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Emotion recognition based on 
multimodal physiological 
electrical signals
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Faculty of Information Technology, Beijing University of Technology, Beijing, China

With the increasing severity of mental health problems, the application of emotion 
recognition techniques in mental health diagnosis and intervention has gradually 
received widespread attention. Accurate classification of emotional states is important 
for individual mental health management. This study proposes a multimodal emotion 
recognition method based on the fusion of electroencephalography (EEG) and 
electrocardiography (ECG) signals, aiming at the accurate classification of emotional 
states, especially for the three dimensions of emotions (potency, arousal, and sense 
of dominance). To this end, a composite neural network model (Att-1DCNN-GRU) 
is designed in this paper, which combines a one-dimensional convolutional neural 
network with an attention mechanism and gated recurrent units, and improves the 
emotion recognition by extracting the time-domain, frequency-domain, and nonlinear 
features of the EEG and ECG signals, and by employing a Random Forest approach to 
feature filtering, so as to improve the emotion recognition accuracy and robustness. 
The proposed model is validated on the DREAMER dataset, and the results show that 
the model achieves the three dimensions of emotion: value, arousal and dominance, 
with a high classification accuracy, especially on the ‘value’ dimension, with an accuracy 
of 95.95%. The fusion model significantly improves the recognition effect compared 
with the traditional emotion recognition methods using only EEG or ECG signals. In 
addition, to further validate the generalisation ability of the model, this study was also 
validated on the DEAP dataset, and the results showed that the model also performed 
well in terms of cross-dataset adaptation. Through a series of comparison and ablation 
experiments, this study demonstrates the advantages of multimodal signal fusion 
in emotion recognition and shows the great potential of deep learning methods in 
processing complex physiological signals. The experimental results show that the Att-
1DCNN-GRU model exhibits strong capabilities in emotion recognition tasks, provides 
valuable technical support for emotion computing and mental health management, 
and has broad application prospects.
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1 Introduction

In recent years, with the acceleration of the pace of life and the increase in social pressure, 
emotional problems have increasingly become an important factor affecting the physical and 
mental health of individuals and have had a far-reaching impact on economic and social 
development. Emotional state not only directly affects the mental health of individuals, but is 
also closely related to a variety of physiological diseases. The emotional dimensional model 
(VAD: Valence, Arousal, Dominance) provides a systematic framework for describing and 
analysing emotional states (Russell, 1980), so accurately identifying and classifying these 
emotional dimensions is of great theoretical and practical significance.

Most of the traditional emotion recognition methods rely on facial expressions, speech and 
text analysis, however, these methods are often affected by the individual’s subjective perception 
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and environmental factors, making it difficult to accurately reflect the 
individual’s true emotional state. In contrast, physiological signals, 
especially electroencephalography (EEG) and electrocardiography 
(ECG), provide a more objective, real-time means of monitoring 
emotions. Over the past decade, a large number of neuropsychological 
studies have reported correlations between EEG signals and mood. There 
are two main regions of the brain associated with emotional activity: the 
amygdala (located in the anterior part of the temporal lobe, near the 
hippocampus) and the prefrontal cortex (covering part of the frontal lobe) 
(Alarcao and Fonseca, 2017). Moreover, with the continuous advancement 
of wearable device technology, it has become possible to acquire and 
analyse EEG and ECG signals in real time, providing new solutions for 
monitoring and managing emotional states. Therefore, this study 
proposes the fusion of EEG and ECG signals, combined with deep 
learning technology, to achieve accurate classification of the three 
dimensions of valence, arousal, and dominance in the emotion dimension 
model VAD, which has important theoretical value and 
application significance.

In recent years, emotion recognition methods based on 
physiological signals have been widely studied, and many scholars 
have proposed different emotion recognition models. For example, 
Picard et al. (2001) used the KNN method to classify eight emotions 
and achieved 81% classification accuracy. Huang et  al. (2012) 
proposed a feature extraction algorithm called asymmetric spatial 
pattern (ASP), which solves the problems of high dimensionality and 
high noise of EEG signals, and achieves good results in emotional 
arousal and intensity detection with accuracies of 60% (VALUE) and 
80% (AROUSAL). Atkinson and Campos (2016) combined a mutual 
information feature selection method and an SVM classifier to extend 
the emotion types and improve the accuracy of emotion classification 
of EEG signals, and the experimental results showed that the accuracy 
of this method was about 73% on the standard EEG dataset. In 
addition, Thammasan et al. (2016) investigated the application of deep 
confidence networks (DBNs) in music emotion recognition, 
combining fractal dimension (FD), power spectral density (PSD) and 
discrete wavelet transform (DWT) features for emotion classification, 
and experimental results showed that the accuracy of this method in 
emotion arousal classification reached 88.24 and 82.59%. In terms of 
ECG signals, Agrafioti et al. (2011) proposed an empirical modal 
decomposition (EMD)-based method to differentiate between 
different emotional modes through instantaneous frequency (Hilbert-
Huang transform) and local oscillatory features, achieving a 
classification accuracy of 89%. Sarkar and Etemad (2020), on the other 
hand, proposed a self-supervised deepmulti-task learning framework 
to learn ECG representations through signal transformation 
recognition networks and applied it to emotion classification, which 
achieved more than 85% classification accuracy on multiple datasets, 
creating a new research advancement.

However, despite the good results of single EEG and ECG signals 
in emotion recognition, existing studies still face some limitations 
(Saganowski et  al., 2022). Firstly, single signals often do not fully 
reflect emotional states; EEG has stronger signals in some emotional 
states, while ECG performs more significantly in other emotional 
states. Second, most of the existing methods are limited to single-
modal signal analysis, neglecting the complementarity between 
multimodal signals. Finally, even with deep learning methods, how to 
effectively fuse EEG and ECG signals to improve classification 
accuracy and robustness is still an urgent problem.

To address the above challenges, this paper proposes an emotion 
recognition method based on the fusion of EEG and ECG signals, 
aiming to overcome the limitations in the existing methods through 
multimodal signal fusion and deep learning techniques. Compared 
with traditional emotion recognition methods, this paper innovatively 
combines deep learning with traditional signal processing techniques 
to advance the theoretical framework of emotion recognition by 
adaptively selecting features and fusing multimodal signals. This 
fusion approach enables emotion recognition not only to accurately 
capture subtle changes in emotions, but also to improve the robustness 
and adaptability of the system.

In recent years, many scholars have also adopted hybrid CNN and 
LSTM networks for EEG-based emotion recognition, and such 
methods improve the accuracy of emotion classification by extracting 
spatio-temporal features and capturing long time-dependent 
information (Chakravarthi et  al., 2022). While in this paper, 
we combine CNN and GRU and introduce an attention mechanism 
(Att-1DCNN-GRU), which enables the model to automatically focus 
on the importance of different signals when processing multimodal 
signals, thus further optimising the emotion recognition effect. In 
addition, this paper validates the applicability of the model by 
validating it in different experimental environments and comparing it 
with data from other domains to ensure the consistency and broad 
applicability of the research results across multiple domains. Through 
interdisciplinary validation, we are able to ensure that the proposed 
method has strong generalisation capabilities in multiple application 
scenarios of emotion recognition. Finally, the experimental results 
show that the method in this paper achieves significant classification 
accuracy and better robustness compared to existing single-signal or 
traditional fusion methods in the classification task of the three 
emotion dimensions (valence, arousal, and dominance) in the 
emotion dimensionality model VAD, which validates the effectiveness 
of the proposed method.

2 Materials and methods

2.1 DREAMER dataset

The DREAMER dataset (Katsigiannis and Ramzan, 2017) is a 
multimodal physiological signal dataset specifically designed for 
emotion recognition research, aiming to identify and classify 
emotional states by analysing EEG and ECG signals. The 
DREAMER dataset stores EEG and ECG data before and after the 
23 participants watched 18 movie clips, and scores of the three 
dimensions of Valence, Arousal and Dominance, respectively. 
Valence, Arousal, and Dominance.

The EEG data were collected by 14 electrodes covering different 
regions of the brain at a sampling rate of 128 Hz, which can reveal the 
electrical activity patterns of the brain in different emotional states; 
the ECG data were collected by a 2-channel ECG sensor at a sampling 
rate of 256 Hz, which provided detailed information on cardiac 
activity and helped to identify the physiological changes triggered by 
emotion. Participants rated their emotional experience using self-
report after viewing each video. The rating dimensions included 
Valence, Arousal, and Dominance, each with a rating range of 1 to 5. 
These ratings provided an important reference for the training and 
validation of emotion recognition models, helping researchers to 
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understand the relationship between physiological signals and 
subjective emotional experiences.

2.2 Signal preprocessing

In the emotion recognition task, the preprocessing of 
electroencephalogram (EEG) and electrocardiogram (ECG) signals is 
a key step in signal analysis, whose main purpose is to eliminate noise 
and pseudo-signals so as to improve the quality of the signals, and 
provide clearer and more reliable data for subsequent feature 
extraction and classification. Aiming at the characteristics of EEG and 
ECG signals, this paper adopts a variety of signal processing 
techniques to ensure the effectiveness and purity of the signals.

First, in order to effectively remove the industrial frequency 
interference, we use a 50 Hz trap filter. This filter is capable of accurate 
interference removal for the grid frequency (50 Hz), eliminating noise 
introduced by power equipment and the grid. By filtering out the 
50 Hz frequency signal, the trap filter makes the low and high 
frequency portions of the EEG and ECG signals unaffected by 
industrial frequency interference.

Next, to further remove the low-frequency drift and high-
frequency noise, a fourth-order Butterworth bandpass filter in the 
range of 0.5 to 45 Hz was used. The Butterworth filter is an important 
tool in signal processing because of its flat frequency response 
characteristics and distortion-free phase response. Its design ensures 
that the main frequency components of the EEG and ECG signals are 
preserved, while effectively filtering out low-frequency noise (e.g., 
myoelectric interference) and high-frequency noise (e.g., interference 
from electrical equipment). The bandpass filters are not only suitable 
for EEG and ECG signals, but are also widely used in audio processing, 
telecommunication and biomedical signal analysis due to their high 
fidelity and noise removal efficiency. The square function form of the 
amplitude of the Butterworth filter (Butterworth, 1930) is shown in 
Equation 1.
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In order to remove the pseudo-signals introduced in the EEG 
signals due to eye movements (EOG), electromyography (EMG), etc., 
we used the technique of independent component analysis (ICA), 
which is a blind source separation technique that is widely used in the 
denoising of EEG signals (Hyvärinen and Oja, 2000). The basic 
principle of ICA is to break down the mixed signals into a number of 
statistically independent components, which represent the sources of 
the signals, through the demixing process. By applying ICA, we can 
extract pseudo-signals such as eye movements and EMG from EEG 
signals and retain the effective EEG activity components through 
denoising process. In practice, ICA can effectively separate the 
pseudo-signals that are not related to brain activities, thus improving 
the purity of EEG signals.

After signal denoising, we  slice the EEG and ECG signals to 
increase the number of samples and improve model training. 
Specifically, we  slice each signal in units of 30 s to form multiple 
samples. Each EEG sample contains 3,840 data points (i.e., 30 s of data 

at a sampling rate of 128 Hz), and each ECG sample contains 7,680 
data points (i.e., 30 s of data at a sampling rate of 256 Hz). Through 
the slicing operation, we not only increase the number of samples, but 
also are able to ensure that each signal fragment provides sufficient 
time-domain information for subsequent analyses while maintaining 
the signal time length and feature stability. The signal preprocessing 
flowchart used in this experiment is shown in Figure  1. These 
preprocessing steps ensure the quality of the EEG and ECG signals 
and provide clean signal data for subsequent feature extraction, model 
training and classification. By combining multiple signal processing 
techniques, this paper effectively removes noise and pseudo-signals, 
ensures the high quality of the data, and lays a solid foundation for the 
accuracy of the emotion recognition task.

2.3 Feature extraction and feature selection

In emotion recognition tasks, EEG and ECG signals contain rich 
physiological information that can reflect an individual’s emotional 
state. In order to extract effective emotional features from these 
signals, we perform time-domain, frequency-domain, and nonlinear 
analyses of EEG and ECG signals, respectively, from which we extract 
a variety of features. The time-domain features of EEG signals mainly 
include the maximum, minimum, mean, variance, peak-to-peak, 
kurtosis, and skewness, which effectively reflect the fluctuation of the 
signals and their statistical properties. The frequency domain features 
are then extracted by power spectral density (PSD) analysis, which is 
calculated for different frequency bands (Delta, Theta, Alpha, Beta, 
Gamma) to capture the energy distribution of the signal at different 
frequencies. Nonlinear features are then extracted by Sample Entropy 
(SE) and Detrended Fluctuation Analysis (DFA), which can reveal the 
complexity and nonlinear dynamic behaviour of the signal. These 

FIGURE 1

Preprocessing and denoising workflow for EEG and ECG signals.
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features can provide strong support for emotion recognition models, 
especially in the case of more subtle changes in the emotional state, 
where nonlinear features are particularly useful.

For feature extraction of ECG signals, we first identified R-wave 
locations in the ECG using an R-wave detection algorithm and then 
calculated RR intervals. Based on these RR intervals, heart rate 
variability (HRV) features were further extracted. The time-domain 
features of HRV include mean RR interval, heart rate, SDNN, RMSSD, 
NN50, and pNN50, which reflect the overall variability, short-term 
variability, and the statistical properties of the change between two 
heartbeats of heart rate, respectively. In addition, we analysed the 
short- and long-term variability of HRV by Poincaré plot features 
(SD1, SD2). Frequency domain features were then calculated by power 
spectral analysis, including low frequency (LF), high frequency (HF) 
and their ratio (LF/HF), which provide a quantitative analysis of 
sympathetic and parasympathetic activity. All these features are finally 
converged into a raw feature set containing both EEG and ECG signals.

However, these raw features contain a lot of redundant 
information, which may lead to overfitting during model training and 
increase the computational effort. Therefore, feature selection becomes 
an important step to improve the performance of emotion recognition 
models. In this study, the Random Forest (Random Forest) algorithm 
was used for feature selection. Random Forest is a powerful integrated 
learning method that can effectively reduce overfitting and improve 
the robustness of the model by constructing multiple decision trees 
and combining their results (Ho, 1998). In our experiments, we used 
80 trees to train the Random Forest model, and filtered out the most 
discriminative features for the emotion recognition task by calculating 
the importance score of each feature. Eventually, after feature selection, 
nine most discriminative features were selected, and a detailed list of 
these features is shown in Table 1.

This table shows the change in feature importance scores before 
and after random forest feature selection. In this table, it can be seen 
that after feature selection was performed, the most important 
features for the emotion classification task were selected. By 
calculating the importance score of each feature, we can see that these 
features play a decisive role in emotion recognition. The selected 
features include heart rate, RR interval, power spectral density in 
different frequency bands, sample entropy and DFA, which reflect the 
activity state of the heart and the brain and have strong emotion 
differentiation ability.

During the feature selection experiments, we also optimised the 
parameter settings of the Random Forest model and tried the effects 
of different numbers of decision trees on the effectiveness of feature 
selection. Specifically, we used settings of 50, 80 and 100 trees and 
compared the effects of these settings on model stability, computation 
time and accuracy. The experimental results show that the model 
achieves an optimal balance between feature selection stability and 
computational efficiency when the number of trees is 80. Fewer 
decision trees (e.g., 50) allowed for fast computation but were less 
stable and feature selection was not as effective as 80 trees, while 
increasing the number of trees (e.g., 100) improved stability but also 
significantly increased computation time. Therefore, 80 trees became 
the most suitable choice. Table 2 shows the experimental results for 
different numbers of decision trees.

Through random forest feature selection, we are able to filter out 
the most discriminative features for the emotion recognition task 
from a large number of features, effectively reducing the feature 
dimensionality and improving the computational efficiency and 
performance of the model. The subset of sensitive features after feature 
selection (including 9 HRV features and 56 EEG signal features from 
EEG and ECG signals) provides efficient feature support for the 
subsequent emotion classification task. These selected features will 
be used for further emotion classification tasks in the subsequent 
training of emotion recognition models, leading to more accurate 
emotion state recognition.

With this feature selection method, we not only improved the 
computational efficiency of the model, but also enhanced the 
generalization ability and interpretability of the model. Eventually, the 
filtered feature set, consisting of 5 (number) × 2 (number of 
channels) = 10 (number of features) for ECG signals and 4 
(number) × 14 (number of channels) = 56 (number of features) for 
EEG signals, was saved as a new MAT file, which provided a more 
streamlined and efficient data base for subsequent emotion 
recognition tasks.

2.4 Composite neural network design

2.4.1 Network architecture design
The composite neural network model proposed in this paper aims 

to effectively extract and process temporal features in emotion 
recognition tasks, and its specific design is shown in Figure 2. The 
model combines a one-dimensional convolutional neural network 
(1D CNN), a gated recurrent unit (GRU) and an attention mechanism. 
In the network design, the EEG and ECG signals after time domain, 
frequency domain and nonlinear feature extraction are firstly input, 
and these features are filtered and processed as inputs to the model. 
To extract the local features, the network first uses two convolutional 
layers, each with a number of 256 convolutional kernels and a 
convolutional kernel size of 3. Through these convolutional layers, the 
model is able to capture short-term local features in the input signals. 
In addition, the second convolutional layer is followed by a 
MaxPooling1D layer, an operation that not only effectively reduces the 
feature dimensions, but also prevents overfitting and improves the 
generalisation ability of the model.

After the convolutional layer, the network introduces a gated 
recurrent unit (GRU) layer to capture the temporal dependencies in 
the input signal. GRU, as a recurrent neural network (RNN) variant, 

TABLE 1 Ranking of feature importance before and after random forest 
feature selection.

Rank Feature name Feature 
importance score

1 Mean RR interval 0.121

2 Heart Rate 0.115

3 Very-low-frequency power (VLF) 0.098

4 SD2 0.096

5 Standard Deviation (SDRR) 0.089

6 α-wave power spectral density 0.085

7 γ-wave power spectral density 0.082

8 β-wave power spectral density 0.079

9 DFA 0.077
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is able to handle temporal data better, especially in emotion 
recognition tasks, and is able to learn long time dependencies. The 
output of the GRU layer is the sequential information of each timestep, 
which is further weighted in the subsequent attention mechanism is 
further weighted to highlight important features to improve the 
accuracy of emotion recognition. The attention mechanism, by 
assigning different weights to the features in the GRU output, enables 
the model to focus on those time steps that are more critical for 
emotion classification, thus enhancing the recognition of emotion-
related features.

Next, the network further fuses the features from the GRU layer 
and the attention mechanism through the fully connected layer 
(Dense), and finally outputs the emotion classification results through 
the Softmax activation function. This output layer generates 
probability distributions of the three emotion dimensions (Valence, 
Arousal, and Dominance) for the classification of emotional states.

2.4.2 Selection of optimizer and loss function
Optimizers for neural networks are used to update the weight 

parameters in a neural network to minimise the loss function of the 
neural network. Choosing the right optimizer can speed up training, 

improve the accuracy of the model and prevent overfitting. In this 
paper, 5,000 samples were randomly selected in the DREAMER 
dataset to apply the three current popular classifiers for comparison 
tests, and the Iteration parameters were adjusted according to the 
actual situation, and the specific experimental results are shown in 
Table 3. The results can be seen that Adam optimizer performs the 
best, the highest classification accuracy is 0.96 for the training set and 
0.94 for the test set (epoch = 100). So in this study, Adam is chosen as 
the optimizer of the model, where the learning rate lr is set to 0.001. 
In this paper, the hidden layer of the hybrid network adopts one of the 
most used activation functions at present, i.e., the ReLU activation 
function (Xuejing et al., 2024). Because ReLU has a faster gradient 
drop during training, it can solve the problems of gradient vanishing 
and gradient explosion.

In the study of emotion recognition problems, the categorical_
cros-sentropy function is chosen as the loss function for the three-
classification problem. categorical_crossentropy is one of the 
commonly used loss functions in multi-class classification 
problems, and it will compute the cross-entropy loss, which is used 
to evaluate the difference between the model prediction results and 
the real results, and update the model parameters by back 

TABLE 2 Random forest model parameter settings and experimental results.

Parameterisation Feature selection 
stability

Computation 
time

Number of 
features finally 

selected

Training set 
accuracy

Test set accuracy

50 Instability 3.2 s 9 88.3% 85.6%

80 Stabilise 4.8 s 9 91.2% 88.9%

100 Stabilise 6.3 s 9 91.5% 89.1%

FIGURE 2

Architecture and detailed design of the hybrid neural network model (Att-1DCNN-GRU).
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propagation. The categorical cross entropy function is defined as 
shown in Equation 2.

 1 1
lo ˆ1 g

m m
ji ji

j i
loss y y

m = =
= − ∑∑

 (2)

Where denotes m number of samples, n denotes class, jiy  denotes 
the true probability of class i, and ˆ jiy denotes the predicted probability.

2.4.3 Parameterization
In this paper, the grid search method (Krizhevsky et al., 2017) is used 

to tune and optimise the network parameters and hyperparameters and 
find the optimal combination of a set of parameters to be used as the 
parameters for model training. A 20% sample from the DREAMER 
dataset is randomly selected for testing. First, Iteration and Batchsize were 
set to 20 and 256, respectively. In the experiment, the number of filters 
and neurons was set to a multiple of 2 and the convolution kernel was set 
to 3 for tuning the network parameters, as shown in Table 4. Subsequently, 
after determining the network parameters, the selection of 
hyperparameters was carried out as shown in Table 5.

As shown in Tables 4, 5, the final parameters of the model are: the 
number of filters in both convolutional layers is 256, the size of the 
convolutional kernel is 3, the Epoch is 50, and the Batchsize is 256.

2.5 Model algorithm design

In this paper, the softmax function is used to triple classify the 
output of the model. When dealing with multiclassification problems, 
the softmax activation function is usually used in the output layer to 
transform the output of the neural network into vectors representing 
the probabilities of the different classes. The mathematical expression 
of Softmax is shown in Equation 3.
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Where iX  is the input and ( )iF X  is the output. The numerator 
represents the probability to be  found for each category and the 
denominator is the total probability. As can be seen from the formula, 
the calculated probabilities are in the range [0,1] and all probabilities 
sum to 1.

The algorithm flow of the model for emotion recognition is shown 
in Figure 3:

 1. Extract the EEG and ECG data in the DREAME dataset, as well as 
the participants’ scores for the three items of VALENCE, 
AROUSAL, and DOMINANCE (because this paper designs a 
three-classification model, and the scores for these three items in 
the original dataset are 1 ~ 5, so in this paper, we will set those with 
scores of 1 and 2 to 0, those with scores of 3 to 1, and those with 
scores of 4 and 5 to 2), constituting the original data set.

 2. Preprocess the EEG data and ECG data.
 3. Extract the time-domain, frequency-domain, and nonlinear 

features of EEG and ECG and perform feature fusion, and use 
the method of random forest for feature selection.

 4. The dataset is divided according to the ratio of 80% of the 
training set and 20% of the test set, and 10% of the training set 
is taken as the validation set, which is used to evaluate the 
performance of the model.

 5. Train the hybrid network model with the training set, inversely 
update the weights and biases with the validation set, and save 
the trained model.

 6. The test set is used to evaluate the effectiveness and accuracy of 
the algorithm. Classification for emotion recognition based on 
real labels and predicted labels.

3 Results

3.1 Evaluation indicators

The evaluation indicators selected for this paper are as follows:

 (1) Accuracy, defined as the ratio of the number of correctly 
classified samples to the total number of samples, is calculated 
using the formula in Equation 4.

TABLE 3 Classification accuracy of different optimisers under different 
iteration.

Optimiser Iteration = 20 Iteration = 50

Training 
set 

accuracy

Test set 
accuracy

Training 
set 

accuracy

Test set 
accuracy

Adam 0.85 0.87 0.96 0.94

Adagrad 0.71 0.72 0.83 0.81

RMSprop 0.81 0.76 0.90 0.88

The bold values in the table indicate the optimiser used in this paper and its corresponding 
accuracy.

TABLE 4 Tuning of network parameters for the Att-1DCNN-GRU model.

Model Conv_1 Conv_1 Kernel GRU Accuracy

M1 128 128 3 128 0.939

M2 128 128 3 256 0.946

M3 128 256 3 128 0.944

M4 128 256 3 256 0.952

M5 256 128 3 128 0.942

M6 256 128 3 256 0.949

M7 256 256 3 128 0.941

M8 256 256 3 256 0.953

The bold values shown in the table represent the parameter settings used in the model 
presented in this paper.

TABLE 5 Hyperparameter tuning and optimal settings for the Att-
1DCNN-GRU model.

Model Epoch Batchsize Accuracy

M1 50 128 0.871

M2 50 256 0.966

M3 80 128 0.911

M4 80 256 0.954

M5 100 128 0.913

M6 100 256 0.947

The bold values shown in the table represent the parameter settings used in the model 
presented in this paper.
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Accuracy

TP FP TN FN
+

=
+ + +  (4)

 (2) The precision rate, which is the ratio of the number of correctly 
categorised positive samples to the number of samples categorised 
as positive, measures the rate of checking accuracy, see Equation 5.

 

TP
Precision

TP FP
=

+  (5)

 (3) Recall, which is the ratio of the number of correctly 
categorised positive samples to the number of actual 
positive samples, is measured as a check-perfect rate, see 
Equation 6.

 

TP
Recall

TP FN
=

+  (6)

 (4) F1-score, a concept based on Precision and Recall, for which 
see Equation 7.

 
1 2 Precision RecallF score

Precision Recall
∗

− = ∗
+  

(7)

 (5) Confusion matrix. The confusion matrix is also an effective 
model evaluation metric that provides a more intuitive 
visualisation of the classification accuracy in a data set. 
Confusion matrices are visualised in terms of probability values 
and sample sizes.

3.2 Experimental results

To ensure that the division between the training set, validation set 
and test set does not introduce any bias, this paper adopts a random 
segmentation method and pays special attention to the representativeness 
and balance of the dataset. In the specific operation, we  randomly 
selected 80% of the samples from the DREAMER dataset as the training 
set, and the remaining 20% was used for the test set. Meanwhile, in order 
to avoid possible overfitting phenomenon, this paper also adopts the 
cross-validation technique in the training process. By dividing different 
data subsets several times and validating them, the distribution 
consistency of the training and test sets is ensured, and the impact of data 
bias on model performance is reduced. In addition, this paper also 
ensures that the proportion of emotional categories in each subset is as 
balanced as possible, thus ensuring that the distribution of emotional 
states in each subset is representative of the characteristics of the overall 
data. In order to further validate the validity and generalisation ability of 
the model, we plan to use more datasets for validation and testing in 
subsequent studies to enhance the credibility of the findings and to 
identify potential problems and improvement points.

The three graphs (A), (B), and (C) in Figure 4 show the iterative 
curves of the training process of the Att-1DCNN-GRU model proposed 
in this paper in the three dimensions of VALENCE, AROUSAL, and 
DOMINANCE, respectively, where the green dashed line represents the 
accuracy of the training data, the green solid line represents the accuracy 
of the validation data, and the red dashed line represents the loss of the 
training data. The red solid line represents the loss of the validation data. 
The training process of the model on the dataset are well behaved, 
convergence is fast, and no overfitting occurs. It is proved that the 
method proposed in this study can not only effectively perform emotion 
recognition, but also has high classification accuracy.

The three graphs (A), (B), and (C) in Figure 5 show the classification 
results of the model on the test set for the three scores of VALENCE, 
AROUSAL, and DOMINANCE, respectively, through the confusion 
matrix. As can be seen from Figure 5, the model has the best classification 
effect on VALENCE, which can reach 95.95%; followed by the 
classification effect on AROUSAL, which can reach 94.93%; and lastly, 
the classification effect on DOMINANCE, which can also reach 94.91%.

3.3 Comparative results and analysis of 
ablation experiments

In order to further evaluate the performance of the 
Att-1DCNN-GRU model proposed in this paper, this study 
conducted a multi-group comparison experiment on the emotion 
dimension VALENCE in the DREAMER dataset. The comparison 
models used include 1DCNN, GRU, 1DCNN-GRU, 

FIGURE 3

Overall flowchart of the Att-1DCNN-GRU algorithm for emotion 
recognition.
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1DCNN-Attention, GRU-Attention, and Att-1DCNN-GRU (the 
model proposed in this paper). The experimental results are shown 
in Table 6, indicating that the improved hybrid neural network 
model outperforms the other compared models in terms of 
prediction. The accuracy of the deep learning emotion recognition 
method is significantly higher than that of the traditional neural 
network algorithm, indicating that deep learning can adaptively 
extract valuable information from raw physiological data.

In addition, it can be concluded from the ablation experiments 
that the improved hybrid model proposed in this paper has fast 
convergence, high accuracy, small loss and moderate training time, 
which proves that the model not only possesses high performance, but 
also provides theoretical support for the practical application of 
emotion recognition research. Especially in the training process, the 
model converges quickly and there is no overfitting phenomenon, 
which verifies the effectiveness of the method in the emotion 
recognition task.

In addition to the comparisons with other models, this study 
further conducted several additional comparison experiments to 

explore the impact of different data sources and datasets on model 
performance. Firstly, we conducted separate comparison experiments 
for the case of using EEG data alone and ECG data alone. The 
experimental results show that the accuracy of the model when using 
EEG data alone is significantly lower than the case of fusing EEG and 
ECG data, especially in the accuracy of recognising the emotion 
dimension. In contrast, although the use of ECG data alone achieved 
some success in some of the emotion dimensions, the recognition 
effect was far inferior to the fusion of the two due to the limitation of 
the ECG signal information.

To further validate the generality of the model, this study also 
tested it on the DEAP dataset, which is a typical emotion 
recognition dataset containing multimodal signals such as EEG 
and ECG. The experimental results show that the 
Att-1DCNN-GRU model achieves a classification accuracy of 
92.5% on the DEAP dataset, which is a significant advantage over 
other traditional models. The results further demonstrate the 
generalisation ability of the model, showing that it not only 
achieves excellent results on the DREAMER dataset, but also 

FIGURE 4

Training and validation accuracy and loss curves: (A) VALENCE dimension (B) AROUSAL dimension (C) DOMINANCE dimension.
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adapts to other emotion recognition tasks, demonstrating 
strong adaptability.

In addition to this, we  also compared with the latest model 
MS-MPHAN (Xuejing et al., 2024) published in 2024, which employs 

a multi-scale multi-channel hybrid attention mechanism and achieves 
an accuracy of 93.75% on the DEAP dataset. Although the accuracy 
of our model is slightly lower than the latest model by about 1%, 
we believe that by further optimising the feature extraction method, 

FIGURE 5

Confusion matrix for emotion classification on the test set: (A) VALENCE dimension (B) AROUSAL dimension (C) DOMINANCE dimension.

TABLE 6 Results of ablation experiments.

Model Accuracy (VALENCE) Accuracy (AROUSAL) Accuracy (DOMINANCE) Overall Accuracy

1DCNN 88.5% 87.3% 85.8% 87.2%

GRU 85.4% 84.6% 83.2% 84.4%

1DCNN-GRU 91.2% 90.5% 89.4% 90.4%

1DCNN-Attention 92.1% 91.7% 90.3% 91.3%

GRU-Attention 90.7% 89.4% 88.1% 89.4%

Att-1DCNN-GRU 95.95% 94.93% 94.91% 95.26%

EEG-only 87.2% 86.1% 84.9% 86.1%

ECG-only 83.6% 81.4% 80.7% 81.9%

DEAP Dataset 92.5% 91.3% 90.4% 92.5%

The bold values shown in the table represent the models presented in this paper and their corresponding accuracy rates.
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enhancing the fusion effect of spatio-temporal features, and adopting 
more advanced model architectures (e.g., self-supervised learning, 
graphical convolutional networks, etc.), we can overcome the current 
gap and improve the accuracy of the model to achieve a better 
performance in our future work.

4 Conclusion and future work

In this paper, we propose an emotion recognition method based 
on multimodal signal fusion, combining electroencephalogram (EEG) 
and electrocardiogram (ECG) signals, and by designing an improved 
composite neural network model Att-1DCNN-GRU, we successfully 
achieve accurate classification of the three dimensions of emotion 
(affect, arousal, and dominance). Through experimental verification, 
the model performs well in the emotion recognition task, especially 
the test results on the DEAP dataset, which proves that the fusion of 
EEG and ECG signals can effectively improve the accuracy and 
robustness of emotion recognition.

In the experimental process, the EEG and ECG signals were first 
rigorously pre-processed, including denoising, band-pass filtering, 
and other steps to ensure the purity and effectiveness of the signals. In 
terms of feature extraction, we  adopted time-domain, frequency-
domain and nonlinear methods to extract rich physiological features 
from EEG and ECG signals, and the most representative features were 
screened by the random forest method. In this way, the model is able 
to fully exploit the useful information in the signals and ensure a high 
classification performance.

The experimental results show that the Att-1DCNN-GRU model 
achieves a high level of classification accuracy in all three dimensions of 
emotion (VALENCE, AROUSAL, and DOMINANCE), with VALENCE 
having the highest classification accuracy of 95.95%. The fusion strategy 
of deep learning models demonstrates stronger classification ability and 
higher accuracy compared to traditional methods. In the comparison 
experiments, we also observed relatively low classification accuracy when 
using either EEG data or ECG data alone, further demonstrating the 
complementary nature of EEG and ECG signals and the advantages of 
multimodal fusion in emotion recognition.

In addition to the comparison of a single data source, we  also 
included the validation of the DEAP dataset in our experiments to 
further extend the generalisation ability of the model. The experimental 
results show that the model performs with good stability and robustness 
on different datasets, providing strong evidence for the cross-dataset 
adaptability of emotion recognition techniques.

Although this study has achieved significant results, there are still 
some limitations that need to be addressed in future research. Firstly, 
despite the use of multimodal data fusion, the model is still sensitive 
to individual differences and the diversity of emotional states, and the 
adaptability of the model can be further improved in the future by 
introducing more personalised features and adaptive mechanisms. 
Second, the existing experiments mainly focus on the DEAP dataset 
and the DREAMER dataset, although these datasets are already 
representative, in order to enhance the credibility of the model, future 
research should consider validating the model using more publicly 
available datasets (e.g., AMIGOS, etc.) in order to test the model’s 
performance in different contexts.

In addition, this paper has made preliminary explorations on 
feature selection and model design, but the physiological 
significance of various types of features in the EEG and ECG 
signals and the specific relationship with the emotional state have 
not yet been explored in depth. Future studies can conduct more 
detailed studies on feature selection and fusion mechanisms 
through finer feature analysis, combined with psychological and 
physiological theories, in order to improve the interpretive and 
application value of the model.

In terms of model optimisation, more complex deep learning 
structures, such as dual-channel networks and temporal–spatial 
feature fusion networks, can be further explored in the future to 
improve the model’s processing capability on multimodal data. In 
addition, further optimisation of the attention mechanism and 
hierarchical structure design can also bring more flexibility and 
generalisation ability to the model.

Overall, this study provides a new idea and methodology in 
the field of emotion recognition, and makes significant progress 
in emotion recognition accuracy and robustness through 
multimodal signal fusion and innovative design of deep learning 
models. In the future, with the popularity of wearable devices and 
the increasing demand for mental health, emotion recognition 
technology is expected to become an important auxiliary 
diagnostic tool to provide personalised emotion calculation and 
mental health management solutions for individuals.
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