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Does neural computation feel like 
something?
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Artificial neural networks are becoming more advanced and human-like in detail and 
behavior. The notion that machines mimicking human brain computations might 
be conscious has recently caused growing unease. Here, we explored a common 
computational functionalist view, which holds that consciousness emerges when 
the right computations occur—whether in a machine or a biological brain. To test 
this view, we simulated a simple computation in an artificial subject’s “brain” and 
recorded each neuron’s activity when the subject was presented with a visual 
stimulus. We then replayed these recorded signals back into the same neurons, 
degrading the computation by effectively eliminating all alternative activity patterns 
that otherwise might have occurred (i.e., the counterfactuals). We identified a 
special case in which the replay did nothing to the subject’s ongoing brain activity—
allowing it to evolve naturally in response to a stimulus—but still degraded the 
computation by erasing the counterfactuals. This paradoxical outcome points to 
a disconnect between ongoing neural activity and the underlying computational 
structure, which challenges the notion that consciousness arises from computation 
in artificial or biological brains.
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Introduction

Brains perform a variety of computations like sound localization (Ashida and Carr, 2011), 
spatial navigation (O’Keefe and Nadel, 1978), depth perception (Nityananda and Read, 2017), 
language processing (Jackendoff, 2003), and many more. These functions are supported by a 
hierarchy of computations, from simple (low-level) to complex (high-level) processes, each 
utilizing unique systemic and cellular mechanisms. Recent technological advancements in 
areas such as brain simulation (Markram et al., 2015; Wang et al., 2024), brain emulation 
(Cassidy et al., 2024; Kaiser et al., 2022; Yan et al., 2019; D’Agostino et al., 2024), and multi-
modal large language models (Girdhar et al., 2019; Zhang et al., 2024), are striving to compute 
with complexity parallel to the human brain. These innovations not only transform 
neuroscience and artificial intelligence but also underscore an ongoing growth in 
computational power and sophistication that historically was unique to biological brains.

Computational functionalism maintains that mental states and processes, including 
consciousness, are defined by their functional roles (Putnam, 1980; Fodor, 1975; Butlin et al., 
2023). According to this view, consciousness and other mental phenomena arise from 
computational processes regardless of their physical medium. Interestingly, conscious 
experience emerges only from certain levels of the brain’s computational hierarchy, while other 
levels remain nonconscious or subconscious (Koch and Tsuchiya, 2007; Dehaene et al., 2006; 
Dehaene et al., 2014). It remains unclear why some levels of computation feel like something 
while others do not.
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The assumption of substrate independence built into 
computational functionalism means that any appropriate 
computational architecture should exhibit the same mental and 
experiential states. These computations can occur in biological brains 
or artificial systems, aligning with the principle of “multiple 
realizability” (Putnam, 1967; Colombo and Piccinini, 2023). This 
principle suggests that machines could become conscious if they 
perform the “right” computations.

The Global Neuronal Workspace Theory (GNWT; Dehaene and 
Changeux, 2011; Dehaene et al., 2014) is an example of a leading 
functional theory that explains consciousness as the result of specific 
patterns of neuronal computation and global information sharing in 
the brain. According to GNWT, consciousness emerges when 
information is “globally broadcasted” across a network of 
interconnected neurons, known as the global workspace. This process, 
termed “ignition,” occurs when neural representations reach a 
threshold of activation, leading to widespread neural synchronization, 
particularly in the prefrontal and parietal cortices. If, as argued by this 
theory, computation is sufficient for consciousness, then artificial 
systems that implement a global workspace could achieve 
consciousness comparable to biological systems (e.g., VanRullen and 
Kanai, 2021). This conclusion works for GNWT and, by the same 
measure, for other computational theories of consciousness not 
mentioned here (Aru et al., 2023). Nevertheless, it is worth noting that 
while many endorse this conclusion, not all functionalists necessarily 
accept it. For instance, Shevlin (2024) nomenclature identifies 
“rejectionism” and “stringent conservatism” as approaches that 
exclude non-human consciousness because non-human brains may 
lack the required functional organization.

In support of the functionalist perspective, Pylyshyn (1980) 
proposed an influential thought experiment in which neurons in a 
subject’s brain were gradually replaced with functionally identical 
microchips (see also Chalmers, 1995; Haugeland, 1980). Pylyshyn 
sought to preserve cause-and-effect relationships between neurons 
while eliminating the biological substrate. Since the original 
computational properties and interactions were preserved by 
definition, the brain’s functional properties, including consciousness, 
persisted. Recently, we proposed a thought experiment (Gidon et al., 
2022) that extends and complements Pylyshyn’s concepts. Unlike 
Pylyshyn, our thought experiment aimed to preserve the activity and 
the biological substrate while eliminating cause-and-effect 
relationships between neurons. To achieve this, we initially recorded 
the precise activity (e.g., the intracellular membrane voltage) of all 
the neurons in the brain during a specific conscious experience and 
then replayed the recorded activity back to the same neurons. This 
thought experiment primarily questioned the hypothesis that some 
aspect of neuronal activity (e.g., action potentials) causes 
consciousness. Accepting that brain activity causes consciousness led 
to progressively challenging scenarios, culminating in the reductio ad 
absurdum that disconnected and scattered neurons might give rise to 
a conscious experience.

Given the importance of computational functionalism, 
we aimed to understand some of its unexplored consequences. 
Therefore, we  examined whether computation can account for 
consciousness, irrespective of its implementation—be it in 
simulations, emulations, or biological brains. Using the NEURON 
simulation environment (Hines and Carnevale, 1997), 
we  simulated an experiment in which a visual stimulus was 

presented to an artificial subject, and the activity in its 
(minimalistic) brain was recorded and then replayed using a 
(simulated) voltage clamp technique (Sharp et al., 1993). Starting 
from a computational functionalist standpoint, we hypothesized 
that the computation performed by the subject’s brain underlies 
conscious experience. We  then explored how counterfactuals 
influence computation in the artificial subject’s brain and, 
consequently, its consciousness. We arrive at paradoxical results 
that underscore the gap between the biophysical aspects of brain 
dynamics and the computational accounts of consciousness.

Methods

The simulation was implemented using NEURON simulation 
environment (Hines and Carnevale, 1997); source code to reproduce 
all the traces for this study is available here in ModelDB (McDougal 
et al., 2017): http://modeldb.science/2018266. The visual cortex model 
included five identical neurons (circles in Figure  1, enclosing the 
letters a–e) and two input nodes (filled/empty overlapping circles in 
Figure 1). All neurons were assumed to be intrinsically inactive at the 
initial state or during the simulation unless they received synaptic 
input. Each cortical neuron was connected in cyclic order to the 
preceding three neurons; for example, neuron d received input from 
neurons a, b, and c. Each neuron was modeled by a single 
compartment with Hodgkin et  al. (1952) biophysically inspired 
formalism (Traub et al., 1991) consisting of Na+, K+, and leak channels 
(Rin = 50 MΩ). All synaptic inputs were modeled by a fast rise (2 ms) 
in the synaptic conductance and exponential decay (τsyn  = 10 ms) 
triggered by presynaptic spikes. Synaptic conductances (gsyn = 5 nS) 
were adjusted to drive the neurons to fire even though the number of 
synapses was small. To prevent runaway network excitation, 
we  implemented short-term depression (resulting from the 
desensitization of synaptic receptors) for cortical synapses using first-
order kinetics approximation (see equation 10 in Hennig, 2013). After 
each presynaptic action potential, the synaptic strength dropped to 
50% of its value and recovered with a time constant of 1 s. Each LGN 
node was modeled as a random series of spikes that evoked synaptic 
potentials in their target cortical neurons. The eyes were modeled as 
a sensor that turned the LGN nodes on or off depending on the hue 
presented to the subject. Green light activated both LGN nodes, which 
drove the cortical network (Figure 1A) to fire. Other hues activated, 
at most, a single LGN, which was sufficient to drive only one cortical 
neuron above its firing threshold (Figures 1B,C). The built-in SEClamp 
object in NEURON was used to simulate the voltage clamp.

Results

Computation and consciousness

Similarly to our previous work (Gidon et al., 2022), we took the 
approach whereby it is sufficient to identify the target of the 
investigation rather than defining it precisely (Searle, 1998; see also 
Tononi, 2004; Tononi and Edelman, 1998). Hence, consciousness, 
as discussed here, refers to the experience of oneself or one’s 
surroundings that fades during deep sleep or anesthesia. 
Nonetheless, the simulation and conclusions in this work bypass 
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the need for a precise definition, allowing the readers to rely on 
their own definition of consciousness.

The way we refer to computation aligns with the principles of a 
Turing Machine described by Turing (1936) and the principles of 
functionalism described by Putnam (1967). Specifically, computation 
is a process whereby a system receives various inputs that trigger state 
transitions according to a set of rules (or an algorithm), leading to an 
output. A key aspect for the functionalist is that the inputs, states, 
transitions, and outputs define the functional organization of the 
mind and are crucial to the conscious experience (Shagrir, 2005). A 
Turing Machine, according to this view, could experience pain and 
pleasure as long as it has the correct implementation of the tape 
(which stores its states) and the appropriate transition function (which 
guides the transition from one state to the next), whether in the form 
of a large language model, a neuromorphic chip, or even the 
human brain.

The experiment

Inspired by a basic psychophysical experiment, we envisioned a 
scenario in which a subject is presented with a green light and 
instructed to press a button when she consciously perceives the light. 

We recorded the neuronal activity (i.e., the voltage) in every neuron 
of her brain immediately after the light turned on until she pressed the 
button. This time window captures the entire brain process underlying 
the conscious experience.

In the next step of the experiment, we played the recorded activity 
back into the same neurons (hereafter, the “replay”). Due to technical 
limitations and ethical considerations, such an experiment is currently 
not feasible in a large number of neurons in human subjects. 
Nevertheless, the replay provides an experimentally grounded conceptual 
framework that could, in principle, become feasible as technology 
advances. Indeed, it is evident that neuroscience has advanced in this 
direction (further discussed in Gidon et al., 2022).

Rather than relying entirely on a descriptive account of a thought 
experiment, we simulated it using a simplified model of an artificial 
subject’s brain. The simulation offers the reader more concrete results, 
while it requires minor conceptual adjustments when mapped to 
biological brains (see Discussion). The artificial subject consisted of a 
light sensor acting as eyes innervating two input nodes, each 
representing a lateral geniculate nucleus (LGN). The LGN inputs are 
then passed to the visual cortex, which is modeled as a recurrent 
network (for further details, see Figure 1 and the Methods section). 
For convenience, we referred to the response of the subject’s brain to 
different light hues as “hue-computation.”

FIGURE 1

An artificial psychophysical experiment (A). A simplified visual system modeled in NEURON simulation environment performs hue-computation. The 
eyes (sensor) detect the light and activate the two input nodes (lateral geniculate nucleus; LGN), which connect to neurons a and b. When the green 
light turned on both LGN nodes, all cortical neurons (a–e) fired. Membrane voltage traces (Vm) from each neuron were recorded for the green light 
stimulus and stored for later use by the replay. Traces are shown only for neurons a and b. (B,C). Red and blue lights activated only one of the LGN 
nodes, triggering action potentials in either neuron b (B) or a (C), which was insufficient to drive the other cortical neurons to fire.
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During the simulated experiment, as the green light was presented 
to the artificial subject (i.e., the “subject”), we recorded the voltage in 
all cortical neurons at each simulation time step. Then, we replayed 
the recorded activity into the same neurons (Figure 2). As expected, 
the subthreshold voltage and neuronal firing during the replay were 
identical to those observed in the recorded simulation (Figure 2A). 
The replay recreated the response of the subject’s brain, even in the 
absence of the stimulus, by precisely controlling the activity of 
each neuron.

This simulated experiment, although rudimentary, captured the 
conceptual framework used to study neural computation in biological 
and artificial brains and can be  easily extended to more complex 
scenarios. If some readers believe that consciousness requires a larger 
network–perhaps one implementing a global workspace (Dehaene 
and Changeux, 2011) or higher—order computations (Brown et al., 
2019; Butlin et al., 2023)—they are invited to substitute our simple 

computation with one of their own design. Furthermore, 
hue-computation is used here as a placeholder for a candidate 
computation associated with conscious experience.

The hypothesis

Adopting the functionalist perspective, we start with a working 
hypothesis that some computations constitute conscious experiences. 
Adapted to our simulation, the hypothesis states that when a light 
stimulus is presented to our subject, its brain performs hue 
computation, thereby becoming hue-conscious. Initially, we accept 
this working hypothesis but shall reevaluate it later in light of the 
results. This hypothesis does not imply that a functionalist perspective 
equates every computation with consciousness or, specifically, 
hue-computation is necessarily conscious. To clarify this point further, 
we postulate that all computations are divided into core and auxiliary 
computations. By definition, altering a core computation’s input/
output function impacts conscious experience. An auxiliary 
computation, in contrast, manages various brain functions with no 
direct effect on consciousness, even when its input/output function is 
modified. Analogously, the motor is a core mechanism that, when 
modified, affects the car’s mobility. In contrast, the window roll-down 
actuator, although motorized, is an auxiliary feature with no role in 
the car’s ability to move. Functionalist theories imply a distinction 
between core and auxiliary computations, but not formally. Here, 
we assumed that the hue-computation performed by the subject is a 
core computation. Nevertheless, even if the reader disagrees with this 
assumption, the same experiment and conclusion could be applied to 
a core computation suggested by the reader. Additionally, it is worth 
noting that the findings discussed in this study depend on the fact that 
the replay is capable of altering computation, rather than the specific 
details of how it does so.

Feedforward versus feedback replay

To understand the simulation’s outcome, it is crucial to clarify the 
role of the replay and the specifics of its implementation. The first 
approach we  considered involved a feedforward mechanism that 
ignored the ongoing neural activity and overwrote the voltage in each 
neuron with the recorded values (Figure 2B). The feedforward replay 
eliminated the impact of the neurons on each other and effectively 
severed the connection between the neurons. Although such a replay 
would work, we also considered an alternative approach for reasons 
that will be  clarified later. We  sought a feedback mechanism that 
monitors the ongoing neuronal activity and nudges it toward target 
values. The voltage clamp is a common experimental technique in 
neuroscience laboratories and a natural candidate for achieving a 
feedback replay mechanism (Cole, 1949; Cole, 1972). Conducting a 
voltage clamp experiment requires a “command voltage” initially 
dialed into the voltage clamp amplifier and serves as a prescription for 
neural activity. The amplifier (illustrated in Figure 2C) monitors the 
neuronal voltage at every moment and compares it to the command 
voltage. When neuronal activity deviates from the command voltage, 
a current is injected into the neuron (green electrode in Figure 2C) to 
nudge the voltage back to the prescribed (command) value. In 
practice, the feedback correction is instantaneous, orders of magnitude 

FIGURE 2

Feedforward and feedback replay mechanisms: (A1) The command 
voltage was set to the recorded voltage traces in Figure 1A (for the 
green stimulus) and replayed into the cortical network by a voltage-
clamp amplifier. No visual input was presented to the subject (visual 
field indicated by the dotted line). (A2) Neuron b voltage (Vm; top) 
was recreated by the voltage-clamp current (Ivc; middle) during the 
replay without a visual stimulus. The current from the LGN input (ILGN; 
bottom) recorded under the green visual input without replay (as in 
Figure 1A) was identical to Ivc during the green replay. (B) The 
feedforward replay: The neuron receives synaptic inputs, but they are 
ignored, and the neuron output is overwritten by the green 
electrode. (C) Feedback replay: The monitoring electrode (gray) 
measures the voltage. The command voltage (i.e., the recorded Vm) is 
stored in the controller. The voltage clamp amplifier (green triangle) 
uses the difference between these signals to determine the current 
injected through the green electrode.
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faster than the neuron’s characteristic time. Thus, the voltage-clamp 
amplifier prohibits deviations from the command voltage during the 
experiment but does not otherwise intervene. To grant similar 
capabilities to our feedback replay, we simulated it as an experimental 
voltage-clamp amplifier (hereafter, we use the terms voltage-clamp 
and feedback replay interchangeably). We set the command voltage 
for each cortical neuron to the recorded activity evoked by the green 
stimulus. This ensured that the activity during the replay matched the 
activity caused by the green visual stimulus.

Both the feedforward and the feedback replays accurately 
recreated the cortical activity. However, the difference becomes 
apparent when no visual stimulus is presented to the subject. The 
feedforward replay ignored the ongoing network activity and 
overwrote the voltage in each neuron with the recorded values. In 
contrast, the feedback replay achieved identical results without 
overwriting the neuronal activity (Figure 2A). Instead, it accurately 
recreated the missing LGN inputs (Figure 2A2) to the cortical neurons 
by nudging the neuronal activity in the cortical network toward the 
command voltage moment-by-moment.

To further illustrate the distinct impact of the feedback replay, 
we introduced an incongruence between the stimulus and the replay. 
Namely, we presented a red light (that activates only one LGN node) 
while replaying network activity for the green light (activating both 
LGN nodes). As expected, during the replay, all the cortical neurons 
fire as if the green light was presented rather than the red light. 
Notably, the replay did not recreate (or overwrite) the entire network 
activity from scratch as in the feedforward case; instead, it factored in 
the ongoing network activity driven by one LGN node (i.e., for the red 
stimulus) and supplemented it with the missing input from the second 
LGN node (Figure 3A). The replay remained equally effective whether 
the neurons in the subject’s brain were disconnected or rewired, or a 
new input was introduced (not shown).

The replay results in a degenerate 
computation

The replay fixed the cortical network state transitions and 
outputs by effectively decoupling neurons from the visual input or 
any other influence that could alter their prescribed behavior. Given 
that replay modified the key elements of computation, namely, the 
inputs, state transitions, and outputs, we concluded that the replay 
altered the original hue computation or possibly even eliminated it. 
The impact of feedforward and feedback replay on computation is 
apparent in the diagram representing a toy algorithm (Figure 3D), 
where computational states and outputs are mapped onto the 
different diagram branches. The replay erased all the algorithm’s 
branches (in gray) except the recorded one (in green). Specifically, 
the replay pruned some states, eliminated their interactions, and 
overrode the algorithm rules, degenerating the computation into a 
fixed sequence of operations independent of the input. The 
degenerate computation represented a fundamental change in the 
functional organization of a system implementing the algorithm. 
From the functionalist’s perspective, changing the functional 
organization of a system is synonymous with changing 
consciousness (Putnam, 1980; Shagrir, 2005; Block, 1978; Lewis, 
1972), which implies that replay altered the conscious experience 
(see Figure 4 and corresponding discussion).

Consciousness and nothing

In the previous sections, we  described the outcome of an 
incongruent stimulus presented during the replay (Figure 3A). Next, 
we introduced a congruent input by presenting the subject with a 
green light while replaying the previously recorded green activity 
(Figure 3B). During the replay, the brain activity for the congruent and 
the incongruent inputs was identical: Both led to a single set of state 

FIGURE 3

Paring the feedback replay with congruent and incongruent inputs. 
(A1) The command voltage was set to the recorded values for the 
green stimulus (see Figure 1A) and replayed into the cortical network 
by a voltage clamp amplifier during an incongruent stimulus (red 
light). (A2) Top. Voltage trace (Vm) for neuron a. Middle. The replay 
recreated the missing LGN input for neuron a (Ivc). Bottom. Neuron b 
received input from the LGN, resulting in no replay currents (Ivc). (B1) 
As in (A1), but for the congruent input (green stimulus). (B2) Vm (top) 
and Ivc (middle) for neuron a during the replay. No currents were 
injected during the replay because neurons a and b received inputs 
from the corresponding LGN nodes (Nothing type II; bottom). 
(C1,C2) as in (B1,B2), but the amplifier was turned off, and therefore, 
no currents were injected by the voltage clamp (Nothing type I). 
(D) Counterfactual eraser operation demonstrated using a toy 
algorithmic computation. (D1) Without the replay, the algorithm 
executed a particular trajectory for the green stimulus (depicted by 
green blocks and solid lines). The alternative operation sequences 
(depicted by red blocks and dashed lines) remain available. (D2) as in 
(D1), but during the replay. The algorithm degenerated to one 
prescribed sequence of operations with no counterfactuals.
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transitions irrespective of the input (compare Figures  3A,B). 
Therefore, computation degenerated for both cases during the replay. 
However, in contrast to the incongruent input (Figure  3A2), the 
voltage clamp did not inject any current into the neurons for the 
congruent input because no intervention was needed to obtain the 
prescribed behavior (Figure  3B2). Therefore, cause-and-effect 
relations between the neurons in the subject’s brain could naturally 
evolve, just as they would without the replay (here we  rely on a 
mechanistic perspective on causation, e.g., Ross and Bassett, 2024, 
rather than on the counterfactual approach as presented by Lewis, 
1973). This result demonstrates the paradoxical consequences of the 
congruent input: On the one hand, the replay altered consciousness 
by changing/degenerating computation. On the other hand, it did not 
alter brain activity and left the cause-and-effect relations between the 
neurons intact (i.e., it did nothing). If the replay did nothing, how 
could it change consciousness?

We distinguish two types of doing nothing: “Nothing type I” 
(Figure  3C) and “Nothing type II” (Figure  3B). Nothing type 
I describes the replay doing nothing simply because the voltage clamp 
amplifier was switched off. As follows from our working hypothesis, 
the subject was hue-conscious for Nothing type I. In contrast, 
“Nothing type II” describes the case where the voltage clamp amplifier 
was switched on but did nothing because the brain activity was 
identical to the command voltage. As described earlier, Nothing type 
II alters hue-computation and, according to our working hypothesis, 
hue-consciousness.

Counterfactual erasers

The distinction between Nothing type I and Nothing type II is 
unrelated to the ongoing brain activity that follows the congruent 
input because it was identical for both Nothings. Instead, the 
difference depended on counterfactuals. i.e., the hypothetical activity 
(that did not happen) for other visual stimuli that were not presented 

and possibly will never be  presented (Figure  3D). Therefore, 
we propose viewing the feedback replay as a “counterfactual eraser” 
because it can prohibit only counterfactuals without affecting anything 
else, i.e., brain activity and cause-and-effect between the neurons. The 
counterfactual eraser reveals a paradox: erasing abstract computational 
scenarios, which have no real-world impact on how brain activity 
responds to a specific (congruent) input, can nonetheless alter or even 
abolish consciousness.

Counterfactual erasers can also operate at the input level, for 
instance, by recording and replaying the subject’s LGN nodes activity 
while a green light is presented, or analogously, by having the subject 
wear ‘green glasses’ that convert all stimuli to green. Unlike the cortical 
replay, green glasses do not affect the computation underlying the 
green experience. From a functionalist perspective, although both 
may result in identical brain activity, only cortical replay affects the 
conscious experience.

Discussion

In this work, we explored the relationship between computation and 
consciousness by simulating an artificial subject’s brain in response to 
visual stimuli of different hues. We started with a working hypothesis 
from a computational functionalist perspective whereby a subject 
performing hue-computation is hue-conscious. The ongoing activity in 
each neuron in the subject’s brain was recorded when a green light was 
shown and subsequently replayed into each neuron. To achieve that, 
we used a voltage clamp to inject current into the subject’s neurons, 
nudging them to the prescribed behavior obtained during the recording. 
We introduced the notion of counterfactual erasers (implemented by the 
replay) as an oversight device that continuously monitors the behavior of 
the system’s elements. This device intervenes only if one or more system 
elements deviate from the prescribed behavior. The key feature of 
counterfactual erasers is their potential intervention rather than their 
actual intervention. Therefore, the counterfactual eraser presents a unique 

FIGURE 4

The replay and its impact on the elements of computation in a Turing Machine model: Reframing the simulated experiment as a Turing Machine 
consisting of a transition function given by a Finite State Machine (FSM), a moveable read/write head, and a tape. The head keeps track of the following 
parameters: the current and next states, reads and writes a symbol on the tape, and moves the head to the next position [parameters s, t, w, m, 
respectively]. (A) Recording: The Turing Machine operates based on a transition function given by the FSM and the tape. The green light presented to 
the subject is embedded in the green tape (in addition to other read/write data), and a sequence containing the states, symbols, and movements is 
recorded (i.e., recording s, t, w, m). (B) Feedforward replay: The replay instructs the head to write and move, overwriting w, m (in green) and ignoring s, 
t (grayed out) using the sequence of the recorded operations, bypassing the FSM. The new transition function consists only of the replay. (C) Feedback 
replay: The feedback replay monitors the reads and the writes and corrects them in cases where they deviate from the recorded sequences (due to 
changes made to the tape or the FSM). Given a congruent green input (embedded in the green tape), the replay only monitors, allowing the FSM to 
interact with the head. The new transition function includes the replay and the FSM (encircled by the dotted line) with erased (grayed-out) states. The 
outcome amounts to a trivial computation consisting of a single sequence of states (i.e., universally realizable).
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situation whereby the interaction between the neurons and the activity of 
the network continued undisturbed even though all counterfactuals were 
erased. Consequently, counterfactual erasers can degenerate computations 
while doing nothing (Figure  3). If the reader accepts the working 
hypothesis, they must contend with the counterintuitive outcome that 
doing nothing to the brain can alter consciousness.

The importance of counterfactuals for computations underlying 
consciousness has been discussed before (Chalmers, 1996; Bishop, 2002; 
Maudlin, 1989; Klein, 2018), and therefore, we will briefly describe it 
here. Putnam (1988) and Searle (1990), among others, argued that 
computational sequences without counterfactuals are trivial and 
“universally realizable” thus, implemented by every system that 
transitions between states, even a rock (Chalmers, 1996). Accepting that 
trivial computations are sufficient for consciousness also undermines the 
conventional wisdom that complexity is a significant driver for conscious 
experience. Instead, according to this view, even simple machines 
performing simple computations could already be conscious.

Explaining the replay within a Turing 
machine model

A Turing Machine (Turing, 1936) is a fundamental model of 
computation comprising an infinite tape, a read/write head, and a 
finite set of rules (a “transition function”) controlling its behavior. This 
model can simulate any computational process, making it a 
cornerstone of computer science and central to discussions about 
consciousness from a functionalist perspective.

To clarify how replay influences computation, we examine both 
the feedforward and feedback replay mechanisms within a Turing 
Machine framework. Our intention in this section was not to 
establish a strict mapping between components of the artificial 
subject’s brain and the Turing Machine, but instead to relate the 
replay mechanism to the broader concept of computation. Within 
the Turing Machine model, the input is embedded in the tape (e.g., 
a “green tape,” Figure 4A) rather than presented as light input to the 
subject (without implying a direct mapping between the LGN and 
the tape which contains other read/write data relevant to the 
computation). Typically, the transition function is governed by a 
finite state machine (FSM) that determines the head’s read/write 
actions based on the tape content, allowing the input-dependent 
information to be processed dynamically.

During feedforward replay, the FSM is effectively bypassed, the 
input is ignored, and the head strictly follows the replay’s prescribed 
instructions. These instructions are derived from a linear sequence 
of recorded writes and moves (corresponding to the parameters w 
and m in Figure 4B). This behavior is independent of the input, 
whether congruent (e.g., “green tape” matching the replayed 
sequence) or incongruent (e.g., “red tape” or any other tape that does 
not match the replayed sequence). The feedforward replay can 
be viewed as a new implementation of the transition function that 
does not read the tape and ignores the FSM. As a result, the new 
transition function leads to a degenerate computation and, arguably, 
even entirely abolishes it.

The feedback replay imposes the same sequence of write and 
move operations as the feedforward replay, and the resulting input/
output function is identical in both cases. However, it constrains the 
Turing Machine differently. Rather than ignoring the FSM as in the 

feedforward case, the feedback replay requires the head to interact with 
the FSM. When the head’s operations deviate from the recorded 
sequence (Figure 4C), the replay overwrites them.

Constructing a computational framework forces us to explicitly 
place the feedback replay within the components of the Turing 
Machine (Figure 4C). At first glance, the feedback replay might seem 
‘external,’ like the patch clamp device appears external to the brain in 
our psychophysical experiments. Moreover, the patch clamp device 
does not alter the brain’s molecular structure, physical makeup, or 
neuronal interactions. Therefore, as it is external to the brain, it may 
also appear external to the computation itself. This impression is 
enhanced by the congruent input, during which the replay remains 
inactive (Nothing Type II). It is not immediately obvious how an 
external device that does not intervene could be integrated as part of 
the computation performed by the Turing machine.

Rather than considering whether the replay is internal or 
external, the question asked by the funcitonalist is whether the 
replay changes the functional organization of a system. However, the 
fact that the functional organization has changed can be  readily 
demonstrated by simply presenting different (incongruent) inputs 
during the feedback replay. States that would have been reached 
through the evolving read/write interplay are unreachable. This 
process effectively erases these states, similar to the feedforward 
case. This erasure is effective in a conceptual sense, even though they 
are not physically erased in the FSM. This leads to the conclusion 
that the feedback replay device is conceptually part of (and alters) 
the Turing Machine by directly altering the Transition Function 
(Figure 4C, dotted line).

The magnitude of the change to the transition function will depend 
on the proportion of states used in the congruent case compared to all 
other cases. In principle, the replay could have a considerable impact, 
raising the possibility that conscious experience associated with this 
computation might be severely diminished or even abolished. The Turing 
Machine analogy delineates the conceptual (or computational) role of the 
feedback versus feedforward replay scenarios.

Implications for biological networks

Because our artificial subject’s brain was inspired by the biological 
neural network and relied on widespread experimental techniques, 
our conclusions translate more naturally to real neuronal systems. 
We  can map the five neurons in our simulated network to an 
experiment involving five biological cultured neurons (Hales et al., 
2010) and, subsequently, record and replay the neuronal activity in the 
cultured network. As a result, counterfactuals will be  erased, and 
network computation will degenerate regardless of the substrate. A 
similar outcome is expected when replacing the artificial neurons in a 
transformer architecture with realistic model neurons [e.g., the 
neurons in the Blue Brain Project, Markram et al. (2015)] or even 
biologically cultured neurons. A replay experiment in the human 
brain is technically challenging, much more than in a neuronal 
culture, but conceptually, both are straightforward. However, one 
apparent difference between simulation and living tissue is that the 
latter consists of intrinsic stochasticity, which is fundamental to the 
biological structure and function at every level of detail. It is 
impossible to replay the noise at the molecular level of the biochemical 
reactions and other low-level quantum noise. However, the replay can 
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deal with the noise’s functional consequences on the electrical 
behavior of each neuron, similar to any other recorded input. It would 
undo the ongoing noise and reintroduce the recorded noise.

Some theories of consciousness, using “counterfactual thinking” 
(Epstude and Roese, 2008) and the “Multiple Drafts Model” (Dennett, 
1991; Dennett and Kinsbourne, 1995), leverage biological stochasticity for 
computing alternative scenarios or realities. Such computational theories 
of consciousness that do not require true stochasticity are vulnerable to 
the effects of the counterfactual eraser. However, for theories that require 
true stochasticity (e.g., Van Hateren, 2019; Hameroff and Penrose, 1996), 
the implications of the counterfactual eraser on consciousness are difficult 
to determine, and we will not address them here.

Erasing the counterfactuals from the 
perspective of integrated information 
theory

Integrated Information Theory (IIT), as proposed by Tononi and 
colleagues (Albantakis et al., 2023; Tononi et al., 2016), offers a profoundly 
different view on consciousness than most existing theories. Although it 
has a computational flavor, appreciating the functional organization of a 
system (e.g., the brain), it emphasizes the system’s complex functional 
causal relations arising from the physical components. The internal 
perspective is manifested by the intrinsic cause-and-effect powers of the 
system on itself, as determined by its states and transitions’ repertoire. The 
Transition Probability Matrix (TPM) describes the transition probabilities 
between all pairs of possible present and future states within a system. IIT 
uses the TPM to evaluate the causal structure formed by the system’s 
components and their interactions, and computes the integrated 
information (Φ, ‘big Phi’), which can fluctuate from moment to moment 
(Albantakis et  al., 2023). IIT does not attribute consciousness to the 
specific computations being performed at any given moment. Instead, it 
relies on the repertoire of potential states and transitions within a system, 
namely the counterfactuals. Therefore, from the perspective of IIT, the 
critical aspect of the feedback replay is its ability to erase counterfactuals. 
For IIT, whether the feedback replay allows brain activity to evolve 
naturally without interference is less important.

Due to its distinct “unit grain” (Oizumi et al., 2014; Albantakis et al., 
2023; Marshall et al., 2024), the replay may operate as background 
constraints or even redefine the neurons’ behavior. However, because its 
features are distinct from neuronal mechanisms (by design), it should 
not be considered part of the neural network. For one, it responds much 
faster than neurons, and thus, it operates on a distinct temporal scale in 
the context of integrated information. Furthermore, it continuously 
reacts to small changes in membrane potential (like voltage-dependent 
ion channels) rather than an all-or-non response to action potentials 
typical to neurons. Consequently, the replay degenerates the TPM by 
restricting the system dynamics. The degenerate TPM results in a 
simpler cause-and-effect structure that dramatically reduces Φ. To 
understand this outcome, it is essential to differentiate between cause-
effect powers or structure (Albantakis et al., 2023) and actual causation 
(Albantakis et  al., 2019). According to IIT, a cause-effect structure 
unfolded from a substrate is necessary and sufficient to account for all 
features of consciousness. In contrast, the cascade of cause-and-effect 
events in the current moment, namely, the actual causation (Albantakis 
et al., 2019), is less relevant to Φ. For example, the brain can have high 
Φ even if all the neurons are silent and do not cause each other to fire, 

provided its cause-effect powers are intact. Inversely, consciousness is 
dramatically affected by eliminating the cause-and-effect structure, as 
done by the counterfactual eraser, even when all the neurons are active 
as before. In conclusion, we underline a fundamental counterintuitive 
aspect shared by IIT and computational functionalism. For both, the 
feedback replay can degrade consciousness, despite doing nothing 
(Nothing type II). However, counterfactual erasers do not present a 
formal challenge to IIT because, although they preserve what the system 
does (the focus of functionalism), they alter what the system is [the focus 
of IIT; see Tononi et al. (2025)].

More on counterfactual erasers

Harry Frankfurt suggested a famous thought experiment (1969) 
exploring the principle of alternative possibilities (i.e., counterfactuals) 
using a conceptual tool similar to the counterfactual eraser. Briefly, the 
thought experiment goes as follows: John plans to commit an immoral 
act. A monitoring device is implanted in Jones’ brain, without his 
knowledge, to ensure he commits this act in case he decides to change 
his mind. Jones independently chooses to commit the act, so the 
device remains inactive. Is Jones morally responsible for the action 
despite the absence of alternate possibilities? Frankfurt concludes that 
voluntary behavior rather than counterfactuals determines 
moral responsibility.

Our counterfactual eraser and Frankfurt’s device monitor ongoing 
activity and intervene only when prescribed behavior is not met. 
Despite the conceptual similarity, there are meaningful differences due 
to the question each device tries to tackle; one asks whether 
computation causes consciousness, whereas the other explores moral 
responsibility. Accordingly, Frankfurt’s device eliminates alternative 
outcomes by setting a predetermined future goal for Jones. Either 
slightly biasing Jones’s brain by manipulating a handful of neurons or 
completely controlling low-level activity in all his neurons, Frankfurt’s 
device would do the job as long as the goal is achieved. In contrast, 
we  are interested in the ongoing activity of each neuron as the 
prescribed activity, regardless of the high-level outcome.

Suppose we smuggle a counterfactual eraser into Frankfurt’s thought 
experiment and use it on Jones’s brain instead of the original device. In 
that case, we can create an interesting scenario that is different from what 
Frankfurt envisioned. Activating the counterfactual eraser (assuming 
that we have the prescribed behavior of all the neurons in Jones’s brain) 
guarantees that he  performs the act. If Jones can perform the act 
voluntarily precisely as prescribed, then the counterfactual eraser would 
do nothing (as in our simulations), and Frankfurt would hold him 
responsible. However, considering the alternate possibilities (i.e., 
counterfactuals) as crucial for computation and, therefore, for 
consciousness (Maudlin, 1989; Barnes, 1991), we may need to accept that 
Jones may have acted voluntarily but with altered or possibly diminished 
conscious experience. Can the functionalist hold Jones responsible even 
if he may have lost his consciousness?

The risk of misconsciousing machines

Singer (1976) argued for extending some human rights to animals 
based on their ability to consciously perceive pain and pleasure. Most 
people view animals as conscious beings and animal rights protection 
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is improving. In modern society, these rights are protected by 
legislation and, therefore, by law enforcement agencies. However, 
historically, philosophers often described animals as automatons and 
dismissed their expressions of emotion as reflexes (Thomas, 2020; 
Noble, 2023). This misconception has been largely corrected by a 
growing body of behavioral, neuroanatomical, and evolutionary 
evidence, which supports the common-sense view that animals share 
core capacities for consciousness with humans (Birch, 2020; Andrews 
et al., 2025; Irwin et al., 2022). However, the common sense that 
prevailed in the case of animals makes humans vulnerable to computer 
programs specifically designed to outsmart and (mis)use our intuitions 
(Shevlin, 2024; Colombatto and Fleming, 2024). The claim that AI 
might become conscious soon (or, according to some, may already 
be conscious) found its way to the mainstream (Finkel, 2023; Lenharo, 
2023). Taking “mainstream assumptions, it’s a serious possibility that 
we’ll have conscious LLM + s within a decade” (Chalmers, 2024; see 
also yArcas, 2022; Shanahan, 2024). People more readily embrace views 
like these after engaging in human-like interactions with a chatbot. 
Whether or not machines have the capacity for conscious experience 
today or in the future has far-reaching implications. Just like animals, 
if machines are conscious, or even only possibly conscious, we are 
morally obligated to include them in our moral sphere. Some may feel 
obligated to prevent machine suffering and protect their rights, which 
may lead to corresponding legislation (Martínez and Winter, 2021; 
Shevlin, 2024). Misconsciousing machines could have significant 
societal repercussions, such as false ethical dilemmas (Figure 5) and 
skewed perceptions of machine-human relationships (Zhang et al., 
2023). This problem could be  exacerbated if instances of these 
machines are considered even more conscious than us; does your 
moral duty lie with your neighbor or with (what is claimed as) your 
hyper-conscious and best friend machine? As AI continues to advance 
and appears to blur the line between the conscious and the unconscious, 
we  need better intellectual tools to clarify the difference between 
humans and machines (Findlay et  al., 2025). Based on our work, 
we propose that the risk lies in ascribing machines with consciousness 
when they are not rather than the contrary.

Does computation feel like something?

The concept of computation and its relationship to consciousness 
has been intensely debated in cognitive science and philosophy of 
mind. Views on computation vary widely; some scholars considering 
it a fundamental property of everything (Wolfram, 2002; Tegmark, 
2015), particularly the mind (Fodor, 1975), while others dismiss it as 
merely an observer relative (Searle, 1980; Sayre, 1986) or a 
non-consequential interpretation of a physical process (Searle, 1990; 
Putnam, 1988). One of the core issues of the computation debate 
pertains to the relations between computation and the substrate 
realizing it (Colombo and Piccinini, 2023). While different substrates 
may compute similarly within a narrow range of conditions, their 
physical states can dramatically vary when examined over a broader 
range. For instance, temperature, pH, or pressure changes would affect 
biological substrates differently than a computer realizing the same 
computation. It is the substrate that determines the full range of the 
functional states–be it a human brain tissue or a microprocessor–rather 
than the computation we ascribe to it. Therefore, one may consider an 
alternative view that natural counterfactuals, rather than computational 

ones, are fundamental in determining our conscious experiences (see 
Deacon, 2013; Maudlin, 1989). Natural counterfactuals are embodied 
in the biological brain’s composition, structure, and dynamics and, 
therefore, cannot be  erased without altering the brain’s physical 
structure and/or dynamics.

In conclusion, neural computation, which maps abstract 
algorithms to the brain’s dynamics, is valuable. When used carefully, 
it can be a powerful means of studying the brain, which is still the 
most sophisticated computer known to us. We  better roll up our 
sleeves and explore the rich dynamics of the biological brain—the only 
known substrate capable of consciously experiencing the world.
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