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Purpose: While traditional driving ability evaluations typically assess visual acuity 
(VA) under photopic conditions, visual functions other than photopic VA also 
play a crucial role in driving. For older individuals, age-related vision change can 
impact driving abilities, particularly under mesopic lighting conditions with glare 
during nighttime driving. This study aims to investigate how visual functions vary 
across different lighting conditions, examine their correlations, and identify the 
principal visual function metrics that enable a more comprehensive assessment 
of active older drivers.

Methods: Twenty active older drivers (aged 63 to 87 years; mean = 70 years) 
participated. All possessed valid driver’s licenses, drove at least once per week, 
and did not use any low vision aids for driving. Six participants had undergone 
cataract surgery. Participants completed a battery of visual tasks with their 
habitual correction for daily driving. VA, contrast sensitivity function (CSF) and 
visual field map (VFM) were measured under photopic and mesopic conditions 
using the qVA, qCSF and qVFM procedures. Additionally, VA and CSF were 
assessed in the presence of glare under mesopic condition. Correlations and 
principal component analysis (PCA) were conducted to identify principal visual 
function metrics.

Results: VA and CSF exhibited variation across lighting conditions (ps < 0.005), 
with significant correlations observed between multiple pairs of visual functions. 
A trend of stronger correlations was found in participants who had undergone 
cataract surgery. PCA suggested that four metrics are necessary to explain most 
of the nonrandom variation in the data. Mesopic VA was the most informative 
measure, accounting for 47% of the total variance. Adding a measure of VFM 
increased the explained variance to 70%. To explain approximate 80% of the 
total variation, three measures were required, while four measures were needed 
to achieve 90%.

Conclusion: Using a PCA-based selection approach, the minimal set of visual 
function metrics for evaluating visual function in active older drivers was 
identified. These findings provide valuable insights for establishing optimal 
clinical outcome measures for this population.
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Introduction

Drivers aged 65 or older have the highest rate of fatal nighttime 
crashes per mile driven among those older than 25 years (Cicchino 
and McCartt, 2014; Massie et al., 1995; Mortimer and Fell, 1989). 
Nighttime driving is inherently more demanding and hazardous 
compared to daytime driving because of reduced visibility caused by 
low light levels and glare (Wood, 2020). During nighttime driving, the 
visual environment is within the mesopic luminance range where the 
luminance levels are approximately 0.003–3 cd/m2. As detailed in a 
review by Wood (2020), visual function deteriorates under mesopic 
lighting conditions, which can be exacerbated by factors such as aging, 
visual impairment, and glare from road lighting and car headlights. 
Age-related declines in vision can significantly impact the driving 
abilities of older individuals, particularly under mesopic lighting 
conditions with glare during nighttime driving.

Conventional evaluations of vision for driving vary across 
countries and states, but typically focus on high contrast, photopic 
(daytime) visual acuity (VA) and sometimes include a basic photopic, 
peripheral visual field test. To qualify for driving, individuals need to 
have a visual acuity of 20/40 or better, with or without correction, and 
a horizontal visual field of 70° or more in each eye (The ECRI Institute, 
2008). However, these evaluations may not fully capture a driver’s 
visual ability, as they do not assess important factors such as contrast 
sensitivity, low-light conditions, or glare. Research has shown that 
photopic VA alone is not a reliable predictor of driving ability for both 
nighttime (Gruber et al., 2013; Wood and Alfred, 2005) and daytime 
(Wood and Alfred, 2005) driving. This highlights the limitations of 
current driving-related vision evaluations and the need to incorporate 
additional vision tests to provide a more comprehensive assessment of 
active older driver’s visual function. The purpose of this study is to 
investigate how various visual functions vary across different lighting 
conditions, examine their correlations, and identify the principal 
visual function metrics that enable a more comprehensive assessment 
of active older drivers. This work represents a foundational step 
towards identifying appropriate vision tests and developing effective 
screening procedures for nighttime driving, especially for the elderly 
population. Achieving this ultimate objective will require extensive 
research into the driving abilities of older individuals and their 
practical fitness for safe nighttime driving.

To comprehensively characterize age-related vision changes in 
older drivers, it is essential to consider two additional metrics of 
functional vision: contrast sensitivity function (CSF) and visual field 
map (VFM). Contrast sensitivity (CS) is a critical aspect of vision that 
significantly influences overall visual performance. CS is often 
evaluated using a contrast sensitivity chart that measures CS at a 
particular target size or spatial frequency (Kiser et al., 2005; Pelli et al., 
1988), though this may not fully capture variations in sensitivity across 
a range of spatial frequencies. In comparison, the CSF measures how 
sensitivity to contrast changes with different spatial frequencies (Hess 
and Howell, 1977; Jin et al., 2016; Jindra and Zemon, 1989; Pelli and 
Bex, 2013), and is considered a more accurate indicator of performance 
in everyday visual activities (Chung and Tjan, 2009; Owsley and 
Sloane, 1987; Stelmack and Massof, 2007), including driving (McGwin 

et al., 2000; Michael et al., 2009; Owsley et al., 2020; Puell et al., 2004; 
Rae et  al., 2016; Swan et  al., 2019). Another crucial measure that 
provides valuable information on functional vision is the 
VFM. Numerous studies have investigated the impact of VFMs on 
driving performance in older drivers. While the relationship between 
VFM and driving performance remains inconclusive on an individual 
level (Faraji et al., 2022), many studies demonstrate that visual field 
deficits can impair driving abilities even in mild to moderate stages 
(Huisingh et al., 2015; Wood et al., 2016). Specifically, the binocular 
visual field, which represents the overlap of visual fields from both 
eyes, is most relevant for driving as it contains crucial driving-related 
information primarily located within the central 30° of the visual field 
(Gruber et  al., 2013). Driving performance can be  significantly 
compromised when the binocular visual field is constricted to 40° or 
less (Wood and Troutbeck, 1992). At nighttime, the effective field of 
view is also constrained by the horizontal coverage (35° to 45°) of car 
headlights (Wilkinson and McGehee, 2019). Given these 
considerations, the present study focuses on examining the central 48° 
of the visual field.

Evidence suggests that mesopic vision deteriorates after the age of 
40, particularly in the presence of glare (Gruber et  al., 2013). 
Compared to young drivers, older drivers perform worse under low 
lighting conditions, primarily due to reductions in rod sensitivity, 
slower dark adaptation, reduced visual acuity, and increased sensitivity 
to glare (Andersen, 2012; Boot et al., 2013; Hertenstein et al., 2016; 
Jackson et al., 1999; Kaleem et al., 2012; Kimlin et al., 2017; Puell et al., 
2004; Wood and Alfred, 2005). Additionally, many eye diseases that 
impair visual function are prevalent in the elderly population, such as 
cataracts and glaucoma, which can significantly affect nighttime 
driving ability (Janz et al., 2009; Owsley and McGwin, 1999). During 
nighttime driving, glare from bright artificial light sources such as 
oncoming headlights can cause discomfort and even temporary 
impairment on vision (Matesanz et al., 2024), significantly affecting a 
driver’s performance and safety (Kimlin et al., 2017). To date, few 
studies have examined the three metrics of functional vision 
simultaneously across multiple lighting conditions, including 
photopic, mesopic, and with the presence of glare, particularly in 
active older drivers. This gap in research underscores the need to 
explore how different lighting conditions impact visual functions in 
active older drivers and to determine the principal visual function 
metrics necessary for a comprehensive evaluation of visual function 
in this population.

In a recent preliminary study (Yang et al., 2024), we measured three 
basic visual functions (VA, CSF and VFM) and obtained various driving 
performance measures, including average speed, standard deviation of 
speed, standard deviation of lane position, and reaction time to visual 
stimuli, in active older drivers under three lighting conditions (photopic, 
mesopic, and mesopic with glare). The driving assessment was carried 
out using a high-fidelity driving simulator. Correlation analyses revealed 
distinct effects of VA, CSF and VFM on driving performance under 
different lighting conditions, indicating that visual functions had a 
greater impact on driving performance at night, particularly in the 
presence of glare. While these results do not suggest direct correlations 
between visual functions and real-world driving performance, they 
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further underscored the need for and importance of comprehensive 
visual function assessments, especially under mesopic and glare 
conditions, to characterize age-related vision changes in older drivers. 
The present study focused on analyzing the extensive visual function data 
collected from the active older drivers under these three different lighting 
conditions (Yang et al., 2024). The goal was to explore the relationships 
among these visual function measurements and identify the minimal set 
of measures necessary for a thorough assessment of functional vision in 
active older drivers. Specifically, we used principal component analysis 
(PCA) as a selection tool to rank and select visual function metrics based 
on their contributions to the variation in visual function measures.

Methods

Participants

Study recruitment information was distributed through online 
volunteer directory/registry, social media postings, and flyers distributed 
at local community centers (Yang et al., 2024). Twenty active older 
drivers (9 females) aged 63 to 87 years (Mean ± SD: 70 ± 6 years) were 
recruited. All participants were English speakers, held a valid driver’s 
license, drove at least once per week, and did not use any low vision aids 
for driving. Based on self-report information, six of the participants 
(75 ± 7 years of age) had undergone cataract surgery. Among the 
remaining 14 participants (69 ± 4 years of age), one had been diagnosed 
with cataracts but had not undergone surgical intervention, one had dry 
eyes, and the rest had no history of eye disease. On average, the 
participants drove 5.2 days (SD = 1.6) per week, and 20.5 miles 
(SD = 11.3) and 43.75 min (SD = 22.9) per day on the day they drove. 
Each participant completed a battery of visual tasks with their habitual 
correction for daily driving. The research protocol was approved by the 
Nationwide Children’s Hospital Institutional Review Board (IRB), and 
all procedures complied with the Declaration of Helsinki. Informed 
consent was obtained from each participant prior to data collection.

Apparatus

All tests were conducted using MATLAB (MathWorks Corp., 
Natick, MA, United States). The qVA test was displayed on a 24-inch 
Dell monitor (P2415Q) with a resolution of 3,840 × 2,160 pixels. For 
the qCSF test, a 46-inch NEC monitor (P463) with a resolution of 
1,920 × 1,080 pixels was used. The qVFM test employed a Samsung 
55-inch monitor (UN55FH6030) with a resolution of 1,920 × 1,080 
pixels to display stimuli. Testing was performed in a room with no 
additional light, except for the testing screens and a glare source. The 
viewing distance was fixed at 4 meters for VA and CSF, and 30 cm for 
VFM, with participants using a chinrest to maintain consistent 
positioning. All tests were performed binocularly, consistent with real-
life driving conditions where both eyes are typically used for 
visual tasks.

Experimental design

VA, CSF and VFM, were assessed under both photopic and 
mesopic conditions in a dark room. Participants received a practice 

session before each test, conducted solely under the photopic 
condition. Prior to the beginning of both the photopic and the 
mesopic tests, participants underwent a minimum 5-min dark 
adaptation. In addition to standard mesopic testing, VA and CSF 
assessments were also conducted in the presence of glare. However, 
due to light reflection and spatial constraints between the participant 
and the testing screen, VFM measurements could not be obtained 
under the glare condition. For each lighting condition, high contrast 
VA was always measured first, followed by CSF. VFM evaluations were 
conducted last, under both photopic and mesopic conditions.

Lighting conditions

The study involved three lighting conditions: photopic, mesopic, 
and mesopic with glare. Photopic vision relies on cones and occurs in 
well-lit conditions (luminance >3 cd/m2), such as daylight outdoors. 
Mesopic vision, occurring under low light conditions (0.003 cd/
m2 < luminance <3 cd/m2), involves both rods and cones and is crucial 
for activities like nighttime driving. In this study, the background 
luminance of the test display was set to 9 cd/m2 or higher for the 
photopic condition. For the qVA, qCSF and qVFM tests, it was 84, 97 
and 9 cd/m2, respectively. For the mesopic condition, the background 
luminance of test display was reduced either through a customized 
program or with neutral density filters. A luminance range of 0.1 and 
1 cd/m2 has been shown to provide reliable and repeatable results for 
mesopic visual function measurements. Here, the luminance was 
reduced to 0.94, 1.00 and 0.47 cd/m2 for the qVA, qCSF and qVFM 
tests, respectively.

In the mesopic with glare condition (also referred to as glare 
condition), a Fiilex V70 lamp with a dome diffuser attached served as 
the glare source. The light was at eye level, facing the participants, and 
positioned 19 cm in front and 12 cm to the left of the midpoint 
between the two eyes to prevent obstruction of the testing screens. A 
color temperature of 3,000 K and the lowest intensity setting were 
used, providing a luminance of 5,983 cd/m2 and an illumination level 
of 305 lux at the midpoint between the two eyes. This illumination 
level is comparable to that of residential (30 to 300 lux) or office desk 
lighting (100 to 1,000 lux).

Bayesian active learning

The qVA, qCSF and qVFM methods were used to measure VA, 
CSF and VFM, respectively. These methods, compared to conventional 
testing, assess the same aspects of visual function but with greater 
efficiency, precision and accuracy through advanced mathematical 
modeling. Specifically, the qVA, qCSF, and qVFM utilize the Bayesian 
active learning framework, as described by Lu and Dosher (2013), to 
efficiently assess visual function while maintaining high precision and 
accuracy in the measurements.

The methods integrate Bayesian inference with generative models 
of trial-by-trial responses to effectively capture patterns in visual 
function data. They also employ an information theoretic framework 
to select the most informative testing stimulus for each trial. With 
each trial, the estimation of the participant’s visual function is 
progressively refined based on the stimulus presented and the 
corresponding response provided.
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In this study, each testing procedure was terminated after reaching 
a pre-determined, fixed number of trials. These efficient methods 
enabled us to collect multiple measurements of visual functions within 
a relatively short timeframe, which was essential for minimizing 
participant fatigue and ensuring sustained engagement throughout 
the study.

qVA
Each qVA test comprised 20 trials. In each trial, three high-

contrast optotypes of the same size (Figure  1A) were randomly 
selected from the 10 Sloan letters (C, D, H, K, N, O, R, S, V, and Z). 
The size of the optotypes, determined by qVA (Lesmes and Dorr, 
2019), varied from trial to trial. The stimuli remained on the screen 
until participant verbally identified all three letters.

qCSF
Each qCSF test comprised 30 trials. Within each trial, three 

equal-size bandpass-filtered optotypes were presented (Figure 1B). 
The stimulus size (center spatial frequencies) and contrasts for each 
trial were determined by the qCSF algorithm (Hou et  al., 2015). 
Contrast varied among the three optotypes within each trial, with one 
of them near the estimated contrast threshold and two above it to 
ensure that they were not overly difficult for the participant to 
identify. The stimuli remained displayed on the screen until the 
participant verbally identified the exhibited letters. The area under 
log CSF (AULCSF) was used as summary metrics of CSF. The 
AULCSF was calculated by integrating the region beneath the log CSF 
curve (but >0) between the spatial frequencies of 1.5 to 18 cycles 
per degree.

qVFM
Each qVFM test contained 120 trials. Participants were instructed 

to maintain stable fixation at a fixation dot at the center of the display 
throughout the test. Each trial contained a beep sound, and a potential 
target (Figure 1C; a light disc with a diameter of 0.43° appeared at one 
of the 64 locations, evenly sampled across a visual field of 48° × 48° 
and cued with a circle, for 150 ms) (Xu et  al., 2019). Participants 
pressed a key to report the presence or absence of the target using the 
qVFM algorithm. The visual field location and luminance of the target 
were adaptively adjusted from trial to trial. The volume under the 
surface of the VFM (VUSVFM), normalized to account for the 
variation of the background luminance, was used as a summary metric 
of VFM. The summary metric focused on relative visual field sensitivity 

rather than absolute values, allowing for a more equitable comparison 
of visual field performance across different background 
luminance levels.

Data analysis

All visual function measurements, except for the two VUSVFM 
measures, followed normal distributions. A non-parametric 
method was used to evaluate the impact of lighting conditions 
on VUSVFM.

Correlations
The dimensionality of the visual function metrics was explored by 

assessing correlations among the eight visual function metrics 
measured across the three lighting conditions. Pearson correlations 
were reported here for all 28 pairs of outcomes to examine their linear 
relationships, which were evaluated with one-tailed, false discovery 
rate (FDR)-corrected p-values (Benjamini and Hochberg, 1995). This 
correlation analysis was also repeated for the subgroup of participants 
who had undergone cataract surgery.

Principal component analysis
Given the correlations among many of the visual function 

measures, principal component analysis (PCA) was employed to 
transform the eight visual function measures into principal 
components (non-correlated variables) to examine the dimensionality 
of the dataset and identify the most significant visual function metrics 
(Abdi and Williams, 2010; Bro and Smilde, 2014). Prior to performing 
PCA, the range of the visual function measures was standardized by 
transforming them to z-scores. The PCA was performed on a data 
matrix consisting of all 20 participants. The loadings of each visual 
function measure were examined for each principal component, along 
with the total variance explained by each component. Loading values, 
ranging from-1 to 1, reflect the contribution of each variable to the 
principal components. A loading value near-1 or 1 implies a strong 
influence of the variable on the principal component, whereas 
loadings near 0 suggest minimal influence.

Identifying the principal metrics of functional 
vision

To determine the minimal set of visual function metrics necessary 
for a comprehensive evaluation of visual function in older drivers, the 

FIGURE 1

Examples of the testing stimuli in (A) qVA, (B) qCSF and (C) qVFM.
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visual function metrics were ranked based on their contributions to 
the explained variation in the data, using a PCA-based selection 
approach. This method involved five steps:

 (1) A visual function measure of interest was manually selected as 
the first core metric. For instance, photopic VA could be chosen 
as the initial metric when evaluating an older driver’s functional 
vision. Subsequently, the contributions of other visual function 
measures were evaluated in addition to photopic VA.

 (2) A linear regression was performed to establish the relationship 
between the selected initial metric (independent/explanatory 
variable) and each of the remaining visual function metrics 
(dependent variables). For instance, if photopic VA was chosen 
as the initial metric, linear regression was conducted to assess 
its relationship with each of the remaining seven visual 
function measures.

 (3) The residuals of the regression model, representing the 
differences between the actual values and the values predicted 
by the model, along with the residual sum of squares (RSS), 
were calculated to examine the variation of each visual 
function measure that could not be explained by the initial 
metric. The total RSS is computed by summing RSS across 
visual function measures.

 (4) PCA was performed on the residuals. By examining the 
coefficients/loadings, the residual visual function measures 
were ranked according to their contributions to the first 
principal component. The highest-ranked visual function 
metric, i.e., the metric with the highest loading, was then 
selected as the next core metric.

 (5) Steps 2 to 4 were repeated on the residuals until all visual 
function metrics were selected.

This analysis provided insights into the optimal sequence of visual 
function measures to consider after the initial manually selected 
metric and how much variance each additional visual function 
measure explained. Each of the eight visual function metrics was 
evaluated as the initial core metric in this manner.

Results

Visual function measures across the three 
lighting conditions

As shown in Figure  2 and Table  1, both VA (F (2,38) = 144, 
p < 0.005) and AULCSF (F (2,38) = 362, p < 0.005) exhibit variations 
across lighting conditions. Both measures decrease with a shift from 
photopic to mesopic conditions and deteriorate further in the presence 
of glare under the mesopic condition. Conversely, for VUSVFM, 
comparable performance is attained between the photopic and 
mesopic conditions (p = 0.33; Wilcoxon signed rank test). Although 
better visual field sensitivity is generally expected with the reduction 
of background luminance from photopic to mesopic levels, the 
absence of a significant difference between these two conditions is not 
surprising. This is because the VUSVFM measure is a normalized 
value, adjusted for variations in background luminance.

Correlations

Table 2 illustrates significant correlations among multiple pairs of 
visual function outcomes. Firstly, excluding VA between the photopic 
and glare conditions, all three visual functions exhibited significant 
correlations across different lighting conditions (see the light gray 
cells; r = 0.47 to 0.92; ps ≤ 0.04). Secondly, VA and AULCSF were 
consistently correlated across all three lighting conditions (see the 
dark gray cells; r = −0.90 to −0.50; ps ≤ 0.03). Additionally, VAs 
measured in the mesopic condition, with and without glare, correlated 
significantly with AULCSF measured under any of the three lighting 
conditions (r = −0.90 to −0.52; ps ≤ 0.02; Table  2). Lastly, no 
correlation was found between VUSVFM and VA or between 
VUSVFM and AULCSF. Upon re-examination of the correlations 
within the subgroup of participants who had undergone cataract 
surgery, a trend of stronger relationships was observed. Although in 
many cases, the p-values from the cataract surgery subgroup did not 
reach the critical value for statistical significance, possibly because of 

FIGURE 2

Bar plots showing (A) LogMAR VA, (B) AULCSF and (C) VUSVFM measured under the three lighting conditions (photopic, mesopic, and mesopic with 
glare). Error bars represent ± standard deviation. Red diamonds represent the individuals who had cataract surgery. Black circles represent the 
individuals who did not have cataract surgery.
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the smaller sample size, the correlation coefficients were almost 
consistently higher for the subgroup compared to the entire cohort 
(Table 2).

Principal component analysis

Table 3 presents the loadings of all eight visual function measures 
for each of the principal components. A criterion loading value (0.35) 
was calculated, representing the loading value when all variables 
contribute equally to the principal component. A variable with a 
loading greater than the criterion value is deemed as an important 
contributor to the principal component, as it contributes more than 
one variable’s worth of information. As shown in Table 3, using PC1, 
PC2, PC3 and PC4 collectively accounted for 95% of the total variation 
in the data. Bartlett’s test confirmed that four dimensions were 
necessary to explain the nonrandom variation in the data. In essence, 
an accurate representation of the data could be constructed using the 
first four PCs.

Identifying the principal metrics of 
functional vision

Using the PCA-based selection method, we evaluated and ranked 
the eight visual function measures according to their contributions to 
explain the variance in visual function measures Figure 3 shows two 
examples on how the total RSS reduced from 152 to 0 with each 
additional core metric selected.

To determine the principal visual function metrics necessary for 
a comprehensive evaluation of visual function in older drivers, the 
goodness-of-fit is evaluated by the the coefficient of determination (r2; 
see Equation 1) that measures the percent variance accounted for by 
the model consisting of the selected metrics (components). A higher 
r2 value represents smaller differences between the observed ( observedy
) and the predicted ( predictedy ) values.
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where meany  is the group mean of a visual function measure.
Table 4 shows the r2 values associated with each addition of a core 

metric. As shown in Table  4, three visual function metrics were 
required to attain an approximate 80% coefficient of determination, 
and four metrics were needed to achieve 90%. If only one measure of 
visual function can be  obtained, the best metric to use would 

be  mesopic VA. This metric alone explained 47% of the overall 
variance. If two measures of visual function can be collected, the most 
informative pairs of metrics (together explaining 70% of the total 
variation) would always contain mesopic VA and a measure of VFM 
(photopic or mesopic). When there are three visual function measures, 
the best metric combinations would consistently include one measure 
of VFM and at least one measure of CSF. In most cases, the first three 
metrics included one measurement for each of the three visual 
functions and each of the three lighting conditions, which collectively 
accounted for around 80% of the overall variation in visual 
function scores.

Discussions and conclusions

Aging, even in the absence of ocular disease, is associated with 
reduced mesopic vision and increased glare sensitivity (Andersen, 
2012; Hertenstein et al., 2016; Kaleem et al., 2012; Kimlin et al., 2017; 
Puell et al., 2004; Wood and Alfred, 2005). With the growing number 
of older drivers, the likelihood of nighttime driving crashes is 
anticipated to rise, posing significant challenges to road safety 
(National Highway Traffic Safety Administration, 2018; Allen et al., 
2019; Cicchino and McCartt, 2014). Understanding the specific vision 
factors contributing to nighttime driving difficulties in older drivers 
is crucial for developing effective vision screening procedures and 
providing appropriate support to mitigate related issues. While this 
study did not assess driving performance, it represents an initial step 
towards this important goal. By examining visual function data 
collected using efficient testing methods under various lighting 
conditions, this study explored the dimensionality of the metrics, and 
identified the principal metrics that were crucial for comprehensive 
assessments of visual function in active older drivers. Our findings 
suggest that, depending on the specific needs, criteria for variance 
interpretation, and limitations on testing time and resources, different 
subsets of visual function metrics may be  more suitable for 
practical use.

While VA, CSF and VFM obtained in the different lighting 
conditions all provide valuable information about visual function in 
active older drivers, we employed principal component analysis to 
assess the contributions of various metrics and identify the most 
informative ones. Conventional PCA indicated that four principal 
components could capture most of the variance in the data. However, 
we aimed not only to reduce the dimensionality of the data but also 
reduce the number of metrics needed for practical application. Using 
the PCA-based selection method, we ranked the eight visual function 
measures, providing insights into which metrics should be prioritized 
in sequence for the most informative evaluation.

Although photopic VA is commonly used in conventional vision 
evaluation for driving, it has limited sensitivity in predicting nighttime 
(Gruber et al., 2013) and daytime (Wood and Alfred, 2005) driving 
ability, and does not fully capture the complexity of functional vision 
under different lighting conditions. In fact, among the eight visual 
function measurements obtained in this study, photopic VA was one 
of the least significant predictors in predicting functional vision in 
older drivers. For instance, photopic VA did not even exhibit a 
significant correlation with VA in the mesopic condition with glare. If 
we want to obtain a visual function metric in addition to photopic VA 
to provide more information about the visual function of active older 

TABLE 1 Visual function measures (LogMAR VA, AULCSF and VUSVFM) 
under the three lighting conditions (mean ± standard deviation).

Photopic Mesopic Mesopic 
with glare

LogMAR VA −0.07 ± 0.08 0.23 ± 0.11 0.44 ± 0.17

AULCSF 1.51 ± 0.27 0.81 ± 0.20 0.32 ± 0.21

VUSVFM 907 ± 47 917 ± 79 /
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drivers, according to our findings, the best option would be mesopic 
CSF. Together, the two measurements accounted for 57% of the total 
variance. If we are limited to obtaining only one measure of visual 
function, the optimal metric to employ would be mesopic VA which 
by itself accounted for 47% of the total variance. This is also confirmed 
by the principal component analysis which showed that mesopic VA 
has the highest loading (contribution) to the first principal component. 
Previous research has also demonstrated that mesopic VA is more 
pertinent to older people’s night driving abilities than photopic VA 
(Gruber et al., 2013).

Compared to conventional methods, the qVA, qCSF and qVFM 
procedures are much more efficient while offering high accuracy and 
precision (Hou et al., 2015; Lesmes and Dorr, 2019; Xu et al., 2019). 
Using these active learning procedures, it typically takes normally 
sighted young adults about 2, 3 and 4 min to complete one measure of 

VA (20 trials), CSF (30 trials) and VFM (120 trials), respectively. 
Depending on individual differences, some of the older participants 
took a similar amount of time to complete these measurements while 
others spent a little longer to provide their responses to stimuli close 
to their thresholds. Although it takes much less time to measure CSF 
and VFM with the active learning procedures compared to the 
conventional methods, VA remains to be  the easiest and quickest 
assessment among the three because it requires the fewest trials and 
has no requirement on maintaining stable fixation.

Given the time and effort considerations, the most efficient metric or 
metric combination for evaluating the visual function of older drivers 
should be the one that contains only VA tests or the most VA tests. For 
instance, if three measurements can be  acquired, to maximize the 
coefficient of determination, the recommendation for measurement 
would always include one measure of VFM and one or two measures of 

TABLE 2 Correlation coefficients for all 28 pairs of outcomes across different conditions and tests for both the whole group (black texts) and the 
subgroup with cataract surgery (red texts).

LogMAR VA AULCSF VUSVFM

Mesopic Glare Photopic Mesopic Glare Photopic Mesopic

LogMAR VA

Photopic
0.61* 0.27 −0.50* −0.39 −0.26 −0.29 −0.22

0.86 0.84 −0.64 −0.59 −0.92* −0.70 −0.80

Mesopic
/ 0.66* −0.86* −0.90* −0.58* −0.19 −0.22

/ 0.95* −0.77 −0.77 −0.89 −0.58 −0.65

Glare
/ / −0.52* −0.63* −0.86* −0.05 −0.01

/ / −0.53 −0.65 −0.88 −0.62 −0.69

AULCSF

Photopic
/ / / 0.90* 0.47* 0.29 0.31

/ / / 0.83 0.62 0.38 0.42

Mesopic
/ / / / 0.56* 0.16 0.20

/ / / / 0.72 0.39 0.50

Glare
/ / / / / 0.01 −0.03

/ / / / / 0.48 0.63

VUSVFM Photopic
/ / / / / / 0.92*

/ / / / / / 0.97*

*One-tailed, FDR-corrected p-value < 0.05. Light gray cells contain the correlations among different lighting conditions for each visual function. Dark gray cells contain the correlation 
between VA and AULCSF for each lighting condition.

TABLE 3 Loadings of all eight visual function measures for each of the principal components, and percentage of the total variance explained by each 
principal component.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

LogMAR VA

Photopic 0.30 −0.13 0.58 0.70 −0.03 −0.05 −0.05 −0.25

Mesopic 0.46 0.06 0.22 −0.09 0.31 0.48 0.17 0.61

Glare 0.37 0.28 −0.44 0.21 0.61 −0.37 0.13 −0.16

AULCSF

Photopic −0.44 0.04 −0.22 0.38 0.37 0.59 −0.36 −0.09

Mesopic −0.44 −0.09 −0.11 0.45 −0.04 −0.20 0.57 0.47

Glare −0.35 −0.30 0.48 −0.31 0.63 −0.25 0.02 −0.05

VUSVFM
Photopic −0.17 0.63 0.27 −0.11 0.00 0.26 0.51 −0.39

Mesopic −0.17 0.64 0.24 0.07 −0.02 −0.33 −0.48 0.39

% of the total variance 53% 24% 11% 8% 2% 1% 1% 1%

The columns are arranged in descending order according to the component variance. Only the first four principal components are significant. The most important loadings (loading value 
>0.35) in the first four principal components are highlighted in boldface.
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CSF. Since VA takes much less time to measure, it may be best to select 
one VA and one CSF measurement instead of two CSF measurements. If 
using r2 = 90% as a criterion, four visual function measurements are 
required. It may be  more time efficient to adopt a set with two VA 
measurements. When the available evaluation time is unclear, it may 
be the best practice to start with mesopic VA, the most informative and 
fastest measure. In instances where glare testing is not feasible, whether 
due to setup constrains or participant discomfort, sequence of photopic 
VA, mesopic CSF, and mesopic VFM (see Table 4) may be the optimal 
choice, capturing nearly 80% of the overall variation in visual function 
data. Our ranking results can be used to guide evaluator to efficiently 
assess visual function in older drivers. By prioritizing the most informative 
visual function measures early on, evaluators can gather valuable data 
while minimizing participant fatigue and maximizing evaluation 
accuracy. Our findings provide insights into how to optimize and 
streamline the evaluation process and ensure that older drivers receive 
comprehensive and targeted assessments of their visual function. 
Importantly, our study did not assess real-world driving performance, and 
further research is necessary to determine how these visual function 
metrics impact individual driving abilities.

Notably, when the starting metric was a CSF measure, VA did not 
possess sufficient new information to be ranked among the top three 
metrics (Table 4). This may be because a full CSF contains a measure 
of VA (the high-frequency cutoff of CSF). In qCSF, the high-frequency 
cutoff corresponds to the spatial frequency at which contrast 
sensitivity is 2.0 (i.e., contrast threshold = 0.5) (Hou et  al., 2010). 
Indeed, there was a strong correlation between the high-frequency 
cutoff of CSF and the VA obtained from the qVA test (r = −0.96, 
p < 0.005). When calculating AULCSF, the area under the log CSF 
curve was integrated within the spatial frequency range of 1.5 to 
18 cycles per degree. The high-frequency cutoffs in most conditions 

and participants fell within this range. In other words, AULCSF, most 
of the times, contains VA information and beyond, which explains the 
association between AULCSF and VA and why a VA measure 
following an AULCSF measure did not make a substantial contribution 
compared to non-VA measurements. This shows that if we perform a 
CSF test first, we may not need to measure VA unless more than 80% 
coefficient of determination is required.

Cataracts are a leading cause of visual impairment in adults over the 
age of 60 (Klein et al., 1992), resulting in reduced vision and increased 
glare sensitivity. A previous study revealed that drivers with cataracts had 
a markedly higher crash rate compared to those without, and that this rate 
could be reduced by half after cataract surgery (Owsley et al., 2002). Here 
we  explored how cataract surgery might influence the relationships 
among visual function measures. We hypothesized that intraocular lenses 
outperform natural aging lenses (which may or may not have cataract) by 
providing more uniform light transmittance across the visual field. This 
improvement in light transmission could reduce task-dependent noise 
and strengthen the correlations between visual function measurements. 
As expected, we found a trend toward stronger correlations between 
visual function outcomes in the subgroup of participants who had 
undergone cataract surgery. Out of the six participants in the subgroup, 
five underwent bilateral cataract removal surgery, and the other 
participant received cataract surgery, however, the specific eyes involved 
were unknown. No other detailed information was collected about their 
surgeries and interocular lenses (e.g., tinted vs. non-tinted; monofocal vs. 
multifocal and other types). The testing stimuli in the qVA, qCSF, and 
qVFM tests differ by size and retinal location. While it is unclear whether 
the participants in the non-surgery group exhibited any degree of cataract, 
here is one potential explanation. Comparing to the intraocular lenses in 
the participants who had cataract surgery, the lenses in the participants 
who did not undergo cataract surgery may have less uniform 
transmittance. A possible consequence is that the varying transmittances 
at different parts of the lenses have different impacts on various visual 
function measures in the non-surgery group, resulting in overall lower 
correlations when evaluating the entire group. With stronger correlations 
in the surgery group, fewer visual function metrics may be required to 
explain the majority of the variance in the data. Additional research with 
a larger sample size and more detailed information on the cataract 
surgeries, interocular lenses and cataract status in the non-surgery group 
could help confirm and better understand the impact of cataract surgery 
on visual function relationships.

While the findings of this study provide valuable insights, it has 
several limitations: (1) The study analyzed the data from 20 active older 
drivers. The sample-to-variable ratio is low with eight visual function 
measures, potentially lack sufficient statistical power to yield stable, 
generalizable PCA results (Osborne and Costello, 2004). Additionally, the 
subject recruitment source is limited. Further studies with a larger, more 
diverse, and representative sample are needed to confirm these findings 
and ensure generalizability of the results. (2) Although motion perception 
or sensitivity to motion may influence driving performance (Henderson 
and Donderi, 2005; Lacherez et al., 2014), this study focuses solely on 
basic visual function metrics using static stimuli. (3) The Useful Field of 
View (UFOV), the area from which an individual can extract visual 
information in a single fixation (Ball and Owsley, 1993), decreases with 
age and strongly correlates with on-road driving performance in older 
drivers (Willstrand et al., 2017). Including UFOV measurements could 
have altered the PCA structure and affected the identified principal visual 
function metrics.

FIGURE 3

Examples of reduction of the total RSS with each additional core 
metric selection. (A) Photopic VA was manually selected as the first 
core metric. (B) Mesopic VA was manually selected as the first core 
metric. The first data point on the left corresponds to the initial total 
RSS when none of the visual function metrics were considered.
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The present study explored the relationships among visual 
function measurements and, using a PCA-based selection approach, 
identified the principal visual function metrics essential for a 
comprehensive evaluation of visual function in older drivers. In 
practice, it may be beneficial to prioritize VA measurements, given 
that among the eight visual function metrics, only photopic VA and, 
in some cases, a basic photopic peripheral visual field test are 
currently used by the Department of Motor Vehicles to assess 
driver’s license eligibility. The visual function measures employed 
in this study are straightforward to implement and could enhance 
the accuracy of driver’s license eligibility assessments, especially 
when there is a demonstrated need and when the benefits of 
implementing additional assessments outweigh the associated costs 
and burdens. These findings lay the groundwork for future studies, 
providing valuable insights for establishing optimal clinical 
outcome measures for active older drivers. However, future studies 
are needed to assess how these visual function metrics influence 
real-world driving behaviors and to determine their validity and 
reliability in predicting individual driving safety and performance. 
Additionally, another potential approach to translate these findings 
into real-world solutions is through the improvement of headlights, 
street lighting, road signs and markings, vehicle technologies, and 
other environmental factors to better accommodate the visual 
needs of older drivers.
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TABLE 4 Lists of visual function metrics ranked with respect to their contributions to the coefficient of determination for each pre-selected, first core 
metric (Metric 1).

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Metric 6 Metric 7 Metric 8

Photopic VA Mesopic 

AULCSF

Mesopic 

VUSVFM

Glare AULCSF Glare VA Photopic AULCSF Photopic 

VUSVFM

Mesopic VA

r2 26% 57% 79% 92% 95% 97% 99% 100%

Mesopic VA
Mesopic 

VUSVFM
Glare AULCSF Photopic VA

Photopic 

AULCSF
Glare VA

Photopic 

VUSVFM

Mesopic 

AULCSF

r2 47% 70% 82% 91% 95% 97% 99% 100%

Glare VA
Mesopic 

VUSVFM

Photopic 

AULCSF
Photopic VA Mesopic VA Glare AULCSF

Photopic 

VUSVFM

Mesopic 

AULCSF

r2 37% 63% 81% 91% 94% 97% 99% 100%

Photopic AULCSF
Mesopic 

VUSVFM
Glare AULCSF Photopic VA Glare VA Mesopic VA

Photopic 

VUSVFM

Mesopic 

AULCSF

r2 43% 65% 81% 91% 95% 97% 99% 100%

Mesopic AULCSF
Photopic 

VUSVFM
Glare AULCSF Photopic VA Glare VA Photopic AULCSF

Mesopic 

VUSVFM
Mesopic VA

r2 44% 68% 81% 92% 95% 97% 99% 100%

Glare AULCSF
Mesopic 

VUSVFM

Photopic 

AULCSF
Photopic VA Glare VA Mesopic VA

Photopic 

VUSVFM

Mesopic 

AULCSF

r2 34% 60% 81% 91% 95% 97% 99% 100%

Photopic 

VUSVFM
Mesopic VA Glare AULCSF Photopic VA

Photopic 

AULCSF
Glare VA

Mesopic 

VUSVFM

Mesopic 

AULCSF

r2 26% 70% 83% 91% 95% 97% 99% 100%

Mesopic 

VUSVFM
Mesopic VA Glare AULCSF Photopic VA

Photopic 

AULCSF
Glare VA

Photopic 

VUSVFM

Mesopic 

AULCSF

r2 26% 70% 82% 91% 95% 97% 99% 100%

The coefficient of determination (r2) measures percent variance accounted for by the model consisting of the selected metrics.
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