; Lombardi 
et al., 2019). Studies have demonstrated that information transfer 
between the cardiovascular and cardiorespiratory systems exhibits 
strong non-linearity (Novak et  al., 1993), and therefore, linear 
approaches alone cannot fully quantify physiological and 
pathophysiological regulatory processes. There is no generally 
superior approach capable of considering all aspects of coupling 
analysis (linearity, non-linearity, causality, multivariate analysis, 
directionality, coupling strength) and its quantitative evaluation. 
Some of these approaches include one or more of these aspects, but 
usually not to a sufficient extent, so the time series with their 
mutual interactions and couplings can only be  interpreted and 
analyzed incompletely and in parts. Furthermore, many of these 
approaches are not standardized and not user-friendly (degrees of 
freedom, preconditions, model selection and model order 
estimation, scale dependency). They are based on purely 
mathematical concepts, making it difficult to select the “right” 
approach to apply them to quantify physiological and 
pathophysiological regulatory processes.

Computerized quantitative models are essential to integrating and 
evaluating the information generated by these methods. For example, 
the Physiome Project provides a framework for qualitatively evaluating 
such information. The term “Physiome” is derived from “physio,” 
meaning “life,” and “ome,” meaning “as a whole,” (Leem, 2016). The 
project developed a multiscale modeling framework to understand 
physiological functions, enabling models to be  combined and 
linked hierarchically.

In this study, we employed the High-Resolution Joint Symbolic 
Dynamics (HRJSD) approach, which represents an enhanced 
version of the classical Joint Symbolic Dynamics (JSD). The HRJSD 
approach was initially developed for the analysis of non-linear 
cardiovascular and cardiorespiratory couplings in acute 
schizophrenia (Schulz et al., 2013b; Schulz et al., 2013c; Schulz et al., 
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2017a; Schulz et al., 2017b). This was based on analyzing dynamic 
processes through symbols (Voss et al., 1996). The HRJSD is founded 
upon a symbolization procedure that enables a coarse-grain 
quantitative evaluation of the classification and characterization of 
short-term regulatory bivariate coupling patterns that are 
predominant in the interaction generated by the ANS. The HRJSD 
employs a redundancy reduction strategy that groups single-word 
types into eight pattern families, thereby enabling a comprehensive 
quantification of bivariate short-term autonomic coupling patterns. 
Based on the concept of frequent deterministic pattern classification, 
the bivariate redundancy reduction strategy overcomes the 
limitations of classical univariate symbolization strategies. It 
facilitates a transition between univariate and bivariate symbolic 
analyses, significantly advancing over the standard JSD and 
Symbolic Coupling Traces (SCT) (Wessel et al., 2009, 2011). The 
HRJSD method overcomes the issues encountered by JSD in 
differentiating between decreases and steady states, as well as 
between small and large changes in autonomic regulation due to 
threshold level l = 0 and the alphabet A = {0,1} for symbol 
transformation. It is impossible to differentiate between noise, 
artifacts (for example, those generated by undersampling or ectopic 
events), and fluctuations arising from (patho) physiological 
regulatory processes when using JSD. However, both approaches 
have the main advantages of being insensitive to non-stationary time 
series and capable of capturing non-linear couplings through a 
straightforward procedure.

Therefore, the main objective of this study was to develop new 
directionality indices derived from coupling approaches that are 
based on simple mathematical principles, such as symbolization, and 
simple calculation procedures, enabling a comprehensive 
understanding of the underlying couplings in a fast and easy way, 
and do not have the limitations of already established approaches. 
Here, we  developed new directionality indices enabling the 
assessment of coupling directions in bivariate and multivariate 
systems based on the high-resolution joint symbolic dynamics 
approach (HRJSD).

2 Materials and methods

2.1 Basics of high-resolution joint symbolic 
dynamics – HRJSD

Baumert et al. (2002) developed the joint symbolic dynamics 
(JSD) method to analyze nonlinear couplings between systolic 
blood pressure (SP) and heart rate (BBI) time series, relying on 
the analysis of dynamic processes using symbols (Kurths 
et al., 1995).

Schulz et  al. (2013c) introduced an enhanced version of the 
classical JSD to overcome their restrictions: high-resolution joint 
symbolic dynamics (HRJSD), which is based on three symbols and a 
symbol-transformation threshold, which can be  used to quantify 
short-term non-linear coupling by means of symbols.

Therefore, the direct analysis of successive signal amplitudes is 
based on discrete states (symbols). In short, HRJSD works by 
transforming the two investigated time series (here: BBI and SP) into 
symbol sequences based on their signal amplitudes using a given 

alphabet A = {0, 1, 2}. The bivariate sample vector X (Equation 1) of the 
two-time series with xBBI and xSP is transformed into a bivariate symbol 
vector S (Equation 2), where n are the nth beat-to-beat values of BBI and 
SP, respectively.
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Increasing values were coded as “2,” decreasing values as “0,” and 
unchanging (no or little variability) values as “1,” respectively. 
Afterward, S was subdivided into short words (sequences of symbols, 
bins) wk of length k = 3. In this study, an adapted threshold for the 
individual physiological dynamic variability was equal to 25% of the 
standard deviation of the time series. The derived different word 
types from the BBI (wBBI) and SP ( SPw ) time series (word types 
ranging from: 000, 001,…, 221, 222) were organized into a 
normalized 27 × 27 vector matrix Wn ranging from word type 
(000,000)T to (222,222)T. These single-word types BBI, SPw w  (total 
number of all word type combinations 27 × 27 = 729) were afterward 
grouped into eight pattern families’ wf, whereby the sum of 
probabilities of all single-word family occurrences p(wf) was 
normalized to 1. The eight pattern families (E0, E1, E2, LU1, LD1, 
LA1, P, V) describe different aspects of autonomic modulation of the 
BBI- and SP time series and were sorted into an 8 × 8 pattern family 
density matrix Wf, resulting in 64 coupling patterns. The pattern 
famines are defined as follows:

	•	 E0, E1, and E2: Words consisting of three equal symbols (no 
variation of symbols) of type ‘0,’ ‘1’, and ‘2,’ respectively.

	•	 LU1 and LD1: Words consisting of two different symbols with 
low increasing behavior (LU1) and low decreasing 
behavior (LD1).

	•	 LA1: Words consisting of two different alternating symbols of 
type ‘0’ and ‘2’ with an increasing-decreasing behavior.

	•	 P and V: Words consisting of three different symbols with peak-
like behavior (P) and valley-like behavior (V) (Schulz 
et al., 2013c)
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From the word distribution density matrix Wf, the normalized 
joint probability of the occurrence of each word was estimated (Schulz 
et al., 2013b; Schulz et al., 2015).

From the matrix Wf, the sum of each (n = 8) column SPcf  (cfE0, 
cfE1, cfE2, cfLU1, cfLD1, cfLA1, cfP, cfV) and the sum of each (n = 8) 
row rfBBI (rfE0, rfE1, rfE2, rfLU1, rfLD1, rfLA1, rfP, rfV) were 
calculated (Figure 1).

2.2 Directionality index – bivariate system

To evaluate the physiological states of highly complex biological 
systems, it is important and necessary to determine synchronization 
processes within coupled complex systems and the predominant 
direction of their coupling. Causality can be defined by using the 
directionality of time to establish a causal ordering of dependent time 

FIGURE 1

Basic principle of HRJSD. (a) Transformation of the bivariate sample vector X (BBI = beat-to-beat intervals [msec]; SP = systolic blood pressure 
[mmHg]) into the bivariate symbol vector S (0: decreasing values, 1: equal values, 2: increasing values) and word distribution density matrix Wn (27 × 27). 
(b) Word pattern family distribution density matrix Wf (8 × 8) with eight pattern families wf created from 27 single-word types wBBI, SP. Rows represent 
pattern families of BBI interval changes, and column pattern families of SP changes, rfBBI (row): sum of the specific word family, cfSP (column): sum of 
the specific word family.
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series, encompassing both direct and indirect influences from one 
process to another. This definition can be applied to bivariate (two-
time series, Figure 2A) and multivariate (more than two-time series, 
Figures  2B, 3) analysis. In the case of multivariate analysis, a 
distinction can be  made between direct coupling (from one-time 
series to another) and indirect coupling (effects mediated through one 
or more other time series) (Schulz et al., 2013a).

The coupling direction can be determined, e.g., from the amplitudes 
of the system (properties of the system state) by calculating their mutual 
predictability (Schiff et  al., 1996), from mutual nearest neighbors 
(Arnhold et al., 1999; Quiroga et al., 2000) in the reconstructed state 
space, or by applying information theoretical approaches (Schreiber, 
2000; Palus et al., 2001; Palus and Stefanovska, 2003).

In the field of symbolization, so far, no approaches have been available 
to determine the coupling direction for bivariate or multivariate systems. 
The first attempts at this were integrated into Symbolic Coupling Traces 
(SCT) (Wessel et al., 2011). SCTs can detect delayed couplings (time lags) 
but cannot assess the coupling direction or the driver-response 
relationships. To address this gap, we introduced a directionality index 
(DHRJSD) derived from the 8 × 8 pattern family density matrix Wf from the 
HRJSD approach. This index is able to determine the dominant coupling 
direction and assess the driver-response relationships in bivariate (n = 2) 
(Figure 2A) and multivariate (n = 3) systems (Figure 2B).

For a bivariate system (x,y), the columns cfx (n = 8) and the rows 
rfy (n = 8) from the matrix Wf (Figure  1) were used to calculate 
DHRJSD(x,y) (Equation 5):

	
( ) ( ) ( )

( ) ( )
x y

HRJSD
x y1

, /
n

i

cf i rf i
D x y n

cf i rf i=

 −
= −  + 

∑
	

(5)

If DHRJSD(x,y) is positive, driving (→) from system 1 (x) to system 
2 (y) predominates (Equation 6) and becomes negative for the 
opposite case (Equation 7).

	 ( )HRJSD , 0;> →D x y yx 	 (6)

	 ( )HRJSD , 0;< →D x y xy 	 (7)

2.2.1 Simulated coupled linear and non-linear 
systems to validate DHRJSD

Simulated data were used to validate DHRJSD. Therefore, two 
different multivariate models were applied (Baccala and 

Sameshima, 2001; Montalto et al., 2014), each with 100 simulated 
time series:

	•	 Linear time series with a normal distribution of the variables, 
generated by a linear Gaussian AR model and

	•	 Non-linear time series generated by a non-linear Gaussian 
AR model.

Three distinct multivariate coupled systems were generated for 
both linear and nonlinear models, incorporating varying mutual 
influences (unidirectional and bidirectional) between the time series 
(Figure 3).

The following equations were used for the three linear Gaussian 
autoregressive models (Baccala and Sameshima, 2001; Montalto et al., 
2014) (Equations 8–10):

Linear system 1, LS1 (Figure 3A):
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1 1 1 1

2 1 2

3 1 3
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= − − +
= − + 	

(8)

Linear system 2, LS2 (Figure 3B):

	

( ) ( ) ( ) ( )
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(9)

Linear system 3, LS3 (Figure 3C):

	

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

2 1 3 2

3 1 2 3

0.95 2 1 0.9025 2
0.5 2 0.4 1
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= − − − − + 	

(10)

Where w1(n), w2(n), and w3(n) were drawn from Gaussian noise 
with zero mean and unit variance. For linear system 3, a closed loop 
from x3(n) back to x2(n) via a direct connection was integrated, with 
x3 as the predominant driver.

For the non-linear models (Montalto et  al., 2014) 
(Equations 11–13), x2(n) was modified by a quadratic term of 2

1x . Thus, 
the three linear model equations changed to:

Non-linear system 1, NLS1 (Figure 3A):

FIGURE 2

Examples of directional dependencies for direct and indirect 
couplings. Interdependence structure for (a) a bivariate and (b) a 
multivariate case. (a) Direct coupling exists for x1↔x2; (b) direct 
coupling exists for x1 → x2 and x2↔x3 and indirect coupling between 
x1 → x3 mediated by x2 (direction of coupling: →,← unidirectional, ↔ 
bidirectional). Adopted to Schulz et al. (2013a).

FIGURE 3

Simulated multivariate systems with their mutual influence between the 
time series x1, x2, and x3. Arrows indicating the causal coupling direction 
from one system to another (e.g. x1 → x2 means a unidirectional driving 
(a, b) from system 1 (x1) to system 2 (x2), and x2 → x3 means a 
bidirectional driving (c) between system 2 (x2) to system 3 (x3)).
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Non-linear system 2, NLS2 (Figure 3B):
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Non-linear system 3, NLS3 (Figure 3C):
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Where w1(n), w2(n), and w3(n) were drawn from Gaussian noise 
with zero mean and unit variance. For non-linear system 3, a closed 
loop from x2(n) back to x3(n) via a direct connection was integrated, 
with x2 as the predominant driver.

2.3 Directionality index – multivariate 
system

No methodical approach based on symbolization allows the 
detection of the coupling direction in multivariate coupled systems. 
Rather, no coupling approach is available that can determine the 
primary driver, the secondary driver, and the dominant responder in 
multivariate weakly coupled systems. To overcome the limitation of 
analyzing bivariate couplings, only the HRJSD approach was adopted 
in a further step for the quantification of multivariate couplings – the 
multivariate High-Resolution Joint Symbolic Dynamics (mHRJSD) 
(Schulz et al., 2018). In short, mHRJSD works in that way, that the set 
of three investigated time series (e.g., X, Y, and Z) was transformed 
into symbol sequences based on their signal amplitudes using a given 
alphabet A = {0, 1, and 2}. The trivariate sample vector X of these time 
series, xX, xY and xZ, were then transformed into a trivariate symbol 
vector S, where n were the nth beat-to-beat values of X, Y, and Z, 
respectively. Here, all single-word types wX, Y, and Z were grouped into 
eight pattern families’ wf whereby the probabilities of all single-word 
family occurrences p(wf) were also normalized to 1. These eight 
pattern families were sorted into an 8 × 8 × 8 pattern family density 
matrix Wf. Furthermore, from the matrix Wf, the sum of each (n = 8) 
x-, y-, and z-plane (pfX, pfY, pfZ) as pfE0, pfE1, pfE2, pfLU1, pfLD1, 
pfLA1, pfP, and pfV were calculated describing how one family pattern 
in one time series is coupled with all other eight pattern families of the 
other two time series.

For the mHRJSD approach, the proposed directionality index was 
further extended to determine the dominant coupling direction and 
assess the driver-response relationships in multivariate (n = 3) 
systems.

For a multivariate system (x,y,z), the single-word family 
occurrences p(wf) from the x-, y- and z-plane (pfX, pfY, pfZ) from the 
8 × 8 × 8 pattern family density matrix Wf were used to calculate 

DmHRJSD (Equations 14–16). Thereby, for each coupling pathway, one 
directionality index was calculated (e.g., two interacting time series: x 
and y with z as the covariate |). Thus, for the coupling between the 
time series x and y with covariate z, the directionality index 
(Equation 14) is defined as:

	
( ) ( ) ( )

( ) ( )
x z y z

mHRJSD
x z y z1

, /
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 −
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pf i pf i
| |

| |
|

	
(14)

For the coupling between the time series x and z with covariate y, 
the directionality index (Equation 15) is defined as:
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(15)

For the coupling between the time series y and z with covariate x, 
the directionality index (Equation 16) is defined as:

	
( ) ( ) ( )

( ) ( )
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(16)

If DmHRJSD(x,y|z) is positive, driving (→) from system 1 (x) to 
system 2 (y) predominates (Equation 17) and becomes negative for the 
opposite case (Equation 18).

	 ( )mHRJSD , 0;> →D x y z z y z| | |x
	 (17)

	 ( )mHRJSD , 0;< →D x y z z x z| | |y
	 (18)

If DmHRJSD(x,z|y) is positive, driving (→) from system 1 (x) to 
system 2 (z) predominates (Equation 19) and becomes negative for the 
opposite case (Equation 20).

	 ( )mHRJSD , 0;> →D x z y y z y| | |x
	 (19)

	 ( )mHRJSD , 0;< →D x z y y x y| | |z
	 (20)

If DmHRJSD(y,z|x) is positive, driving (→) from system 1 (y) to 
system 2 (z) predominates (Equation 21) and becomes negative for the 
opposite case (Equation 22).

	 ( )mHRJSD , 0;> →D y z x x z x| | |y
	 (21)

	 ( )mHRJSD , 0;< →D y z x x y x| | |z
	 (22)

Thus, three indices were derived, which are subsequently used to 
determine the strongest driver and the most dominant responder in 
the overall system. Therefore, all three indices were compared to 
whether they were greater (+) or less than 0 (−) (Table 1). This means 
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that if the index is greater than zero for the multivariate interaction, 
“+” is set; if the index is less than zero, “−” is set. Afterward, the sum 
of the three comparisons of the three directionality indices was 
determined and counted. If a time series is present twice (++ or −− or 
+− or −+) as a driver, it dominates the overall system and is 
determined as the primary driver **DmHRJSD, and if a time series is 
present only once (+ or −), then it is determined as the secondary 
driver *DmHRJSD of the overall system, and the non-occurring time 
series is the dominant responder −DmHRJSD.

For exapmple: DmHRJSD(x,y|z) > 0, DmHRJSD(x,z|y) > 0, and 
DmHRJSD(y,z|x) > 0, resulting in (+++ equal to x-x-y) or 
DmHRJSD(x,y|z) < 0, DmHRJSD(x,z|y) > 0, and DmHRJSD(y,z|x) < 0, resulting 
in (−+− equal to y-x-z). The indices **DmHRJSD, *DmHRJSD, and −DmHRJSD 
are determined by their absolute values in descending order of 
importance of their values. For the first example (+++), we  have 
information flows from x → y, x → z, and y → z resulting in x as 
**DmHRJSD, y as *DmHRJSD, and z as −DmHRJSD. For the second example 
(−+−), we  have information flows from y → x, x → z, and z → y, 
resulting in a closed-loop where **DmHRJSD, *DmHRJSD, and −DmHRJSD 
cannot be clearly determined (these options are represented by the last 
two lines in the Table 1).

The simulated linear and non-linear AR systems were validated 
with two additional approaches: the normalized short-time partial 
directed coherence (NSTPDC) (Adochiei et  al., 2013) and the 
multivariate transfer entropy (MuTE) (Montalto et al., 2014). Both 
methods allow us to determine the coupling direction. NSTPDC 
mainly detects linear coupling, whereas MuTE mainly detects 
non-linear coupling. In short, NSTPDC is based on an m-dimensional 
AR model with the order p and allows determining linear Granger 
causality in the frequency domain. Mute is an information-theoretical 
approach that detects the information transfer between multivariate 
joint processes and discovers purely non-linear interactions with a 
range of interaction delays. We  applied in-house software in the 
programming environment MatlabR2013b.

3 Results

3.1 Results of simulated systems to validate 
DHRJSD

All three methods, HRJSD, NSTPDC, and MuTE, calculated a 
directionality index D (DHRJSD, DNSTPDC, DMuTE), which was used for 

validation. These three indices have in common that if the index is 
positive, driving (→) from system 1 (x) to system 2 (y) predominates 
and becomes negative for the opposite case that system 2 (y) is driving 
system 1 (x) (Table 2). Table 2 presents the results of the simulated 
linear and non-linear AR models with the underlying simulated 
driver-response relationships in a multivariate context and the results 
of the applied directionality indices.

For example, here, the first two rows are explained where the 
information flows were simulated with a linear AR model, linearly 
coupled variables, and simulated driver-response relationships 1 → 2 
and 1 → 3 (blue represents the simulated driver variable). That means 
time series 1 transfers information to time series 2 and 3. The coupling 
directions are from 1 to 2 and 1 to 3.

Linear system 1:
1 → 2 and 1 → 3: DHRJSD, DNSTPDC, and DMuTE are positive; correct 

classification of the predominating coupling directions (1 is 
the driver).

Linear system 2:
1 → 2, 1 → 3, 2 → 3: DHRJSD, DNSTPDC, and DMuTE are positive; 

correct classification of the predominating coupling directions (1 and 
2 are drivers).

Linear system 3:
1 → 2, 1 → 3: DHRJSD, DNSTPDC, and DMuTE are positive; correct 

classification of the predominating coupling directions (1 is 
the driver).

2⇄3: DHRJSD, DNSTPDC, and DMuTE are negative; correct classification 
of the predominating coupling direction (3 is the driver).

For the linear AR model with purely linear couplings among the 
three variables (1, 2, 3), all directionality indices (DHRJSD, DNSTPDC, 
DMuTE) were able to correctly detect the predominating coupling 
directions and the related driver variable.

Non-linear system 1 (Table 2):
1 → 2: DNSTPDC and DMuTE are positive; correct classification of the 

predominating coupling direction (1 is the driver).
DHRJSD is negative; incorrect classification of the predominating 

coupling direction. DHRJSD detects variable 2 as the driver.
1 → 3: DHRJSD, DNSTPDC, and DMuTE are positive; correct 

classification of the predominating coupling direction (1 is 
the driver).

Non-linear system 2:
1 → 2, 1 → 3, 2 → 3: DNSTPDC and DMuTE are positive; correct 

classification of the predominating coupling directions (1 and 2 
are drivers).

TABLE 1  Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD), and the dominant responder (−DmHRJSD) in a multivariate system 
derived from the directionality indices DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x).

DmHRJSD(x,y|z) DmHRJSD(x,z|y) DmHRJSD(y,z|x) **DmHRJSD *DmHRJSD
−DmHRJSD

+ = x + = x + = y x y z

− = y − = z − = z z y x

+ = x + = x − = z x z y

− = y − = z + = y y z x

+ = x − = z − = z z x y

− = y + = x + = y y x z

+ = x − = z + = y x-y-z x-y-z x-y-z

− = y + = x − = z x-y-z x-y-z x-y-z
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DHRJSD is negative; incorrect classification of the predominating 
coupling directions. DHRJSD detects variables 2 and 3 as the drivers.

Non-linear system 3:
1 → 2, 1 → 3, 2 ⇄3: DNSTPDC and DMuTE are negative; correct 

classification of the predominating coupling directions (1 and 2 
are drivers).

DHRJSD is negative; incorrect classification of the predominating 
coupling directions. DHRJSD detects variables 2 and 3 as the drivers.

For the non-linear AR model with purely non-linear couplings 
among the three variables (1, 2, 3), only NSTPDC and MuTE were 
able to correctly detect the predominating coupling directions and the 
related driver variable. DHRJSD could partly detect the dominating 
coupling direction in non-linear systems (non-linear system 1).

The proposed directionality index DHRJSD derived from the HRJSD 
approach is able to correctly detect the dominating coupling direction 
in linear bivariate coupled systems but is only partly able to detect the 
dominating coupling direction in non-linear bivariate coupled 
systems. Due to this limitation, in detailed investigations to determine 
the coupling direction, other methods should be used in addition to 
DHRJSD (e.g., MuTE), which can also correctly determine the dominant 
driver-response relationships in pure non-linear systems.

3.2 Results of simulated systems to validate 
DmHRJSD

Similarly to validating DHRJSD for the bivariate system, simulated 
data was used to validate DmHRJSD. Therefore, a multivariate linear 
Gaussian AR model was applied to generate a set of multivariate linear 
time series (n = 100) with a normal distribution of the variables 
(Baccala and Sameshima, 2001; Montalto et al., 2014). For the linear 
model, two different multivariate coupled systems were generated 
(Equations 8, 9) with different mutual influences (unidirectional, 

bidirectional) between the time series (Figures 3B,C). Non-linear AR 
models were not applied since DHRJSD seems to only partly detect the 
correct driver-responder relationship between non-linear coupled 
time series.

The results of the two multivariate coupled linear AR systems 
showed that the determination of the multivariate directionality index 
DmHRJSD works properly, as well as the determination of the primary 
driver **DmHRJSD, the secondary driver *DmHRJSD, and dominant 
responder −DmHRJSD in the multivariate systems (Table 3).

Linear system 2, LS2:
x1 → x2: DmHRJSD(x1,x2|x3) is positive; correct classification of the 

dominating coupling direction (x1 is driver).
x1 → x3: DmHRJSD(x1,x3|x2) is positive; correct classification of the 

dominating coupling direction (x1 is driver).
x2 → x3: DmHRJSD(x2,x3|x1) is positive; correct classification of the 

dominating coupling direction (x2 is driver).
From this results that:
DmHRJSD(x1,x2|x3) = x1 and DmHRJSD(x1,x3|x2) = x1 ⇒ **DmHRJSD = x1.
DmHRJSD(x2,x3|x1) = x2 ⇒ *DmHRJSD = x2.
⇒ −DmHRJSD = x3.
For the coupled multivariate linear AR model (LS2), the correct 

driver-responder relationships were classified with x1 as the primary 
driver, x2 as the secondary driver, and x3 as the responder of the 
system, as it was simulated.

Linear system 3, LS3:
x1 → x2: DmHRJSD(x1,x2|x3) is positive; correct classification of the 

dominating coupling direction (x1 is driver).
x1 → x3: DmHRJSD(x1,x3|x2) is positive; correct classification of the 

dominating coupling direction (x1 is driver).
x2⇄x3: DmHRJSD(x2,x3|x1) is negative; correct classification of the 

dominating coupling direction (x3 is driver).
From this results that:
DmHRJSD(x1,x2|x3) = x1 and DmHRJSD(x1,x3|x2) = x1 ⇒ **DmHRJSD = x1.

TABLE 2  Results of simulated linear and non-linear autoregressive (AR) systems to validate the directionality index DHRJSD (blue: driver variable).

Simulated driver-
response relationship

Coupling AR model Directionality index

DHRJSD DNSTPDC DMuTE

1 → 2 Linear Linear 0.013 2.0 1.0

1 → 3 Linear Linear 0.052 2.0 1.0

1 → 2 Linear Linear 0.012 2.0 1.0

1 → 3 Linear Linear 0.028 2.0 1.0

2 → 3 Linear Linear 0.012 1.8 0.7

1 → 2 Linear Linear 0.011 2.0 1.0

1 → 3 Linear Linear 0.012 2.0 1.0

2 ⇄ 3 Linear Linear −0.011 −0.5 −0.6

1 → 2 Non-linear Non-linear −0.037 1.0 1.0

1 → 3 Linear Non-linear 0.106 2.0 1.0

1 → 2 Non-linear Non-linear −0.036 1.4 1.0

1 → 3 Non-linear Non-linear −0.019 2.0 1.0

1 → 3 Non-linear Non-linear −0.010 2.0 1.0

1 → 2 Non-linear Non-linear −0.030 1.5 1.0

1 → 3 Non-linear Non-linear −0.015 2.0 1.0

2 ⇄ 3 Non-linear Non-linear −0.002 1.5 0.8
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DmHRJSD(x2,x3|x1) = x3 ⇒ *DmHRJSD = x3.
⇒ −DmHRJSD = x2.

For the coupled multivariate linear AR model (LS3), the correct 
driver-responder relationships were classified with x1 as the primary 
driver, x3 as the secondary driver, and x2 as the responder of the 
system, as it was simulated.

The mHRJSD approach contains multivariate directionality 
indices DmHRJSD (DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x)), 
allowing us to determine the primary driver **DmHRJSD, the secondary 
driver *DmHRJSD, and the dominant responder −DmHRJSD in multivariate 
systems. Therefore, it has to be  assumed that the time series to 
be analyzed are at least weakly coupled with each other. Limiting 
factors are that the proposed directionality index DmHRJSD derived from 
the mHRJSD approach can only correctly detect the driver-responder 
relationships in linear coupled systems and cannot detect the driver-
responder relationships in non-linear coupled systems. The mHRJSD 
approach can evaluate direct causal information transfer in 
multivariate systems. Despite this limitation of DmHRJSD, the feature to 
assess the driver-response relationships in multivariate systems is not 
implemented in any of the existing symbolization approaches and thus 
clearly complements the existing coupling approaches.

4 Discussion

The HRJSD approach emphasizes a clear characterization of how 
the couplings are composed by regulatory aspects of the ANS; it is able 
to quantify the coupling direction (directionality index: DHRJSD) in 
linear and non-linear coupled systems, which was not possible with 
existing symbolization approaches, neither for bivariate nor for 
multivariate systems, and assesses the driver-response relationships in 
bivariate (n = 2) and multivariate (n = 3) systems.

The newly developed directionality indices derived from (m)
HRJSD are based on simple mathematical symbolization principles 
and simple calculation procedures, enabling a comprehensive 
understanding of the underlying couplings in a fast and easy way, and 
do not have the limitations of existing approaches. The main 
advantages of the (m) HRJSD-derived directionality indices are that 
they are insensitive to non-stationary time series; they are able to 
capture couplings through a simple, fast, and easy-to-implement 
symbolization procedure; they are scale-invariant; they are 
independent of time series length, model order selection, and 
significance level determination procedure. Moreover, clear 
advantages of using DHRJSD over, e.g., MuTE are that with DHRJSD, a 
multivariate interaction can be classified in the overall system in such 
a way that it can be determined which variable in the system generates 
the primary and secondary information flow and which variable only 
acts as a responder in the system. This assessment is currently only 
possible for linear systems. Further research with other models and 
time delays will provide further insight into DHRJSD. Most of the already 

established coupling approaches, e.g., partial directed coherence 
(PDC) or directed transfer function, depend on the reliability of the 
fitted multivariate autoregressive model (MAR) (i.e., optimal model 
order, epoch length) and a significance level has to be used for both to 
avoid spurious interactions (Schulz et al., 2013a). In general, most of 
these coupling approaches have high degrees of freedom, are not 
standardized in their preconditions (e.g., preprocessing steps, 
parameter settings, time-series length, model order selection, 
significance level determination, scale-independent data, and 
stationarity), and have been validated using physiological and 
pathophysiological cases (Schulz et al., 2013a).

The HRJSD approach includes different threshold levels and a 
directionality index, DHRJSD. The validation studies showed that the 
directionality index DHRJSD is able to correctly detect the dominating 
coupling direction in linear coupled systems but is partly able to detect 
the dominating coupling direction in non-linear coupled systems. It 
is an intriguing observation that, within non-linear systems, where 
linear couplings may also prevail, the method can precisely detect 
these linear couplings. This suggests that the method can be employed 
to identify the part of the underlying coupling in a system, irrespective 
of its linear or non-linear nature and regardless of the type (linear or 
non-linear) of coupling between the variables (Table 2, NLS1, 1→3).

The HRJSD approach and other symbolization approaches are 
only able to analyze bivariate couplings, whereas the HRJSD approach 
is also able to determine the driver-responder relationship; facing this, 
the mHRJSD approach is able to quantify multivariate couplings and 
to determine dominant driver-responder relationship in multivariate 
coupled systems. These are outstanding new features for coupling 
analyses based on symbolizations. The mHRJSD approach facilitates 
multivariate analysis by incorporating a third time series, enabling the 
coarse-grained evaluation of time series dynamics. As outstanding 
and unique features of the mHRJSD approach are the implemented 
multivariate directionality indices DmHRJSD (DmHRJSD(x,y|z), 
DmHRJSD(x,z|y), and DmHRJSD(y,z|x)) allowing us to determine the 
primary driver **DmHRJSD, the secondary driver *DmHRJSD, and the 
dominant responder −DmHRJSD in multivariate systems (assumption: 
weakly coupled system). The simulation procedure revealed that the 
proposed directionality index DmHRJSD derived from the mHRJSD 
approach is able to correctly detect the driver-responder relationships 
in linear coupled systems. Moreover, the mHRJSD approach is able to 
evaluate the direct causal information transfer in multivariate systems.

However, given the limitation of DHRJSD (e.g., MuTE) in fully 
determining coupling direction in nonlinear coupled systems, 
additional methods should be  employed. The method-specific 
characteristics of the different coupling approaches operate in different 
domains in the assessment of coupling (strength and direction) and 
causality, and there is currently no superior approach that can combine 
all the advantages in a single approach. While non-linear methods study 
complex signal interactions, linear methods favor the frequency domain 
representation of biological signals (characterizing the connectivity 
between specific oscillatory components) (Schulz et al., 2013a).

TABLE 3  Determination of the primary driver (**DmHRJSD), secondary driver (*DmHRJSD), and the dominant responder (−DmHRJSD) derived from the 
directionality indices DmHRJSD(x,y|z), DmHRJSD(x,z|y), and DmHRJSD(y,z|x) for two simulated multivariate coupled systems (LS2, LS3).

DmHRJSD(x1,x2|x3) DmHRJSD(x1,x3|x2) DmHRJSD(x2,x3|x1) **DmHRJSD *DmHRJSD
−DmHRJSD

LS2 x1 x1 x2 x1 x2 x3

LS3 x1 x1 x3 x1 x3 x2
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Due to this restriction so far, it would be of great interest to test 
other models and see how the newly proposed directional indices are 
able to evaluate driver-response relationships. Here, the physiome as 
a computerized quantitative model could be an option. The physiome 
is the definitive quantitative and integrated description of the 
functional behavior of the physiological state of an individual or 
species. The physiome describes the physiological dynamics of the 
normal, intact organism. It is built upon information and structure, 
namely the genome, proteome, and morpheme. The physiome must 
define relationships from genome to organism and from functional 
behavior to gene regulation. Quantitative models in physiome are 
unlike any other database-driven research area, including 
bioinformatics, network biology, or big data analysis. The physiomic 
model is a repository of previous data and a tool for testing and 
predicting results by varying factors. Thereby, models can be defined 
at various levels of abstraction: the conceptual level, the mathematical 
level, the formulation level, and the solution level (Leem, 2016). 
Physiome and network physiology are very similar as they pursue 
integrative concepts. The multidisciplinary field of network physiology 
studies how different physiological systems and subsystems interact 
to regulate their functions. It looks at how these systems interact 
across different spatial and temporal scales, from cellular to organism 
levels. It also looks at how they communicate and work together to 
generate different physiological states and behaviors in health and 
disease (Bartsch et al., 2015b; Ivanov et al., 2016a; Ivanov, 2021).

The cardiovascular, cardiorespiratory, and central networks are 
intricate physiological systems with both direct and indirect 
interactions. In the investigation of these networks, bivariate approaches 
are frequently employed. Nevertheless, it seems reasonable to posit that 
multivariate approaches will become more prevalent in place of 
bivariate ones, given that they enhance the characterization of causal or 
non-causal interrelationships between the networks. For instance, 
multivariate coupling analysis, for example, heart rate, systolic blood 
pressure, respiration, and central activity, may provide more advanced 
information about the complex autonomic network in physiological 
and pathophysiological conditions than uni- and bivariate approaches.

For instance, interactions within the cardiorespiratory network 
are primarily reflected in respiratory sinus arrhythmia (RSA), 
characterized by rhythmic fluctuation in cardiac cycle intervals in 
relation to respiration. Two principal mechanisms have been proposed 
to explain the RSA. The first is the central influence of respiration on 
vagal cardiac motor neurons, and the second is the impact of 
respiration on intrathoracic pressure. In the context of central 
networks, the concepts of functional connectivity and 
neurophysiological brain processes are significant. These include 
bottom-up and top-down processing, whereby information flows 
from higher brain regions to peripheral end organ systems or vice 
versa (Schulz et al., 2013a; Schulz et al., 2018).

In further steps, the new directionality indices will be applied 
and tested based on already analyzed and existing clinical data 
(cardiovascular system, cardiorespiratory system, central 
autonomic network) (Schulz et al., 2016; Schulz et al., 2018; Schulz 
et al., 2019) and compared with other methods in terms of their 
classification rate and accuracy. Moreover, further testing is 
necessary to ensure the robustness of the new directionality 
indexes and how time delays in the simulated models, as well as 
within the calculation procedure, influence the directionality 
results and the driver-response relationships.
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