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Music, a universal element in human societies, possesses a profound ability

to evoke emotions and influence mood. This systematic review explores the

utilization of music to allow self-control of brain activity and its implications

in clinical neuroscience. Focusing on music-based neurofeedback studies, it

explores methodological aspects and findings to propose future directions.

Three key questions are addressed: the rationale behind using music as a

stimulus, its integration into the feedback loop, and the outcomes of such

interventions. While studies emphasize the emotional link between music and

brain activity, mechanistic explanations are lacking. Additionally, there is no

consensus on the imaging or behavioral measures of neurofeedback success.

The review suggests considering whole-brain neural correlates of music stimuli

and their interaction with target brain networks and reward mechanisms when

designingmusic-neurofeedback studies. Ultimately, this review aims to serve as a

valuable resource for researchers, facilitating a deeper understanding of music’s

role in neurofeedback and guiding future investigations.
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1 Introduction

Neurofeedback (NF) is an advanced technique that facilitates the learning of self-

regulation of brain activity, with promising potential for therapeutic applications (Sitaram

et al., 2017; Direito et al., 2021a; Young et al., 2021). In each session, the NF system acts

as a brain-computer interface (BCI) where real-time feedback on one’s neuronal function

is provided, often in the form of a visual or an auditory interface, and interpreted by the

user. Throughout the training, the participant’s goal is to learn to voluntarily control the

targeted brain function, usually by explicitly applying certain mental strategies (Thibault

et al., 2016). The goal of this procedure is to lead to positive functional changes within

brain processes or networks underlying motor, cognitive, emotional, or other processes.

Several neuroimaging techniques can be used in an NF loop, namely

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI).

The analysis of brain activation in real-time was made possible by recent advances in

fMRI acquisition and processing software (Christopher deCharms, 2008; Sorger and

Goebel, 2020; Koush et al., 2017). In the case of real-time fMRI neurofeedback, one can
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define one or more brain regions of interest and calculate a measure

of activation or connectivity to give back to the participant. The

NF loop is closed when the participant interprets this information

and acts accordingly, adjusting or persisting on their current

neuromodulation mental strategy (Figure 1).

The search for the best, or more efficient, methodology

concerning this technique is thriving, with researchers aiming

to make it usable in real-world scenarios, including therapeutic

settings. One of the factors that preclude the wide use of NF

interventions is the relatively high ratio of non-responders—

NF success rates vary considerably across studies, and some

participants seem to never achieve modulation of their own brain

activity (Kadosh and Staunton, 2019).

The task of transmitting the neuronal information as feedback

to the participant efficiently is not trivial. The type of feedback

information being transmitted is highly relevant (Ivanov and Chau,

2024; Pereira et al., 2023), as is the interface itself, i.e., how the

feedback is being presented. Many interfaces have been explored,

with visual interfaces being the most widely used (Krause et al.,

2017). The classic thermometer, which changes in temperature

depending on the activity in a specific region, is widely used

mainly due to its simplicity of interpretation (Travassos et al.,

2020; Pereira et al., 2019, 2023). Depending on the neurofeedback

objective, interfaces that provide emotional content have also

been validated: by conveying facial expressions of an avatar as in

Direito et al. (2019), by auditory vocalizations with positive or

negative associations (Direito et al., 2021b), or as in Cohen et al.

(2016) where a complex multi-modal 3D scenario was created and

feedback was translated by the unrest level of a virtual waiting room

(in which virtual characters becomemore or less impatient). As was

recently demonstrated (Kadosh and Staunton, 2019), psychological

variables such as motivation or mood correlate with the success of

an NF intervention. As such, the immersiveness of the NF interface

FIGURE 1

Schematic representation of the neurofeedback loop. The

participant’s brain activity is recorded, processed, translated via an

interface, and fed back to the participant, who interprets this

information and acts accordingly. Music could be included in one or

more steps of this loop.

is critical. It was postulated that for neuromodulation to be effective

in clinical settings, it is important to set a unifying framework that

also addresses the interface—the process relevance of the feedback

may contribute to the success of regulation and the outcomes of the

procedure as a whole (Lubianiker et al., 2019).

Music is a universal, emotion-provoking stimulus. Listening to

music involves tracking sound events over time, and consistently

engages a multitude of brain systems, including those related to

hearing (Koelsch et al., 2018), movement (Levitin et al., 2018),

memory (Schulze and Koelsch, 2012), language (Peretz et al., 2015),

and affect (Koelsch, 2018). Concerning the latter, studies uncovered

that music-induced emotional experiences are associated with the

robust engagement of the limbic and reward systems (Gold et al.,

2019; Koelsch, 2020; Mas-Herrero et al., 2021). This is because

music can elicit strong emotions among listeners (Scherer, 2004;

Schubert, 2013; Fuentes-Sánchez et al., 2021; Sammler et al., 2007),

ranging from basic emotions such as happiness and sadness or

even more complex ones such as tenderness or grief—it creates

an emotional echo in the listener (Davies, 2011). As a strategy

to shift from prior emotions or for pursuing different scenarios

that elicit new emotions, music can act as a powerful tool for

emotion regulation (Cook et al., 2019). Indeed, numerous studies

have shown that one of the major reasons for individuals to listen to

music is for emotion and arousal regulation (Lonsdale and North,

2011; Randall and Rickard, 2017). In addition, there is considerable

evidence for a link between music listening/training and brain

plasticity, which further supports the potential interest in using it

for neurofeedback (Vik et al., 2018; Blum et al., 2017). In Figure 1,

we present a schematic representation of the neurofeedback loop,

highlighting some examples of how music could be included in

the loop.

Previous studies have demonstrated that music activates

multiple brain areas, including the auditory cortex, amygdala, and

reward-related structures (Koelsch, 2014; Pando-Naude et al., 2021;

Zatorre et al., 2007; Gurevitch et al., 2024). Over the years, studies

and theoretical frameworks have proposed numerous psychological

mechanisms through which music gains its emotional impact,

highlighting along different attributes of the music or the

musical experience that mediate them (Juslin and Västfjäll, 2008).

One prominent theoretical framework suggests that the brain

mechanisms underpinning music-related reward are associated

with humans’ ability to recognize patterns and predict events

based on these temporal patterns, as music proficiently exploits

our expectations by manipulating melody, rhythm, and more. This

predictive process, active during music listening, engages pleasure-

related neural networks and triggers the release of dopamine in

the reward centers of the brain (Foster Vander Elst et al., 2021;

Zatorre, 2024; Salimpoor et al., 2015; Shany et al., 2019). Both the

prediction error (predictions about the music itself, e.g. the next

chord) and the reward prediction error (the difference between

expected and actual outcomes) (Dewiputri et al., 2021) play a role

in the rewarding potential of music. Importantly, music represents

a highly individual framework, and the musical features that

primarily interact with each individual may vary due to cultural and

personal context.

Ros et al. (2020) categorized the several mechanisms that

drive the effects of NF interventions. Neurofeedback-specific

mechanisms are related to training a target neurophysiological

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1515377
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sayal et al. 10.3389/fnins.2025.1515377

FIGURE 2

Schematic representation of the review plan. We highlight our three main questions: the motivation for using music in the NF loop, the

methodological solutions implemented, and the main findings of the studies.

variable, while non-specific ones are dependent on the

neurofeedback context, but independent of the act of controlling

a particular brain signal. General non-specific mechanisms

include the common benefits of cognitive training (as well as

psychosocial influences, such as placebo responding). There are

also repetition-related mechanisms (e.g. test-retest improvement),

and natural ones such as spontaneous remission and cognitive

development. All of these may interact to generate a greater or

lesser overall effect, which has to be understood in the context of

control groups and conditions, crucial for assessing the efficacy

and specificity of neurofeedback interfaces. These are important

to discriminate the effects of each of the above-mentioned

mechanisms. Currently, there is no consensus as to which control

group and/or condition is best, and the answer depends on what

aspects of the neurofeedback-training design one is trying to

control for (Sorger et al., 2019; Lubianiker et al., 2019).

Here, we review studies that, by acquiring neuronal data in real-

time, used music in the context of a neurofeedback intervention, by

asking three main questions (Figure 2). The first question focuses

on identifying the primary motivations for using music and any

specific hypotheses related to music’s effects. The second question

examines how music is used in the neurofeedback loop, seeking to

identify the different paradigms and stages for incorporating music

into the loop, such as playing music before, during, or after the task.

This analysis could shed light on the optimal ways to use music to

elicit specific effects. Finally, the third question looks at the primary

outcomes of these studies, aiming to explore the main findings

related to the effects of music and its underlying neural correlates.

In the end, we discuss possible future directions regarding the use

of a musical interface and contribute to the debate regarding music

as a valid option in one or more steps of the neurofeedback loop.

2 Methods and materials

The literature search presented here follows the guidelines

defined in Preferred Reporting Items for Systematic Reviews and

Meta-Analysis (PRISMA) (Moher et al., 2009; Page et al., 2021;

Haddaway et al., 2022) and was not registered. According to

PRISMA, the review protocol includes four stages: identification,

screening, eligibility, and inclusion. The search flowchart is

displayed in Figure 3 and the PRISMA checklist can be found in

Supplementary material.

Statistical analyses and plots were performed using Python. The

data was analyzed using descriptive statistics, and the results are

presented in the following section.

2.1 Identification

The search was performed on Pubmed and bioRxiv with the

keywords “music” and “neurofeedback” or “BCI,” finding 103

papers and 112 preprints published from January 2001 up to

September 2024. The last search update was made on October 7th,

2024. Additionally, the references of the papers that were selected

for full-text eligibility assessment were screened to retrieve further

relevant publications.

2.2 Screening

The title, objective, neuroimaging technique, and eligibility

verdict of the identified articles were recorded on a spreadsheet by

AS. Published papers in English were initially filtered by reading

the abstract to identify which presented original data, excluding

reviews, editorial notes, and conference proceedings, and which

implemented a neurofeedback experiment (excluding, for instance,

references to neurofeedback in future work).

2.3 Eligibility

The following steps were performed by two independent

reviewers (AS and BD), each considering half of the records.
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FIGURE 3

Flowchart of study inclusion according to the PRISMA guidelines.

The decision was based on the input of the two reviewers, while

any discrepancies in judgments of risk of bias or justifications

for judgments were resolved by discussion to reach a consensus

between the two reviewers. A full-text analysis excluded papers that

measured only behavioral ratings or that did not include music in

the neurofeedback loop. Studies that provided auditory feedback of

nonmusical sounds (e.g., sea waves, applause) were also excluded.

After this, the references of the selected papers were checked,

adding three papers to the list.

2.4 Inclusion

The final selection includes 15 studies that fulfill all the

requirements (Supplementary Table S1). For these, we extracted

the following fields—Title, Authors, Year, Music-specific

hypothesis/motivation, Paradigm and music characteristics

explored, Changes in NF target region/network and neural

correlates of music, Main objective, Neuroimaging technique,

Methods summary, Results summary, Main conclusion, Total

number of subjects, Music used, Music features, Number

of NF sessions, Control groups/conditions, Number of EEG

channels/ROIs, Location of music in the loop, Control group

type, Music-NF impact, Number of sessions with active feedback,

Number of participants in the active group.

3 Results

The results are organized according to the three research

questions: the first question relates to the motivation for using

music in the NF loop, the second addresses the methodological

solutions implemented until now in music-based NF experiments,

and the last summarizes the main findings of the studies

considered. The table with the extracted fields from all studies

can be found in Supplementary material, while we summarize

graphically four of these fields in Figure 4.

3.1 Motivation for using music in the NF
loop

The main motivation for using music in the context of

neurofeedback is explicitly referred to by six of the studies analyzed

here: its ability to evoke emotions in the listener can be explored

for emotion regulation (Ehrlich et al., 2019; Pino, 2022; Fedotchev,

2018; Ramirez et al., 2015; Pino and La Ragione, 2016; Daly et al.,

2016). However, it is unclear if there are specific hypotheses for

the mechanism, brain structures, or networks involved that allow

music to act on emotion regulation, particularly neurofeedback.

We found clear associations between music and the study

objectives. In Takabatake et al. (2021), the objective was to use

classical music with different degrees of superimposed white noise

to modulate the power of a specific EEG frequency band (in this

case, the alpha band as measured in frontal areas) to the point

at which some cognitive improvement (namely in a short-term

memory test) is achieved. The authors linked the use of music in

this NF context with previous evidence from alpha power training

methodologies. In a proof-of-concept clinical study (Keller and

Garbacenkaite, 2015), the authors mention that for patients with

unresponsive awareness syndrome (UWS, a consequence of severe

brain injuries), the awareness in the auditory domain was greater

than in other domains, inviting the use of auditory stimulation
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FIGURE 4

Overview of the distribution of the studies according to the imaging technique, how music was used in the feedback loop, the control groups, and

the main outcomes.

for therapeutic approaches. In this study, three patients listened

to favorite songs during a neurofeedback intervention that aimed

to determine if they were in some way able to alter their brain

activity. In Cordes et al. (2015), the authors recruited patients

with schizophrenia and proposed an NF paradigm to enable them

to control the activity of their anterior cingulate cortex (ACC),

known to be dysfunctional in schizophrenia. Without any previous

instruction by the experimenters regarding the mental strategy, the

clinical group tended to use the imagery ofmusic as the NF strategy,

while the control group tended to use the imagery of sports.

The exploration of music’s potential in regulating emotions

was also evident in clinical contexts linked to emotion disorders.

The pilot study by Ramirez et al. (2015) aimed to allow elderly

participants with depression to control two parameters of a

set of music performances using their own emotional state,

as measured via EEG probes. In Fedotchev (2018), the NF

experiment was designed to reduce stress-induced functional

disturbances in people who had specialized jobs associated with

high workloads.

3.2 Methodological solutions

In our systematic review, we identified two distinct categories of

methodological solutions that we report in the following sections.

In ten cases, music was utilized as feedback directly, whereas, in the

other five, another feedback modality was used and music served

as a tool to help participants perform during the NF experiment

(Figure 5A). At the end, we also address the matter of control

groups in these studies.

3.2.1 Music as the interface
Several musical features have been explored for neurofeedback

paradigms, such as loudness, tempo, volume, or audio quality. The

feedback was conveyed by applying changes in these features based

on the neuronal signal. In the following paragraphs, we describe the

methodology of the ten studies from our sample that used music

directly as a feedback interface.

3.2.1.1 Controlling music features

The pilot study by Ramirez et al. (2015) aimed to allow

elderly participants with depression to control the loudness and

tempo of music pieces. These were adjusted, in real-time, to the

EEG recording from four locations of the prefrontal lobe. The

participants were asked to increase the loudness and tempo of

the pieces, which were linked to a measure of arousal (beta-to-

alpha activity ratio) and valence (right-to-left alpha activity ratio,

i.e., frontal alpha asymmetry). The authors relate beta waves to

an alertness state and alpha waves to a more relaxed state, hence

using their ratio as an indicator of arousal. As for measuring

valence, the authors suggested that the left frontal area was

more associated with positive memories, while the right frontal

area was more associated with negative emotions. They explored

this putative interhemispheric difference in the alpha band for

estimating valence.

Fedotchev (2018) used an EEG-based neuronal signal to adapt

the loudness of the music the participants were listening to.

During the EEG session, participants listened to classical music

compositions, and the loudness was controlled, in real-time, by

the amplitude of the participant’s alpha oscillations, a correlate of

wakefully relaxed state and internalized attention. The signal was

measured in a single electrode on the occipital lobe—the bigger

the amplitude, the louder the music. In this study, participants

were unaware of this feedback loop—they were simply instructed to

listen to the music with their eyes closed. This is known as implicit

or non-volitional neurofeedback (Ramot and Martin, 2022).

In Keller andGarbacenkaite (2015), whenever the ratio between

the amplitude of theta and beta activity dropped below an

automatically set threshold, patients in a State of Unresponsive

Wakefulness heard their favorite music (which was defined by their

closest family members). A previous study by the same authors

demonstrated that this ratio was directly correlated with arousal

and attention processes in healthy and brain-injured participants.

Following a lead that indicates the difficulty of concentrating

during an active neurofeedback experiment for a long time, the

authors in Takabatake et al. (2021) developed a music-based

auditory neurofeedback interface that aimed to be intuitive and

immersive. The feedback was provided as a continuous overlap of

classical music and white noise. Using a headband-type wearable

EEG device, the signals from 4 electrodes on the forehead were

recorded and preprocessed in real time to extract the power of

the alpha band. Every 3 s, the noise level of the auditory feedback

was updated according to the normalized alpha band power—the

higher the power, the lower the volume of the noise superimposed

on the music.
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FIGURE 5

Overview of five methodological fields extracted from the sample of 15 studies. (A) How was music used in the feedback loop; (B) The type of

control group/condition; (C) The neuroimaging technique used to record brain signals; (D) A histogram of the number of sessions with active/true

feedback; (E) A histogram of the number of participants that received active/true feedback.

Trost et al. (2024) investigated the feasibility of using live music

performances in the neurofeedback system, as it could, according

to the authors, maximize the activity in the left amygdala, a key

region for music-evoked emotions processing (Koelsch, 2020). The

pianists were asked to adjust their live performances, changing

pleasantness in real-time, according to the amygdala activity of

the listeners. The authors used 12 musical pieces specifically

composed for this experiment and then compared the results to the

participants’ responses to pre-recorded versions of the same pieces.

In the field of sports, Dekker et al. (2014) investigated the

ability of alpha power training to enhance the mental abilities of

elite gymnasts, focusing on attentional control. Their training setup

consists of an EEG-based feedback loop, where the real-time power

of the alpha band in the occipital lobe influences the quality of the

music that the participants are listening to. Using a high-pass filter,

the participants’ favorite music sounded thin and distant if alpha

levels were low (as the low tones were removed) and rich and full

(as usual) if alpha levels were high. This previously validated setup

allowed participants to sit comfortably for a few minutes per day

while listening to their favorite music (this was considered by the

authors the strength of this system). The rationale for considering

the occipital alpha band power as a valid target for neurofeedback

was based on the hypothesis that it is related to inhibition during

selective attention processes. Van Boxtel et al. (2024) expanded on

this work by performing this alpha training in groups of football

players—the music quality was adapted according to the level of

the brain rhythm to train.

3.2.1.2 Creating new music

The next three studies suggest the presentation of new

music/notes based on the participant’s brain activation patterns.

Ehrlich et al. (2019) proposes a non-invasive BCI system that uses

music to mediate a person’s emotions. The system establishes a

closed-loop interaction between the participant’s brain responses

and the musical stimuli, generating continuous and controllable

patterns of synthesized affective music in real time. The automatic

music generation algorithm controls parameters that modulate the

music’s harmonic mode, tempo, rhythmic roughness, overall pitch,

and relative loudness of subsequent notes. The authors suggest

the use of a classification pipeline to classify positive/negative

arousal and valence based on five EEG frequency bands. The

classifier’s output then informs the auditory stimuli to be presented

as feedback and the corresponding musical features. Deuel

et al. (2017) describes a new musical instrument called the

Encephalophone that uses biofeedback to allow users to control

musical notes in real time using EEG signals. EEG signal power

from either the posterior dominant rhythm in the visual cortex or

from the mu rhythm in the motor cortex was used to create a power

scale which was then translated into the eight notes of a musical

scale. The participants hear the note produced and can compare
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it with the target note. Daly et al. (2016) proposed an affective

brain-computer music interface (aBCMI) that aims to modulate

users’ affective states by identifying their current state and using

a case-based reasoning system to determine the best approach to

shift them toward a target state. This aBCMI integrates a music

composition system that can generate new musical stimuli based

on five music features: tempo, mode, pitch range, timbre, and

amplitude envelope. Different combinations of these features were

associated with nine locations in Russel’s arousal-valence plane (the

combinations of low, neutral, or high arousal and valence) (Russell,

1980). For instance, the authors link high arousal with a larger

pitch spread (range of notes), faster tempo, and harder timbres.

A combination of ten EEG frequency bands and physiological

signals, such as electrocardiogram and respiratory rate, is provided

to a classification pipeline based on support-vector machines that

perform real-time estimation of the participant’s affective state.

3.2.2 Music somewhere else in the loop
The use of music not as an interface but to aid participants in

neurofeedback experiments has been explored in five of the studies.

Lorenzetti et al. (2018) showed evidence of the feasibility

of a neurofeedback experiment where participants voluntarily

modulated their brain activity, as measured using real-time fMRI,

while experiencing complex emotions. Musical excerpts were

played during the trials to help participants maximize the intensity

of the emotions experienced, while the feedback itself was visual

and based on the color of the image being displayed. The authors

used mild, gentle music to help participants feel tenderness

(positive and affiliative, not romantic emotion experienced toward

significant others) and eerie distorted music to help them feel

anguish (negative and upsetting emotion).

Cordes et al. (2015) conducted an fMRI-based neurofeedback

study where 11 patients diagnosed with schizophrenia (the control

group included 11 healthy participants) tried to modulate the

activity of their ACC. The NF interface was visual, based on an

avatar of a human face, which smiled at the participants according

to their activity in the ACC. They were simply instructed to

augment the smile intensity using a personalized mental strategy,

for which some examples were provided. Whilst the results

indicated that the cognitive strategies used by the participants

(patients and controls) varied considerably, one of these strategies

was what the authors categorized as Music (that included thoughts

on favorite music, songs, or playing an instrument). Interestingly,

Music was used by eight patients but only four controls, with the

combined results indicating that the patients were able to modulate

the ACC signal using domains that were less impaired, such as

cognitive processing and music imagery. In sum, music was used

in this feedback loop as the strategy for achieving the modulation

of a target ROI.

Pino (2022) developed a prototype brain-computer interface

that reads the participant’s neuronal responses to music with

single-channel EEG and returns flickering lights, in real-time,

that match the brain rhythms observed. The protocol is fully

detailed in previous work (Pino and La Ragione, 2016). This

continuous closed-loop interaction is not explicitly controlled by

the participant (the authors refer to this as a passive BCI), hence

the feedback is generated based on spontaneous brain activity

given the musical context (also known as implicit or non-volitional

feedback). The acquired signal was processed and decomposed into

frequency bands, each corresponding to a specific colored light.

Hypothesizing for a mechanism of brainwave entrainment, the

feedback protocol was applied in a sample of 15 participants with

depressive and anxiety disorders split into active and control groups

– n= 7 and n= 8, respectively.

Lastly, Leite et al. (2018) present a case study of a game

controlled by a BCI based on Steady-State Visually Evoked

Potentials (SSVEP). The study aimed to understand how interface

elements influence the system performance and how users interact

with the game. One of the elements tested is the presence of

backgroundmusic during the game. However, the music andmusic

genre are not specified.

3.2.3 Control groups and design
Six of the studies in our sample used a control group or

condition. Its type depended on whether the objective was to assess

the feasibility of using music in the feedback loop or the efficacy of

the neurofeedback intervention (Figure 5B).

The participants of the control group of Pino (2022) enrolled

in a psychoeducation protocol, providing what the authors call

an active control group for the experimental group (which

received the neurofeedback intervention). The authors assessed and

compared behavioral effects between the groups. All participants

were recruited based on clinical symptoms linked to depression and

anxiety, and control group participants were matched for age and

education level to the experimental group.

Takabatake et al. (2021) implemented a crossover design

using random (i.e., non-contingent) feedback—this means that all

participants performed active (contingent) and random feedback.

In both groups, the cognitive functions of all subjects were

evaluated before, between, and after each feedback period.

The authors used a crossover design to facilitate within-

subject comparison, increase efficiency, and minimize participants’

number and variability, but they also acknowledge limitations,

especially regarding the uncertainty of a washout period in NF

studies. A similar approach was followed by Van Boxtel et al. (2024),

which also used a crossover design where half the participants

received alpha power training and the other half continued usual

practice (treatment as usual), and then switched.

Fedotchev (2018) also implemented a crossover design with two

music-based treatment sessions: one with active feedback and one

without feedback. Half of the participants started with feedback,

and the other half without. The advantage of this design is related

to the increased efficiency, as it allows for a direct within-subject

comparison. In their discussion, the authors compare the decrease

of theta EEG power and the increase of alpha EEG power at the

end of both therapeutic procedures, as this finding could indicate

wakefully relaxed states and internalized attention. The sessionwith

EEG feedback showed a positive shift in indicators of the health and

mood of the subjects. However, no statistical comparison between

sessions is discussed as this study is exploratory.

Cordes et al. (2015) recruited an age- and gender-matched

control group of 11 healthy subjects for a group of patients with

schizophrenia. Both groups learned to control the same target

region (the ACC) known to be dysfunctional in schizophrenia.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2025.1515377
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sayal et al. 10.3389/fnins.2025.1515377

Since the study focuses on different modulation strategies (one

of which is music imagery), we could not establish clear

causality between differences at the group level and music-related

components of the NF paradigm. However, the authors emphasize

that the clinical group mainly used the imagery of music while the

control group imagined sports.

A total of 12 athletes completed the intervention in Dekker

et al. (2014). In this study, with a double-blind design, half the

participants were assigned to the experimental group (that received

alpha power training) and half were assigned to the control group,

which received random beta power training. The authors made

sure to match the groups by several factors, namely age, gender,

profession, and ranking, and also by scores of perceived stress,

mood, sleep, and social desirability.

3.3 Main findings and outcomes

The majority of the studies analyzed here report successful

results of the intervention or of BCI control achievement.

Importantly, we found no reporting of results regarding the use of

music as the interface of the neurofeedback—the specificity of the

musical interface vs. another type of interface remains untested.We

identify success measures in three different domains: modulation

of the target brain signal, changes in behavioral/clinical scores,

and changes in neural patterns (Figure 6). The number of domains

discussed and the level of detail varies among studies. Lastly, we

also address the studies that do not associate music feedback with

a specific brain signal but rather use music as a complement in the

feedback loop.

Five studies report changes in both behavioral/clinical and

imaging outcomes. At the end of the intervention of Ramirez

et al. (2015), the behavioral depression score applied showed an

overall improvement, and the EEG data analysis revealed a decrease

in relative alpha activity on the left frontal lobe. While frontal

alpha asymmetry is often suggested as a depression biomarker, its

clinical diagnostic value is limited, with cross-sectional analyses

revealing significant heterogeneity (Van Der Vinne et al., 2017)

and very low reproducibility (Kolodziej et al., 2021). Most of

these studies were not preregistered, leaving the robustness of this

finding yet to be confirmed, particularly considering the analytical

flexibility and heterogeneity involved in EEG data analysis. In

Fedotchev (2018), the occipital alpha rhythm power increased after

the NF intervention session, but significantly so only when the

feedback loop was turned on. Both treatment alternatives (with

and without feedback) resulted in positive changes in psychological

tests. Moreover, post-treatment reports demonstrate acceptance

and value in the proposed musical interface, but no additional

neural correlates were analyzed. The results presented by Keller

and Garbacenkaite (2015) indicate that two out of the three UWS

patients were able to drop the theta/beta ratio, measured at the Cz

scalp location, during the intervention period, which was mainly

a consequence of a decreased theta amplitude (the authors suggest

that these results reveal a shift of the dominant rhythm into the

alpha band and reflect some brain function recovery). The weekly

assessment of the JFK Coma Recovery Scale-Revised (CRSR)

increased specifically in the auditory function, motor function,

and arousal subscales but, since the sample size was three, the

authors only provide a descriptive analysis of the time courses.

Nevertheless, this study provides the first evidence that NF can be

used in patients with this specific syndrome, but also the potential

of music in such an extreme case. In Takabatake et al. (2021), the

data analysis from two groups of healthy participants (five subjects

per group, receiving real or random feedback) revealed a significant

difference in the alpha power, measured at the forehead, achieved

during the 4 weeks of intervention when comparing real with

random feedback. Cognitive functions were also assessed before

and after the intervention (digit span test, standard verbal paired-

associate learning test, simple calculation task, N-back test, and

Test of Variables of Attention). The results were assessed based

on a binary classification of responders and non-responders (based

on the regression analysis of a success measure corresponding to

the modulation of the target brain signal). The authors report

an improvement in short-term memory in responders compared

to non-responders. The crossover design and control conditions

limit conclusions regarding the causality of the music interface.

The training program described in Van Boxtel et al. (2024) was

successful in increasing the alpha activity of the participants, as

measured by EEG, but also in improving both their performance

on task switching and mental rotation tasks and sleep duration, as

the results of a self-reported questionnaire revealed.

The authors also report that the participants in the

experimental group showed a significant improvement in

their performance in a cognitive task compared to the control

group. The results suggest that the training program was effective

in increasing the alpha power in the occipital lobe of the

participants, as measured by EEG. The authors also report that

the participants in the experimental group showed a significant

improvement in their performance in a cognitive task compared

to the control group. The results suggest that the training program

was effective in increasing the alpha power in the occipital lobe of

the participants, as measured by EEG. The authors also report that

the participants in the experimental group showed a significant

improvement in their performance in a cognitive task compared to

the control group.

In the distinct case of Dekker et al. (2014), the results do

not show changes in imaging markers based on the EEG data: a

positive change in the occipital alpha power was detected, but it

was not significantly different between groups. However, behavioral

questionnaires indicated improvements in the level of mental

balance, focus ability, and thought control. Although objectively

measuring changes in athletes’ performance was unfeasible, this

study was the first attempt to target the mental capacities of

athletes, such as mental shape and focus, with a simple music-based

neurofeedback training protocol.

In Ehrlich et al. (2019), changes were found only in the imaging

outcomes: the efficacy of the music algorithm was tested on 11

participants in the first study, and the algorithm was embedded

in a real-time BCI architecture to investigate affective closed-

loop interactions in five participants in a second pilot study. The

results suggest that participants were able to intentionally modulate

the musical feedback by self-inducing emotions, indicating that

the system can capture the listener’s current affective state in

real-time and potentially provide a tool for listeners to mediate

their own emotions by interacting with music. The proposed
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FIGURE 6

Overview of the outcomes reported by the 15 studies, both for the ones that used music as the interface directly (A) and for the ones that used music

elsewhere in the loop (B).

concept offers a tool to study emotions in the loop, potentially

shedding light on emotion-related brain research and clarifying

the interactive, spatio-temporal dynamics underlying affective

processing in the brain.

Four other studies report the development of a new

implementation for music-based NF. The device of Deuel et al.

(2017) has been tested on 15 novice users, and the results show

that most were able to hit target notes with a level of accuracy

significantly higher than random. The Encephalophone is a novel

instrument that uses EEG control to create music, and the study

suggests that with continued training, users could significantly

improve their accuracy and ability to use the instrument. The article

discusses the potential benefits of the Encephalophone for both

music therapy and neurological rehabilitation. The instrument may

be particularly useful for patients who have lost motor function

due to conditions such as stroke or traumatic brain injury, as it

allows them to generate music using different regions of the brain

that are still functioning normally. Overall, the study suggests that

the Encephalophone is a promising new technology that could

serve as a movement-free musical instrument and as a therapeutic

biofeedback device for patients with motor deficits.

Machine learning algorithms were used in two studies to

assess imaging data in real time. In Daly et al. (2016), the

authors found that the affective music-based BCI can change

the majority of participants’ affective states to make them happy,

calm, or de-stressed. The selected features used by the affective

state detection method contain both neuronal and physiological

features, indicating the importance of physiological features in

identifying affective states. The feasibility of the experiment of

Lorenzetti et al. (2018) was proven, with the results showing

distinct and relevant brain network fMRI activation for each of

the two targeted emotions/trials (tenderness and anguish). As

a limitation of the study, the authors present the fact that the

same music excerpts were used for all participants. This decision

did not account for inter-individual differences in music taste,

an important factor that could have affected the intensity of the

emotions experienced by each participant. While the behavioral

ratings showed that the excerpts helped induce the proposed

emotions, the use of personalized audio tracks could have been

more effective, as the authors also recognize.

Lastly, Trost et al. (2024) found evidence that live music

performances can be used in a neurofeedback system, as the results

suggest that the participants’ emotional responses to the live music

performances were significantly influenced by the performers’

ability to adjust the pleasantness of the music in real-time. While

the implementation of novel experimental paradigms with live

music performances is challenging, the study suggests, based on

state-of-the-art connectivity analyzes, that the left amygdala is a

key region (a hub) of a dense functional network that is especially

sensitive to the emotional content of live music, a feature that could

be further explored in future music-based NF interfaces.

Another three studies are based on multimodal approaches

and do not link music feedback to brain signals. Pino (2022)

combines a repetitive visual and auditory stimulation feedbacking

individual’s EEG signals as flicker light so that a continuous

closed loop can be obtained. The authors showed differences in

some sub-scales of the neuropsychological assessment [reduction

in depressive symptoms (HAM-D), increase in cognitive function

(IQ)] between the two groups, namely when comparing before and

after the intervention. Cordes et al. (2015) found that different

cognitive strategies were used during neurofeedback targeting the

ACC by the two participant groups—patients with schizophrenia

reported using the imagery of music. Specifically, imagery of music

was used by eight patients and only four controls, while sports

was applied by only three patients, but seven controls. However,

evidence suggests that the different strategies did not contribute

to the differences found in neural activation. Lastly, the authors

of Leite et al. (2018) found that the performance of individuals

playing their game was not significantly different between the

version with background music and the other versions without it.

Volunteers reported that background music was almost irrelevant

but did not disturb them, suggesting that background sounds do
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not significantly impact the performance of individuals in this

BCI scenario.

4 Discussion

In the current paper, we provide a review of the uses of music

in the NF context. We highlighted several works in the field

and reviewed the main purposes for incorporating music in NF,

the various methodological solutions that were implemented in

introducing it, the experimental designs that were used to test its

efficacy, and the reported outcomes. Overall, while some progress

has been made in the research of music-based NF interfaces

(Bhavsar et al., 2024), some important issues are limiting their

interpretation, specificity, and mechanisms of action. We discuss

these in the context of the reviewed studies and hypothesize future

directions and developments.

4.1 Neural mechanism of music-based NF
interfaces

NF interfaces based on music share the conceptual

understanding that NF training can support the regulation of

functional and structural patterns, promoting neuroplasticity by

operant conditioning (Chen et al., 2022; Lubianiker et al., 2019).

The neural correlates of NF training are often divided

into two dimensions of NF paradigms, Strategy Execution and

Feedback Processing. The Anterior Cingulate Cortex (ACC),

the anterior Insula (aI), and the Basal Ganglia (BG) are brain

areas associated with the neural mechanisms of NF-assisted self-

regulation (Dewiputri et al., 2021). The ACC is functionally

connected to the insula and is part of the salience network—a

network associated with task-transitioning and monitoring linking

cognition and emotion or interoception. The involvement of the

BG inNF learning is a well-established concept, and themechanism

involves the dopaminergic pathway. The BG is a target of midbrain

dopaminergic neurons, that convey reward prediction error—

a neurophysiological signal that relates to how unexpected or

surprising an outcome is. This signal is then relayed to cortical

structures that evaluate and reinforce or punish behaviors (Skottnik

et al., 2019; Paret et al., 2018; Emmert et al., 2016).

The specific mechanisms behind music-based NF interfaces

may be related to the emotional impact of music and its capacity

to evoke intense pleasure responses. Music-induced pleasantness

is directly linked to musical surprises, as it explores reward-

related predictive processes, via recruitment of the mesolimbic

system (feedback monitoring component) and its connections

with the auditory cortex (sensory component) (Shany et al.,

2019; Salimpoor et al., 2013). The patterns and pattern variations

(surprise) associated with music stimuli elicit prediction errors

and reward prediction errors, which trigger pleasure-related neural

networks and the release of dopamine in the reward centers of

the brain (Koelsch, 2020; Singer et al., 2016; Ferreri et al., 2019;

Salimpoor et al., 2011). In Singer et al. (2016), a link was found

between the activation of limbic regions, such as the amygdala

and the hippocampus, and the affect and variations in temporal

information in music. In Trost et al. (2024), the authors found that

the amygdala acts as a central node in a dense functional network

that is triggered while listening to live music.

Over the years, several mechanisms have been proposed to

mediate the link between music and emotion (e.g., Juslin and

Västfjäll, 2008), and various musical features and attributes have

been highlighted in determining the affective responses to music,

such as tempo and loudness’ role in arousal, and the musical mode

and dissonance level in the level of pleasantness. Our recent study

(Sayal et al., 2024) found evidence for a correlation between distinct

musical features (notably expressive features such as vibrato and

tonal and spectral dissonance) and the brain networks of valence,

arousal, and reward. Intriguingly, few of the music-NF studies

utilized these known relationships to manipulate the affective tone

of the musical pieces introduced in the loop.

Attempts to decode the brain patterns that are revealed when

interpreting valence and arousal (Sayal et al., 2024; Daly, 2023;

Putkinen et al., 2021) or complex emotions (Koelsch et al., 2021)

in music may also provide important insights on the neural

mechanisms that could support using music as feedback, guiding

design decision in future music-based NF experiments.

Nevertheless, the majority of the studies included in this

analysis do not focus on the nature of the feedback and do not

evaluate the specificity of the feedback modality. Most studies

recognize music’s ability to evoke and modulate emotions in the

listener, but its specificity and mechanism of action have not been

controlled for. The absence of reports on information outside the

brain signal of interest limits our ability to evaluate other potentially

important patterns such as music-related ones. Measuring whole-

brain activation patterns (as Trost et al., 2024 did with a dynamic

effective connectivity metric based on fMRI data) will help further

reveal the underlying success mechanisms behind music-based

NF and control for its specificity by comparing it with other

feedback modalities.

4.2 Methodological dimensions of
music-based neurofeedback

We identified four main dimensions in the implementation

of music as the interface in neurofeedback paradigms: (i) the

exploration of music attributes, (ii) how they link to the feedback

loop, (iii) the imagingmodality, and iv. the experimental design and

control conditions.

4.2.1 Exploration of music attributes
Music is, by definition, a complex stimulus. In this sense,

the characterization of music pieces used in the revised papers

varies considerably: we found descriptions based on valence or

arousal (Ehrlich et al., 2019; Ramirez et al., 2015), and on true

complex emotions such as tenderness and anguish (Lorenzetti et al.,

2018). Some studies did not use predetermined music—instead,

they asked the participants to select their favorite music to be used

as feedback, in an effort to maximize its pleasing/emotional effect

(Keller and Garbacenkaite, 2015; Dekker et al., 2014; Van Boxtel

et al., 2024). In fact, the use of individually selected music may

potentiate the effects of neurofeedback interventions based on
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music, as recent evidence from brain connectivity suggests (Wu

et al., 2019)—familiar and highly rhythmic music generated more

and stronger functional connections between the regions of the

networks of interest.

The discussion regarding the best solution for music-

based interventions is far from settled, as the heterogeneity of

approaches reveals.

4.2.2 Linking music to the feedback
The link between musical features and the neurofeedback loop

is also a key variable. The studies of Ramirez et al. (2015), Fedotchev

(2018), and Dekker et al. (2014) defined features such as loudness

and tempo of music pieces selected a priori as feedback properties

of interest. These features were adjusted in real-time by coupling

them with specific brain signals (e.g. to the power of a certain

EEG frequency band or the power ratio between frequency bands).

In Keller and Garbacenkaite (2015), a threshold on the theta/beta

power ratio was set to start or stop playing specific music pieces

tuned to each patient.

An alternative to real-time adjustment of specific features was

proposed by Takabatake et al. (2021), as the brain signal of interest

was connected to a continuous dynamic overlap of classical music

and white noise. A similar approach was used by Van Boxtel et al.

(2024), where the effective quality of the music was manipulated by

filtering out low frequencies—the lower the level of alpha activity,

the more the low frequencies were filtered out, which made the

music sound distant and superficial.

Some authors proposed the creation, in real-time, of

synthesized affective music (Daly et al., 2016; Ehrlich et al.,

2019). This approach allowed for controlling parameters such

as the music’s harmonic mode, tempo, rhythmic roughness, or

overall pitch using neuronal signals. Trost et al. (2024) did this

but with live performers—pianists were instructed to adjust the

articulation, density of notes and dynamics of the pieces they were

playing to make them feel more or less pleasant to the participants.

This adjustment was controlled in real-time by the participants’

activation of the left amygdala. In the end, they compared the

results of using live and recorded piano music as feedback.

Lastly, three studies report the combination of visual and

auditory stimuli (Pino, 2022; Leite et al., 2018; Lorenzetti et al.,

2018), but the rationale for this implementation is different. In

Lorenzetti et al. (2018), the goal was to aid participants maximize

the intensity of the complex emotions to be experienced. Leite

et al. (2018) added background music to enhance concentration

on the task but concluded that it had no impact on the

visual task performance. Pino (2022) used auditory stimuli to

evoke specific neurophysiological patterns and coupled them with

visual feedback.

4.2.3 Imaging modalities
The neurofeedback loop is based on a single neuroimaging

modality or combination of two synchronous techniques.

Neurofeedback training is mainly based on EEG data, but

with the rapid development of neuroimaging approaches and

robust computational tools, fMRI and functional near-infrared

spectroscopy (fNIRS) are increasingly being used in closed-loop

applications (Thibault et al., 2016). The EEG framework presents

several advantages, as it has a quicker setup, is more affordable,

directly measures electrical neural activity, and presents a higher

temporal resolution. On the opposite, fMRI is a much more

expensive, lower temporal resolution modality but with a higher

spatial resolution, that also allows measuring BOLD signals in

subcortical structures inaccessible to EEG. fNIRS represents a

compromise between the two previous techniques as it is cheaper

than fMRI, and allows for better spatial resolution than EEG, but is

limited to cortical structures (Pinti et al., 2020).

The majority of the studies included in this review are based on

EEG data (Figure 5C). The use of EEG was often limited regarding

spatial coverages (used a low number of electrodes), which could

restrict the analysis of non-specific neural changes associated

with the NF task. In turn, fMRI has the potential to provide

whole-brain data and a more comprehensive understanding of the

mechanisms associated with NF training. However, scalability is

important for neurofeedback studies (considering multi-session,

longitudinal studies) and the ultimate goal is to promote translation

to naturalistic settings. The brain signal of interest in the studies

presented here was often based on single channels of interest (often

considered frontal channels) related to the purpose considered,

particularly to increase focus or to regulate emotional states.

To overcome the limitations of EEG (particularly spatial

resolution and access to subcortical structures) one may use

computational tools to estimate the brain sources (solving the

inverse problem, i.e. determining the signal source spatial position).

Recent advances use fMRI-informed EEG models of the activation

within a particular region, also known as electrical fingerprint.

To develop this EEG-based model of the activation of subcortical

structures, the authors use simultaneous EEG/fMRI data to model

BOLD signals from these regions using spectro-temporal features

from the EEG signal (Simões et al., 2020; Abreu et al., 2020; Singer

et al., 2023; Meir-Hasson et al., 2014; Lubianiker et al., 2019).

4.2.4 Music-based NF experimental design and
control conditions

Neurofeedback intervention paradigms comprise several

parameters, such as the duration of the training/number of sessions

and the control groups/conditions, that can have important effects

on the training’s success and specificity.

The number of sessions with active/true feedback varies

considerably in our sample (mean = 9 ± 14), ranging from 1 to

55 sessions (Figure 5D). This illustrates the heterogeneity of criteria

regarding the procedure but also that this number depends on the

accessibility and cost of the devices and neuroimaging technique.

For instance, regarding the imaging technique, the three fMRI

studies used one–three sessions, while the EEG studies went up to

55 sessions, five per week.

An appropriate control group is critical to ensure the

effectiveness of neurofeedback paradigms. The studies described

here vary in the research goals (from more experimental/proof-of-

concept studies to clinical efficacy studies) and hence in control

groups/conditions. Most studies do not provide any control

group—only within-subject changes are studied particularly in the

target brain signal (Figure 5B).

There is a lack of consensus over criteria for control conditions

in NF literature. The control condition(s) should be determined

by the specific research goal of the study and the best procedures
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that effectively control for relevant confounding factors (Sorger

et al., 2019; Lubianiker et al., 2019). Numerous factors should

be considered for causality to be unambiguously established (e.g.

perception of success, neuropsychological specificity, placebo, and

behavioral effects). Moreover, the broad effect of NF training is

often related to systemic changes not directly related to the target

brain signal (Bassett and Khambhati, 2017).

Proof-of-concept and early phases of development and

evaluation of a novel medical intervention may be developed

without the implementation of control conditions (usually to

explore the actionmechanisms involved and not to prove efficacy or

specificity). Three studies proposed crossover designs (Takabatake

et al., 2021; Fedotchev, 2018; Van Boxtel et al., 2024). In this setting,

all participants undergo both active and non-active feedback

sessions. Takabatake et al. (2021) implemented a control feedback

session with random feedback, while Fedotchev (2018) used a

session without feedback. There are important considerations that

should be discussed when implementing crossover designs, such

as the carryover effect and period effect. These exploratory studies

acknowledge the limitations of a crossover design but lack the

mathematical formulation to mitigate possible confounds. Dekker

et al. (2014) also used sham feedback as a control strategy—the

authors translated feedback from another brain signal (beta band

power instead of the alpha band power of interest). While some

participants should be able to gain a similar level of control over

the alternative signal, some might experience frustration effects

since no link between the interface and the mental process can be

established. Nevertheless, this condition provides control over the

contingency between one’s own brain modulation and the feedback

and therefore controls this important aspect of learning. The

success measures in this case were behavioral measures associated

with the neural signal of the experimental group, which was key to

assessing the efficacy and feasibility of the intervention.

In the case of clinical feasibility studies, Cordes et al. (2015)

used two samples—a clinical schizophrenia group and an age-

and gender-matched healthy group. Including a control group

with healthy participants that undergo the same intervention

allowed the exploration of specific mechanisms of action of that

intervention in the clinical group, but it is hard to establish

the causality of success measures. Pino (2022) recruited a

second clinical group to undergo an alternative intervention—

this approach allowed them to compare the outcomes of the NF

intervention with an already established one but did not address

any non-specific effects linked to cognitive training benefits (Sorger

et al., 2019).

Regarding the specificity of the music interface and its potential

rewarding benefits, none of the studies analyzed here compared

different feedback interfaces. In this sense, no conclusions can

be drawn regarding the causality between success and the

music-based interface.

4.3 Results and evaluation of
neurofeedback success

The assessment of success in neurofeedback studies usually

includes three analysis stages: (i) assess the ability to modulate

the target brain signal, (ii) verify the clinical/behavioral effects

of the NF training, i.e. the definition and evaluation of outcome

measures, and iii. detailed reporting of experimental design

variables. The characterization of success is critical to NF literature

as many studies have also reported a considerable number of non-

responders among participants. A review of 11 studies reports a

percentage of non-responders that ranges from 16 to 57%, with

a mean percentage of 38% (Alkoby et al., 2018). Considering the

sample in our study, we found no consensus regarding the success

measure, either in imaging and/or behavioral outcomes (Figure 6).

It is important to note that the studies here considered are in

different phases of validation, from more exploratory/proof-of-

concept (Dekker et al., 2014; Takabatake et al., 2021; Fedotchev,

2018) to more mature studies focusing on clinical validation of a

hypothesis (Pino, 2022; Cordes et al., 2015).

First, determining the relationship between the ability to

modulate the target brain region and the mechanisms involved in

such success is key to a complete comprehension of the framework

(Bassett and Khambhati, 2017). For example, network neuroscience

provides a flexible and generalizable approach to describe the

neurofeedback framework and an explanation of the heterogeneous

interaction patterns between its elements. In this sense, a complete

characterization of the music stimuli and their neurobehavioral

effects is critical to better understand the effect associated with

the music-based feedback interface. Study design should consider

the neural correlates of music stimuli and their interaction with

the target brain signal, neurofeedback, and reward mechanisms to

optimize the feedback loop (Singer et al., 2023). Ultimately, this

comprehension may lead to the optimization of the framework

or contribute to the translation to more naturalistic/clinical setups

(e.g. translation from fMRI to EEG using the electrical fingerprint).

Second, verifying the clinical and behavioral effects of NF

training requires determining whether these effects are specifically

due to NF, i.e., establishing causality between NF learning and

changes in clinical or behavioral outcomes. The NF literature

has proposed several measures to evaluate the success of NF

(Thibault et al., 2018), including assessing the modulation of the

target brain signal relative to baseline, the first feedback trial,

controls, or as a longitudinal trend in multi-session designs. These

imaging-based success measures should, in turn, be associated with

improvements in behavioral or clinical outcomes. To strengthen

such evaluations, a comprehensive framework should incorporate

cognitive, behavioral, and neurophysiological measures. Self-report

scales, such as the Profile of Mood States (POMS) and the State-

Trait Anxiety Inventory (STAI), could be used to assess changes

in emotional and affective states, while cognitive performance

might be evaluated using tasks like the n-back task or the Stroop

test, which measure working memory and attentional control.

Behavioral outcomes, such as stress resilience and relaxation

responses, could be captured through validated instruments like the

Perceived Stress Scale (PSS) or sleep quality indices. Research must

establish whether changes in target brain activity (and its associated

networks) causally drive behavioral changes. Appropriate control

conditions are critical for determining this relationship. Notably,

among the studies reviewed, no statistical evidence has established

such causality. This is particularly relevant when considering the

role of the music interface, as no control condition has been

proposed to isolate its effects. Also, the characterization of the
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sample regarding music training, for instance, may serve as an

important confound for these interventions’ success (Zentner and

Strauss, 2017). Expanding the range of evaluation indicators would

enable a more comprehensive assessment of music neurofeedback’s

effects and provide a richer reference for future research.

Lastly, to improve the reporting and experimental design

standards in the field, the NF research community has proposed

the standardization of reporting: the tool “consensus on the

reporting and experimental design of clinical and cognitive-

behavioral neurofeedback studies” (CRED-NF checklist) (Ros et al.,

2020). One item of this checklist addresses preregistration and

registered reports, which have previously shown to increase

the chance of publishing non-significant findings, effectively

decreasing publication bias (Scheel et al., 2021; Allen and Mehler,

2019). Templates and guides for these preregistrations have been

proposed for functional MRI (Beyer et al., 2021), EEG (Govaart

et al., 2022), and fNIRS (Schroeder et al., 2023) studies.

4.4 Future directions

Most NF paradigms analyzed in this study use EEG frequency

band power characteristics, particularly alpha, beta, and mu

rhythms, and reported good results regarding modulation ability

with music-based interfaces. fMRI studies are still scarce, but

they allow for a more spatially detailed analysis of the brain

regions involved in the NF loop. This could lead to searching

network-level metrics that are associated with the success of

NF training. In fact, one of the studies reports on the network

characteristics associated with the closed-feedback loop (Trost

et al., 2024), by analyzing dynamic functional connectivity patterns

and concluding that the amygdala may have a hub/central

role in the music-evoked emotional experience and feedback.

This is key to optimizing music-based NF designs: functional

connectivity and brain network definition have developed rapidly

in NF research across neuroimaging techniques, with some studies

finding evidence for connectivity measures that are related to

networks of success monitoring in NF paradigms (Pereira et al.,

2023; Trambaiolli et al., 2022).

Neurofeedback training based on EEG is particularly sensitive

to transients and noise. Moreover, EEG signals measured by

channels are the combination of different sources and the

exact neural correlate to the task is often not clear. The

solution to determine the signal sources, also known as the

inverse problem, requires computationally intensive methods

that were not addressed in these studies. Alternatives such as

the electrical fingerprint have been proposed in the literature,

favoring network-based approaches for NF and highlighting

the consideration of individual differences in brain function

(Singer et al., 2023; Meir-Hasson et al., 2014; Gurevitch et al.,

2024). To improve the signal-to-noise ratio, multi-modal signal

acquisitionmight also be used. Synchronous acquisition of different

neuroimaging techniques, such as EEG-fNIRS or EEG-fMRI, allows

the combination of the advantages of both techniques— increased

time and spatial resolution. Additionally, physiological data can

also be combined (e.g. galvanic skin response, electromyography,

electrocardiography) not only to regress noise confounds but

also as a complementary biofeedback signal [e.g. galvanic skin

response is known to be associated to autonomic responses

signaling emotional states (Ribeiro et al., 2019; Markiewicz et al.,

2022)].

An alternative to volitional neurofeedback, as proposed in the

included studies, is the use of non-volitional neurofeedback, also

known as covert or implicit neurofeedback. The participant is

simply given positive or negative feedback whenever a specific

target brain pattern occurs. The idea is to directly reinforce

spontaneously emerging brain states of interest (Ramot and

Martin, 2022). On the one hand, this approach limits the

ability of participants to learn mental strategies to control

the activation of specific brain areas. On the other hand,

through implicit feedback, we can manipulate spontaneous

activity at the network level. The dynamic nature of music

feedback, as a naturalistic, highly individual, but also customizable

stimuli, could make music an excellent candidate for implicit

feedback interfaces.

We found no neurofeedback study exploring the link between

music and pain. The effects of music listening on pain perception

and reduction are well documented in the literature (Arnold

et al., 2024), besides the fact that its clinical relevance is still

underexplored (Werner et al., 2023; Sihvonen et al., 2022).

The use of music as a neurofeedback interface in future

clinical trials targeting pain could be a promising approach

to explore the mechanisms of music-induced analgesia and its

neural correlates.
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