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Introduction: Mild cognitive impairment (MCI), often linked to early

neurodegeneration, is associated with subtle disruptions in brain connectivity. In

this paper, the applicability of persistent homology, a cutting-edge topological

data analysis technique is explored for classifying MCI subtypes.

Method: The study examines brain network topology derived from fMRI

time series data. In this regard, we investigate two methods for computing

persistent homology: (1) Vietoris-Rips filtration, which leverages point clouds

generated from fMRI time series to capture dynamic and global changes in brain

connectivity, and (2) graph filtration, which examines connectivitymatrices based

on static pairwise correlations. The obtained persistent topological features are

quantified using Wasserstein distance, which enables a detailed comparison of

brain network structures.

Result: Our findings show that Vietoris-Rips filtration significantly outperforms

graph filtration in brain network analysis. Specifically, it achieves a maximum

accuracy of 85.7% in the Default Mode Network, for classifying MCI using

in-house dataset.

Discussion: This study highlights the superior ability of Vietoris-Rips filtration to

capture intricate brain network patterns, o�ering a robust tool for early diagnosis

and precise classification of MCI subtypes.

KEYWORDS

mild cognitive impairment, fMRI time-series, persistent homology, graph filtration,

Vietoris-Rips filtration, Wasserstein distance, classification

1 Introduction

Mild cognitive impairment (MCI) has become a prominent subject of investigation and

clinical attention as it represents an intermediate stage between the anticipated cognitive

decline associated with normal aging and the more severe cognitive and functional deficits

observed in dementia (Mosti et al., 2019; Petersen and Negash, 2008). MCI is characterized

by a measurable decline in cognitive abilities, such as memory, language, or executive

function. This decline is greater than expected for an individual’s age and education level.

However, it does not significantly interfere with their ability to perform everyday activities

(Gauthier et al., 2006; Knopman and Petersen, 2014). It is prevalent in older adults. While

some individuals with MCI remain stable or even return to normal cognitive function

over time, over half of them progress to dementia within 5 years (Gauthier et al., 2006).

Therefore, MCI can be viewed as a potential precursor to dementia.
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In recent years, there have been notable advancements in brain

imaging, particularly with functional MRI (fMRI), which provide

valuable insights into the impact of MCI on brain function. By

analyzing changes in different brain networks, we can enhance

our understanding of how MCI disrupts communication within

the brain. These disruptions are crucial in detecting the disease

at an early stage, potentially allowing for interventions that can

slow down or reverse cognitive decline associated with MCI and its

sub-types. However, the fMRI data analysis often faces challenges

such as high dimensionality, inter-subject variability, and the

difficulty in capturing non-linear and dynamic changes in brain

connectivity. Numerous studies have attempted to distinguish

MCI and its sub-types, often with moderate success in terms

of classification accuracy (Kam et al., 2018; Jie et al., 2018b,a;

Kam et al., 2020; Wang et al., 2020; Lee et al., 2021; Yang et al.,

2021). Conventional methods largely rely on static connectivity

metrics and predefined brain network structures, which may

overlook subtle topological changes and higher-order interactions

in brain networks. Unlike traditional methods, our approach

introduces an innovative computational topology-based technique.

While most state-of-the-art methods, including deep learning and

network-based approaches, primarily analyze spatial and temporal

features or depend on predefined connectivity metrics, our method

uncovers deeper, intrinsic properties of brain networks, offering a

more comprehensive understanding of their topological structure.

Given the limitations of conventional methods in capturing the

complex topological changes in brain networks associated with

neurodegenerative diseases, there is a need for more robust

approaches. This study aims to leverage persistent homology, a

technique from computational topology, to extract stable and

highly discriminative topological features from fMRI-derived brain

networks. By identifying higher-order interactions and subtle

network alterations, this approach provides a novel perspective

on brain connectivity and enhances the classification accuracy of

MCI subtypes, ultimately contributing to the development of more

effective biomarkers for early diagnosis and disease monitoring.

Persistent homology is a powerful approach within the field

of algebraic topology that falls under the umbrella of topological

data analysis. It offers a robust framework for examining the

topological properties of data, particularly in relation to shape

and structure. The objective of persistent homology is to trace

how topological features on a given space appear and disappear

as the scale value gradually changes. By capturing the underlying

structure and relationships within complex medical data, persistent

homology holds great promise for generating new insights and

improving the accuracy of clinical decision-making. Notably,

its application has been observed in the analysis of Autism

Spectrum Disorder (Jafadideh and Asl, 2022), Schizophrenia (Stolz

et al., 2021), and brain tumor analysis (Bhattacharya et al.,

2025). Moreover, it has been utilized to examine differences in

visual brain networks (Bhattacharya et al., 2023). The current

study is an extension of our previous work (Aithal et al.,

2025), where we leveraged persistent homology using Vietoris-

Rips filtration for the differential diagnosis of MCI. In this

work, we aim to rigorously compare the effectiveness of graph

filtration with the previously utilized Vietoris-Rips filtration. In

the previous study Wasserstein distance matrices computed from

persistent homology at different dimensions are used as feature

for classification. Contrary to this, in the present study we

hypothesize that persistent homology, particularly when utilizing

raw persistence features generated from graph filtration can

effectively differentiate between healthy individuals and those at

various stages of MCI, including Early and Late MCI. However,

our findings reveal that while graph filtration offers valuable

insights into the topological structure of brain connectivity, the

classification results using Vietoris-Rips filtration are consistently

superior. The Vietoris-Rips approach not only surpasses graph

filtration in distinguishing MCI subtypes but also outperforms

many state-of-the-art methods in MCI classification. These

results highlight the greater efficacy of Vietoris-Rips filtration

in extracting meaningful topological features, making it a more

robust tool for clinical applications in early MCI detection and

diagnosis. This findings of this study provide crucial insights

into the comparative strengths of these two filtration approaches.

Vietoris-Rips filtration proves to be more robust in capturing

the intricate topological patterns in brain connectivity that

are essential for accurate diagnosis. This superiority reinforces

its potential for use in clinical settings, offering a more

reliable framework for early detection and classification of MCI

subtypes. Additionally, this research highlights the importance of

choosing the appropriate filtration method in persistent homology

applications, contributing new knowledge to the field of topological

data analysis for disease classification. Our work serves as a guide

for future studies, emphasizing that the choice of filtration has a

significant impact on the outcomes of persistent homology-based

classification.

2 Materials and methods

2.1 Dataset description

The study employs fMRI images from two distinct population

cohorts. The baseline analysis utilizes subjects from the publicly

available Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset (Jack et al., 2008), characterized by a repetition time (TR)

of 3000 ms and an echo time (TE) of 30 ms. This is complemented

by our in-house cohort from the TATA Longitudinal Study for

Aging (TLSA), which features a TR of 3200 ms and a TE of

30 ms. The TLSA cohort, an urban study, is dedicated to the

long-term investigation of risk and protective factors associated

with dementia in India. Both cohorts used sagittal plane imaging

with 3D acquisition. Participants diagnosed with MCI had no

underlying neurodegenerative diseases besides MCI itself, while

healthy subjects had no previous instances of cognitive impairment,

stroke, or significant psychiatric disorders. The ADNI cohort

includes the following groups: EMCI (N = 162, M:F = 59 : 103,

Age: 72.3 ± 6.7), LMCI (N = 141, M:F = 86 : 55, Age: 72.1 ± 7.8),

and healthy control (HC: N = 177, M:F = 81 : 96, Age: 75.1± 6.3).

The efficacy of our proposed methodology is further evaluated

using our in-house TLSA cohort, which consists of gender and

age-matched MCI (N = 35, M:F = 20 : 15, Age: 63.9 ± 9.04)

and HC (N = 35, M:F = 20 : 15, Age: 63.8 ± 9.1) subjects. In

our in-house MCI cohort, individuals were diagnosed with MCI
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TABLE 1 Demographic details and inclusion criteria of the two cohorts.

Demographic ADNI data TLSA data

Details HC EMCI LMCI HC MCI

No. of subjects 177 162 141 35 35

Gender (M:F) 81:96 59:103 86:55 20:15 20:15

Age 75.1±6.3 72.3±6.7 72.1±7.8 63.7±9.1 63.8±9.0

CDR global 0 0.5 0.5 0 0.5

according to specific criteria, including a Clinical Dementia Rating

(CDR) score of 0.5, which serves as the current gold standard for

assessing the stages of dementia.1 The demographic details and

inclusion criteria of the two cohorts are tabulated in Table 1. The

study utilizes fMRI time series from Dosenbach Regions of Interest

(ROIs), encompassing a total of 160 ROIs selected from six classical

brain networks. All fMRI images were processed using a consistent

preprocessing pipeline, which included motion correction, slice

timing adjustment, normalization to the standard MNI space, and

regression to account for nuisance variables. These preprocessing

steps were conducted using FMRIB Software Library (FSL) version

6.0.6 (Jenkinson et al., 2012).

2.2 Overview on proposed methodology

The block diagram illustrating the proposed methodology

is shown in Figure 1. This study compares the classification

performance achieved using two different filtration choices for

constructing persistence diagrams: (i) Vietoris-Rips filtration and

(ii) graph filtration. The analysis begins by extracting time series

data from resting-state fMRI volumes. To generate persistence

diagrams using Vietoris-Rips filtration, the 1D fMRI time series

is first transformed into a 3D point cloud. In contrast, for

graph filtration, correlation analysis is performed directly on the

extracted 1D fMRI time series data, using both marginal and

partial correlations to construct a positively correlated graph from

distinct brain regions (nodes). The adjacency matrix generated

from this graph is then used to compute persistence diagrams

via graph filtration. To quantify topological changes, we employ

the Wasserstein distance metric. These changes are analyzed in

two distinct ways: (i) across subjects for a specific region of

interest (ROI) when using persistence diagrams generated from

graph filtration, and (ii) across ROIs for a given subject when

using persistence diagrams derived from Vietoris-Rips filtration.

Finally, the classification of healthy individuals, EMCI, and LMCI

is carried out using two feature sets: (a) the top ten most persistent

homology features obtained from graph filtration, and (b) inter-

ROI Wasserstein distance features derived from the Vietoris-Rips

filtration. Each step of the proposed methodology is described in

detail in the following sub-sections.

1 IRB approval statement: The inhouse TLSA data collection was approved

by Institutional Ethics Committee at Centre for Brain Research vide number

CBR-/42/IEC/2021-22.

2.3 Extraction of fMRI time series

The fMRI time series provides insights into the temporal

dynamics of brain activity, allowing for an in-depth analysis of

how various brain regions interact over time. In this study, specific

brain regions are carefully selected from Dosenbach’s ROIs to

extract fMRI time series, aiming to identify significant patterns

and differences between MCI sub-types and healthy controls. The

Dosenbach’s ROIs (Dosenbach et al., 2010), consisting of 160

regions, are partitioned into six distinct brain networks: cerebellum

(CB) comprising 18 nodes, cingulo-opercular (CO) with 32 nodes,

default mode network (DMN) consisting of 34 nodes, fronto-

parietal (FP) comprising 21 nodes, occipital (OP) with 22 nodes,

and sensorimotor (SM) consisting of 33 nodes. Figure 2 displays

the different ROIs for these six distinct networks. These networks

encompass various interconnected brain regions, each associated

with particular cognitive, sensory, and motor functions. Given

that these functions may exhibit unique disruption patterns at

different stages of MCI, the analysis of all six networks offers

a comprehensive assessment of network-specific changes. These

changes could potentially serve as distinct biomarkers for different

stages or types of cognitive impairment. A representative 5 mm

radius sphere centered at each voxel location was used to generate

the time series vt , t = 1, 2, ...,N. The fMRI preprocessing was

carried out using FSL’s FEAT. Briefly, the steps involved discarding

the initial 10 volumes, applying MCFLIRT for motion correction,

performing brain extraction, applying a 5 mm spatial smoothing

kernel, and conducting high-pass temporal filtering. Additionally,

the fMRI data were registered (using a 12-degree-of-freedom

linear transformation) to the corresponding structural image and

then to MNI152 space. As per standard practices, the mean

contributions of motion correction parameters, as well as CSF and

WM signals—treated as nuisance variables—were regressed out

during preprocessing.

2.4 Persistent homology using
Vietoris-Rips filtration

Efficiently creating a point cloud representation from 1D time

series data is a crucial step in computing persistent homology

(Perea and Harer, 2015; Gakhar and Perea, 2024), which is essential

for analyzing the intrinsic topological properties of MCI. To

achieve this, the study uses sliding window embedding (SW) with

an embedding dimensionM = 2 and a time lag τ = 1, converting

the fMRI time series vt into 3D point clouds S.
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FIGURE 1

Block diagram showing the Proposed Methodology. (A) Brain schematic with Dosenbach ROIs, (B) generated fMRI timeseries for one specific ROI of

a specific brain network, (C) Persistence diagram as obtained for one representative subject using Vips-rips filtration applied on 3D Point cloud, for a

specific brain network, (D) Subject-specific inter-ROI Wasserstein distance matrix, (E) Visualization of inter-ROI Wasserstein distance, (F) Persistence

diagram obtained for the same subject using graph filtration applied to the partial correlation matrix of the fMRI time series for the specific brain

network, (G) ROI-specific inter-subject Wasserstein distance matrix, (H) Visualization of inter-subject Wasserstein distance, (I) Statistical analysis of

inter-subject Wasserstein distance, (J) Classification framework: (i) stack ensemble classifier used for classification using graph-filtration-based top

10 most persistent features for each homology dimension, and (ii) custom CNN used for classification using subject-specific inter-ROI Wasserstein

distance, for each homology dimension.

FIGURE 2

Visualization of Dosenbach’s Regions of Interest (ROIs) for the six brain networks.

2.4.1 Sliding window embedding
In order to construct a sliding window embedding from a 1D

time series, we start by taking the original time series, f (t) =

{f1, f2, . . . , fN}, where each value corresponds to a data point at a

specific time t. The sliding window embedding involves selecting

a window of fixed size (determined by the embedding dimension

M) and a time lag τ . For example, with an embedding dimension

M = 2 and time lag τ = 1, each time step t is transformed into a 3D

point by selecting the values at three consecutive time points: f (t),

f (t+ τ ), and f (t+ 2τ ). This results in the point (f (t), f (t+ τ ), f (t+

2τ )). As the window slides across the time series from t = 1 to

t = N − M, a sequence of such 3D points is generated, forming a

point cloud that represents the time series in a higher-dimensional

space. The sliding window process captures the temporal structure

of the data and allows the construction of a point cloud that can be

used for further analysis, such as computing persistent homology

or studying the dynamic behavior of the underlying system. In

this study, the sliding window length is set to 3, minimizing noise

and enhancing interpretability. Mathematically, the sliding window

embedding of a function f based at t ∈ R into RM+1 is represented

as follows (Equation 1):

SWM,τ f :R → R
(M+1), t →







f (t)

f (t + τ )

f (t + 2τ )






(1)
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By selecting different values of t, a sliding window point cloud

is generated, representing the function f in 3D space. This approach

is supported by literature indicating the effectiveness of sliding

window methods in capturing dynamic functional connectivity in

rs-fMRI. In this study, for embedding dimensionM = 2, the point

cloud of the fMRI time series is represented by Equation 2:

S = {vi : i = 1, . . . ,N, vi ∈ R
3} (2)

Each point vi in the point cloud S is mapped to a vector in R
3,

maintaining consistency with the spatial dimensions of the fMRI

data.

2.4.2 Vietoris-Rips filtration and persistence
diagram

Persistent homology is then computed from the obtained

3D point clouds to extract topological features. This is done

by constructing a series of simplicial complexes using Vietoris-

Rips filtration and calculating their homological features. These

features capture the underlying topological structure in the

data, highlighting meaningful patterns and differences between

MCI and its subtypes. We exploit the information encoded in

persistence diagram to analyze the differences in topology of

brain networks of individuals with MCI from HC. A persistence

diagram is a graphical representation used in topological data

analysis to summarize the topological features (such as connected

components, loops, or voids) of a dataset across different scales. It

captures the “birth” and “death” of these features as the dataset is

gradually transformed or filtered. Formally, a persistence diagram

is amultiset of points (b, d), where, “b” (birth) represents the scale at

which a topological feature first appears, and “d” (death) represents

the scale at which the feature disappears or merges with another

feature. The persistence of a topological feature is defined by the

difference “d–b,” which measures how long the feature persists

over the filtration process. In a persistence diagram, each point

corresponds to a topological feature. Features that persist longer

(i.e., have a larger “d–b”) are considered more significant. Thus,

the persistence diagram encodes the persistence features in data

across the filtration parameter range as a collection of points in the

two-dimensional Euclidean space R2.

A common approach for constructing a filtration from a

point cloud is through the Vietoris-Rips complex. This complex

is generated from the point cloud by connecting any subset of

points whose pairwise distances fall within a specified threshold,

creating a simplex. The Vietoris-Rips filtration is a method for

constructing a sequence of simplicial complexes from a point cloud,

where each simplicial complex represents the connectivity structure

of the data at a particular scale. It is one of the most commonly

used filtrations in topological data analysis. Thus, filtration is a

collection F = {Fǫ}ǫ≥0 of spaces with Fǫ ⊂ Fǫ′ continuous

∀ǫ ≤ ǫ′. The ith persistence diagram of F is a multiset dgmi(F) ⊂

{(p, q) ∈ [0,∞] × [0,∞] | 0 ≤ p < q} where each pair

(a, b) ∈ dgmi(F) encodes a i-dimensional topological feature, in

other words Betti descriptors2 associated with a simplicial complex

2 In algebraic topology, the topological features of a space are represented

as holes or cycles in various dimensions. The number of k-dimensional

that born at Fb and dies at Fd. Here, persistent homology features

were computed for 0-dimension, 1-dimension, and 2-dimension

separately. The quantity (d − b) is the persistence of the feature,

and typically measures significance across the filtration. In our

study, given a time series (Vt) the sliding window point cloud

SWM,τ f is computed which is in a metric space (X,MX). The Rips

filtration VR(X,MX) is derived from the Vietoris—Rips complex

VRǫ(X,MX), computed at each scale ǫ ≥ 0. The mathematical

expression for computing Rips filtration is depicted in Equation 3.

VR(X,MX) : = {VRǫ(X,MX)}ǫ≥0,where

VRǫ(X,MX) : = {{x0, ..., xn} ∈ X | max
0≤i,j≤n

MX(xi, xj) < ǫ, n ∈ N

(3)

The birth-death pairs (b, d) in the Rips persistence diagrams

dgmVR
i (X) : = dgmiVR(X,MX) reveal the underlying topology

of space X. The points (b, d) in dgmVR
i (X) with large persistence

values (d − b) suggest the most persistent topological features of

the continuous space where X is concentrated.

2.5 Persistent homology using graph
filtration

2.5.1 Graph construction using marginal and
partial correlation

A network consists of nodes (vertices) and links (edges) that

connect pairs of nodes. In the context of brain networks, the nodes

correspond to distinct brain regions, while the edges represent

the strength of connectivity between them. Mathematically, this

network can be represented as an undirected graph G = (V ,E),

where V is the set of nodes and E is the set of edges. Each edge

lij ∈ E, connecting node i with node j, has an associated weight—

positive or negative—that reflects the temporal correlations in

brain activity between the two regions. The entire network is

captured in a symmetric adjacency matrix of size N × N, where

N is the number of nodes. In this matrix, each entry (i, j)

indicates the strength of the edge between nodes i and j. In our

study, these edge weights are computed using both marginal and

partial correlations.

Correlation analysis has long been a prevalent method for

investigating connectivity between brain regions (Kim et al., 2015;

Wang et al., 2016). Most studies have relied on Pearson correlation,

also known as marginal correlation, which captures only the

marginal associations between network nodes. However, using

Pearson correlation alone is insufficient for brain connectivity

analysis, as it does not account for the true or direct connections

between nodes. For example, significant correlations between

two nodes, X and Y, may arise due to their shared connection

with a third node, Z, even when X and Y are not directly

connected (Kim et al., 2015). This reliance on marginal correlation

complicates the distinction between network edges representing

holes in a d-dimensional simplicial complex (with k ≤ d) is denoted by the

Betti number βk or Hk. Thus, 0-dimensional holes (β0orH0) correspond to

connected components, 1-dimensional holes (β1orH1) represent tunnels (or

loops) and 2-dimensional holes (β2orH2) are voids.
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true connectivity and those influenced by confounding factors.

To overcome this limitation, partial correlation has emerged

as a powerful statistical technique (Smith, 2012; Kim et al.,

2015; Wang et al., 2016). Partial correlation estimates the

relationships between nodes while controlling for the spurious

effects of all other nodes in the network, providing a more

accurate measure of direct connectivity. A zero value in

partial correlation indicates an absence of direct connectivity

between node pairs. Extensive literature demonstrates that partial

correlation is one of the most effective techniques for identifying

true functional connectivity between network nodes, often

outperforming traditional methods and showing high sensitivity in

revealing genuine network connections (Kim et al., 2015; Erb, 2020;

Zhang et al., 2021). In this study, we focus exclusively on positively

correlated networks for further analysis. Positive networks are

constructed when both marginal and partial correlation edge

strengths indicate a positive association. The visualization of a

positively correlated network for one subject is presented in

Figure 1F.

2.5.2 Graph filtration
Consider a weighted graph G = (V ,E), where V and E

represent the sets of vertices and edges, respectively. The weight of

an edge e is denoted by w(e). A filter function f :G → R, on G, is

defined as follows:

• for an edge e ∈ E, the value of f (e) is set to w(e),

• for a vertex v ∈ V , the value of f (v) is obtained by selecting the

minimum among all edge weights associated with the edges

incident on v.

For each r ∈ R, the subgraph G≤r of G is defined as the

collection of vertices and edges in G with f -values at most r.

Similarly, the subgraph G≥r consists of vertices and edges with

f -values greater than or equal to r. Let w1 ≤ w2 ≤ · · · ≤

w|E| be the weights of the edges in G, in non-decreasing order,

where |E| denotes the number of edges in G. This arrangement

yields two sequences of graphs, each referred to as a filtration.

The sequence ∅ = G≤0 ⊆ G≤w1 ⊆ G≤w2 ⊆ · · · ⊆ G≤wn =

G is called the sublevel set filtration of f , and the sequence

G≥wn ⊆ G≥wn−1 ⊆ · · · ⊆ G≥w0 = G is referred to as

the superlevel set filtration of f . To capture the 0-dimensional

homological features, one analyzes the birth and death of connected

components within the sublevel set filtration. In computational

topology, connected components are considered 0-dimensional

homological features. Therefore, the persistence diagram that

records the birth and death of these components is referred to

as the 0-th ordinary persistence diagram, denoted by Dg0(G).

To capture loops in a given structure, one examines the birth

and death of homology classes within a filtration that integrates

both sublevel set and superlevel set filtrations, referred to as the

extended filtration. Consequently, the persistence diagram that

encodes the loops of G is known as the 1-st extended persistence

diagram and is denoted by ExDg1(G). To construct ExDg1(G), one

focuses on 1-dimensional homology classes that persist through

the sequence of absolute homology groups corresponding to

the sublevel set filtration. These homology classes are termed

essential homology classes. Their deaths are then determined

in the relative homology groups associated with the superlevel

set filtration. An essential homology class that emerges in the

sublevel set filtration and eventually disappears in the superlevel

set filtration is represented as a point in ExDg1(G), encoding

the topological persistence of loops in the extended filtration

framework. The illustration of computing the persistence diagrams

using graph filtration is shown in Figure 3. The filtrations provide

a basis for computing the persistent topological features that

exist within the graph. Here, we compute both Dg0(G) and

ExDg1(G) corresponding to each brain networks and utilize them

for further analysis.

Thus, persistence diagrams are generated for all subjects across

six distinct brain networks to effectively capture and compare the

topological features inherent between each group. This approach

provides valuable insights into the structural differences among

the groups. A visual representation of these raw topological

features is illustrated through persistence barcodes, as shown in

Figure 4. This figure presents the persistent homology features for

one representative subject from each of the three groups. Each

horizontal bar in the barcodes corresponds to a specific topological

feature, with the start and end points of each bar indicating the birth

and death of that feature, respectively. The length of the bars reflects

the persistence of the features; longer bars are interpreted as being

more significant, suggesting that these features are more robust and

likely to contribute meaningfully to the underlying topology of the

network. This visualization allows for an intuitive understanding of

the persistence of various topological features and their relevance in

distinguishing between the brain networks of the different subject

groups.

2.6 Quantification of persistence diagrams
using Wasserstein distance

To measure the dissimilarity between persistence diagrams,

we utilize the Wasserstein distance. This metric is particularly

effective in the context of persistence diagrams because it

captures not only the differences in the locations of points

but also their distribution within the metric space, offering a

more comprehensive understanding of the represented topological

features (Berwald et al., 2018). In computational topology, the

Bottleneck distance and Wasserstein distance are two commonly

used metrics for measuring the dissimilarity between two

persistence diagrams. Mathematically, this can be expressed as

follows:

Suppose, f1 and f2 are two different filtrations and let X =

dgmp(f1) and Y = dgmp(f2) denote the pth persistence diagrams

corresponding to f1 and f2. The Wasserstein and Bottleneck

distance metrices are used to quantify the dissimilarity between

these twomultisets X and Y . Let L∞(f1, f2) = ‖f1− f2‖∞ denote the

supremum distance between f1 and f2, and η denotes a bijection of

X → Y , then, the q−Wasserstein distance between two persistence

diagrams X and Y is defined as

Wq,p(X,Y) =

[

inf
η :X→Y

∑

x∈X

||x− η(x)||
q
∞

]
1
q

(4)
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FIGURE 3

Construction of persistence diagrams from a graph. (A) A graph G. (B) Sublevel set filtration corresponding to G based on a filter function f :G → R.

The values of f are indicated at the vertices and edges. (C) 0-th ordinary persistence diagram Dg0(G). Here, A component born at G≤2 merges with

another component born at G≤1. This merging event happens at G≤4 and is represented by the point (2, 4). Additionally, the component born at G≤1

never dies, which is indicated by the point (1,∞). (D) 1-st extended persistence diagram ExDg1(G). Here, for a loop l in G, let 4 and 7 be the minimum

and maximum values of f along the edges of l. The loop is then captured by the point (7, 4) in ExDg1(G). The points in ordinary and extended

persistence diagrams are denoted by circular points and squares, respectively.

FIGURE 4

The persistence barcode for a representative subject from the Healthy, EMCI, and LMCI groups for the Occipital (OP) network. The barcode visually

represents the birth and death of topological features (connected components H0 and loops H1) across di�erent filtration values. Each horizontal bar

corresponds to a homological feature, where its length indicates its persistence. Longer bars signify more persistent and structurally significant

topological features, while shorter bars represent transient features likely influenced by noise or minor variations in the data. The di�erences in

barcode patterns across groups highlight variations in brain network topology associated with cognitive decline.

To compute the distance elements of X and Y one-to-one

(bijection η) are matched. It is usually done in the following way:

first for each pair of elements, x ∈ X and y = η(x) ∈ Y , the

difference between them (the cost function) is calculated using

||x− η(x)||∞ that is basically L∞ norm. Adding up the qth degrees

||.||
q
∞, we get a notion of the difference between the whole multisets

X and Y under the matching η :X → Y . Taking the infimum

over all possible bijections η, we get the difference between

multisets X and Y under the best matching possible, effectively

removing η from further consideration. The bottleneck distance

is the Wasserstein distance, with parameter q → ∞. Hence, one

drawback of the bottleneck distance is its insensitivity to details

of the bijection beyond the furthest pair of corresponding points,

which can result in a loss of important information. Due to this, the

present study considers Wasserstein distance for quantification.

A low value of Wasserstein distance suggests that the two fMRI

time series show similar patterns of neural activity over time,

indicating that the two brain regions are functionally synchronized

and likely involved in coordinated activity. In contrast, a high

value of Wasserstein distance indicates that the fMRI time

series of the two brain regions have distinct patterns of neural

activity. This may imply that the regions are functionally

dissociated or independent. High Wasserstein distances

could also point to abnormalities in functional connectivity

between the regions, potentially signaling neurological or

psychiatric disorders.
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2.6.1 Network-specific inter-subject Wasserstein
distance

Network-specific inter-subject Wasserstein distance was

computed for the two Betti descriptors: H0 and H1, generated

using graph filtration. The Wasserstein distance between the

persistence diagrams of the positively correlated connectivity

graphs corresponding to subjects S1 and S2, quantifies the

structural similarity in the topology of their brain networks. A low

Wasserstein distance indicates that the subjects S1 and S2 have

similar topological structures in their brain networks, suggesting

functional synchrony or comparable activity between their brain

regions. Conversely, a high Wasserstein distance signifies greater

topological differences between the subjects’ brain networks,

implying distinct connectivity patterns or functional dissociation.

This difference may point to abnormalities in brain connectivity,

potentially associated with neurological or psychiatric conditions.

In the context of the three groups (HC, EMCI, and LMCI),

analyzing these distances across brain networks such as CB, CO,

DMN, FP, OP, and SM helps to reveal MCI specific differences in

brain network organization. To analyze differences in topological

patterns across all subjects from the three groups (HC, EMCI,

and LMCI) for each of the two Betti descriptors (H0 and H1), a

network-specific analysis is performed for the six brain networks

(CB, CO, DMN, FP, OP, SM). This is illustrated by the Wasserstein

distance matrix (WDS), which has dimensions N × N, where

N represents the number of subjects. Equation 5 provides the

mathematical representation of the WDS matrix. In this matrix,

each element WDS(i, j) reflects the Wasserstein distance between

the persistence diagrams of subject i and subject j for a particular

network.

WDS

=











Wq,p(PD(Subj1), PD(Subj1)) . . . Wq,p(PD(Subj1), PD(SubjN ))

Wq,p(PD(Subj2), PD(Subj1)) . . . Wq,p(PD(Subj2), PD(SubjN ))
...

. . .
...

Wq,p(PD(SubjN ), PD(Subj1)) . . . Wq,p(PD(SubjN ), PD(SubjN ))











(5)

A sample image as obtained fromWDS for one specific network

is shown in Figure 1H.

2.6.2 Subject-specific inter-ROI Wasserstein
distance

For each brain network, subject-specific inter-ROI Wasserstein

distance was computed for each of the three Betti descriptors:

H0, H1, and H2, generated using Vietoris-Rips filtration. The

Wasserstein distance between fMRI time series from two

brain regions reflects the similarity in their neural activity

patterns. A low Wasserstein distance suggests that the two

fMRI time series share similar activity patterns over time,

indicating that the regions are functionally synchronized and likely

engaged in coordinated activity. Conversely, a high Wasserstein

distance implies distinct neural activity patterns between the two

regions, which may be functionally dissociated or independent.

Additionally, highWasserstein distances could signal abnormalities

in functional connectivity between the regions, potentially pointing

to neurological or psychiatric disorders. The pairwise-ROI distance

matrix (WDROI), with dimensions n × n, where n denotes the

number of regions of interest (ROIs) in a specific brain network,

captures the interaction between different ROIs. Each entry in

the matrix PR(i, j) represents the Wasserstein distance between

the persistence diagrams of ROI i and ROI j. The mathematical

representation of the matrix WDROI is shown in Equation 6.

Calculating both the persistent homology and the Wasserstein

distance matrices (PR and PS) is computationally demanding. To

address this challenge, we employed high-performance computing

(HPC) resources, specifically an Intel(R) Xeon(R) Gold 6240 CPU

@ 2.60GHz with dual CPUs and 192 GB of memory.

WDROI

=











Wq,p(PD(ROI1), PD(ROI1)) . . . Wq,p(PD(ROI1), PD(ROIn))

Wq,p(PD(ROI2), PD(ROI1)) . . . Wq,p(PD(ROI2), PD(ROIn))
...

. . .
...

Wq,p(PD(ROIn), PD(ROI1)) . . . Wq,p(PD(ROIn), PD(ROIn))











(6)

Figure 1E illustrates the variability in Wasserstein distance

among all ROI pairs for a single representative subject.

2.7 Classification

Classification is conducted using two distinct sets of features:

Set-1: This set comprises raw features derived from the

persistence diagrams, specifically focusing on the lifespan of

topological descriptors calculated using graph filtration. These

features provide insights into the persistence and significance of

various topological structures within the brain networks.

Set-2: This set includes the inter-region of interest (ROI)

Wasserstein distances computed using Vietoris-Rips filtration.

These distances quantify the dissimilarities between the persistence

diagrams of different brain regions, capturing essential topological

information about connectivity patterns.

For classification, we employ a stacked ensemble classifier

for the first set of features, leveraging its ability to combine

multiple learning algorithms to improve predictive performance.

In contrast, we utilize a custom convolutional neural network

(CNN) model for the second set of features, which is designed

to effectively capture spatial hierarchies and complex patterns

within the Wasserstein distances. This dual approach allows us to

maximize the strengths of both feature sets, enhancing our overall

classification accuracy.

2.7.1 Stacked ensemble classifier
An ensemble classifier integrates the predictions from multiple

models to achieve a more accurate and robust classification than

any individual model could provide. By leveraging the strengths

of various algorithms, this approach reduces the likelihood of

errors and enhances the model’s ability to generalize to new data.

In our case, the ensemble method was employed to capitalize

on the complementary advantages offered by different classifiers.

The classification process is based on the top ten most persistent

homology features, where the lifespan of each feature in H0

and H1 serves as the primary input for training. The dataset is
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divided into training (80%) and testing (20%) subsets, ensuring

that the model’s performance could be assessed on unseen data

after training, thereby providing a realistic evaluation of its

generalization capabilities. First, feature selection is performed

using Recursive Feature Elimination (RFE), a technique that

systematically removes the least important features to identify

the most relevant ones. A Random Forest classifier was utilized

within RFE to rank and eliminate features, ultimately pinpointing

the five most significant features from the original ten persistent

homology points. Once the key features are selected, a stacking

ensemble was constructed, incorporating a diverse array of base

classifiers, including Support Vector Classifier, Random Forest,

Gradient Boosting, XGBoost, AdaBoost, Extra Trees, Logistic

Regression, K-Nearest Neighbors, LightGBM, and CatBoost. Each

of these models was trained independently on the training dataset,

allowing them to capture different patterns and relationships

within the data that a single model might overlook. To ensure

a robust assessment of model performance, all base models were

evaluated using stratified K-Fold cross-validation (K = 5). This

technique guarantees that each fold maintains the same proportion

of samples from each class, effectively addressing potential issues

with imbalanced data and providing a more reliable estimate

of model accuracy. Following this, the classifiers were ranked

based on their cross-validation accuracy scores, and the top-

performing models were selected for inclusion in the final stacking

ensemble. The stacking classifier was assembled using the five

highest-ranked models, with a Random forest classifier designated

as the meta-model to aggregate the predictions from the base

classifiers. The predictions from these five top models on the

training dataset were then used as inputs for the meta-classifier,

allowing the stacking approach to leverage the unique strengths

of each individual classifier, thereby further enhancing overall

performance. The model was trained across four scenarios: (1)

HC vs. EMCI; (2) HC vs. LMCI; (3) EMCI vs. LMCI for the

ADNI dataset; and (4) HC vs. MCI for the in-house TLSA dataset.

Finally, the performance of the model is tested on unseen data.

This comprehensive approach ensures that our classification model

is both robust and effective in differentiating between various

cognitive states.

2.7.2 Custom CNN
The study incorporates both 1D and 2D features derived

from Wasserstein distances, which capture inter-ROI interactions

for each subject, into a classification framework utilizing a

conventional CNN. For classification, a subject-specific WDROI

matrix (n × n) is employed. The proposed CNN architecture,

illustrated in Figure 5, combines 1D features extracted from each

ROI pair in the WDROI matrix with 2D CNN-derived features.

The proposed classification model operates in two steps. First,

the Wasserstein distance matrix is flattened to generate 1D

features, focusing on pairwise relationships. Then, 2D features

are extracted from the matrix using CNN layers, capturing

local patterns and spatial hierarchies (Figure 1E). These features

are concatenated to form a unified feature vector, integrating

information from both linear and convolutional layers. This

unified vector is processed through several dense layers with

dropout for regularization, minimizing the risk of overfitting.

The combination of 1D and 2D features results in a richer,

more diverse feature space that captures various aspects of the

data—1D features represent sequential or linear relationships,

while 2D features capture spatial or topological relationships. This

integration offers multiple benefits, including a comprehensive

feature space for classification, improved learning from different

perspectives, noise and artifact mitigation, and the ability to capture

both local and global patterns. For the 2D features, the model

includes three CNN layers with 16, 32, and 64 filters, followed

by a max-pooling layer and an additional convolutional block

with two CNN layers containing 128 and 256 filters. All CNN

layers use a kernel size of 3. A global average pooling layer

then condenses each feature map into a single value, forming

a linear feature vector, with ReLU activation functions applied

throughout. Simultaneously, the 1D features of the WDROI matrix

(n2 × 1) are processed through a linear layer, reducing them

to 256 features. The 256-dimensional feature vectors from both

the linear layer and the 2D CNN are concatenated and passed

through a series of fully connected layers with sizes 128, 64,

and 32, each incorporating a dropout rate of 0.2. The final layer

employs a softmax activation function for classification. Each

Betti descriptor (H0, H1, and H2) from every brain network is

independently analyzed. We used Optuna for hyperparameter

tuning within the framework of cross-validation. Optuna was

employed to optimize the hyperparameters for each fold of the

cross-validation process. For each fold, the best learning rate,

batch size, train-test split ratio, and optimizer type were selected.

This approach ensured that the model was tuned and evaluated

across multiple folds, providing a more reliable estimate of its

performance. Specifically, 20 trials were performed to determine

the best learning rate, which was chosen from the range 10−4 to

10−1. The batch size was selected from the options 4, 8, 16, 32,

and the train-test split ratio was chosen from 0.2, 0.25, 0.3, based

on unique subject IDs. The optimizer was chosen between SGD

and Adam. Additionally, early stopping with a patience of 10 was

implemented, with the initial number of epochs set to 100 to

prevent overfitting. Cross-Entropy loss is used for training. The

classification tasks include (i) MCI vs. HC (for both ADNI and

our in-house dataset), (ii) EMCI vs. HC (ADNI), (iii) LMCI vs. HC

(ADNI), and (iv) EMCI vs. LMCI (ADNI). The entire experiment is

conducted on 24 GB NVIDIA A5000 GPUs and the PyTorch deep

learning framework.

3 Results

This study utilizes persistent homology to investigate

variations in brain network topology between healthy

individuals and those diagnosed with MCI having different

stages (Early/Late). Positively correlated graphs are generated

for six classical brain networks—CB, CO, DMN, FP, OP, and

SM—derived from 160 Dosenbach ROIs, shown in Figure 2.

These brain connectivity graphs are constructed based on

the rs-fMRI time series of each network, considering only

instances where both marginal and partial correlations exhibit

positive values.

First, graph filtration is employed to compute persistent

homology for dimension-0 and -1 across each of the six
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FIGURE 5

The deep learning architecture for classification using persistent diagrams generated with Vietoris-Rips filtration.

brain network. The resulting persistence diagrams are then

examined to identify key topological features. As outlined in

the methodology, each point in a persistence diagram represents

a specific topological feature, where the difference between the

“birth” and “death” values signifies the lifespan or persistence

of a feature. Longer persistence indicates more prominent

or stable topological characteristics. Figure 4 visually illustrates

significant differences in topological features among the three

groups: HC, EMCI, and LMCI. The persistence barcodes for

one representative subject from each group are shown for both

dimension-0 (connected components) and dimension-1 (loops).

The control group exhibits fewer topological features, and these

features tend to have shorter lifespans, indicating more transient

or less complex network structures. Additionally, there is minimal

variation in the persistence of these features, suggesting more

uniform brain network topology across healthy individuals. In

contrast, the EMCI group displays a wider range of topological

features. While some features have short lifespans, similar to

those in the HC group, EMCI also shows several features that

persist for longer duration. This suggests that EMCI individuals

have more complex and diverse topological structures than HC,

potentially reflecting early-stage disruptions in brain network

connectivity. The LMCI group, on the other hand, presents a

distinctive pattern. Most features in the persistence diagrams

have relatively short lifespans, indicating that the majority of

topological structures in their brain networks are transient or

unstable. However, LMCI also demonstrates a few long-persisting

features, which last longer than those observed in both the HC

and EMCI groups. These features may represent more pronounced

or severe alterations in brain connectivity, characteristic of

late-stage MCI.

3.1 Significant topological di�erences are
obtained in raw persistence features
between HC and MCI-subtypes

As discussed in Section 2.6.1, inter-subject Wasserstein

distances (shown in Figure 1H) are computed from the raw

persistence features derived through graph filtration to assess

dissimilarities between the persistence diagrams of healthy and

diseased groups. In this study, the Wasserstein distance serves as a

metric for comparing the raw persistent homology features of brain

connectivity graphs, providing valuable insights into structural

variations across different subjects. In order to determine whether

the topological features as obtained through persistent homology

differ significantly between study groups, we tested the hypothesis

that the difference in mean distribution of Wasserstein distances

is statistically significant between healthy individuals and MCI

groups. For this, the Wilcoxon rank-sum test is conducted at a

95% confidence interval for each of the six brain networks. Table 2

presents the statistical results for the inter-subject Wasserstein

distance computed from the 0- and 1-dimensional raw persistent

homology features for both the ADNI and TLSA datasets. The

results show statistically significant differences (p < 0.001) in most

persistence features across all six networks between healthy and

MCI groups, as well as between different MCI sub-types.
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TABLE 2 Result of Wilcoxon rank-sum test at 95% C.I. to check if the changes in Wasserstein distance is statistically significant.

Network Homology ADNI data TLSA data

Dimension HC vs. EMCI HC vs. LMCI EMCI vs. LMCI HC vs. MCI

CB H0 p < 0.001 p < 0.001 p < 0.001 p < 0.001

H1 p < 0.001 p < 0.001 NS p < 0.001

CO H0 p < 0.001 p < 0.001 p < 0.001 NS

H1 p = 0.01 NS NS p < 0.001

DMN H0 p < 0.001 p < 0.001 p < 0.001 p < 0.001

H1 p < 0.001 p < 0.001 p < 0.001 p = 0.03

FP H0 p = 0.02 p < 0.001 p < 0.001 p < 0.001

H1 p < 0.001 p < 0.001 p < 0.001 NS

OP H0 p < 0.001 p = 0.001 p < 0.001 p < 0.001

H1 p = 0.001 p < 0.001 p < 0.001 p < 0.001

SM H0 NS p < 0.001 p < 0.001 p = 0.008

H1 p < 0.001 NS p < 0.001 NS

This is performed using top 10 most persistent features, between Healthy Control (HC), early MCI (EMCI), and late MCI (LMCI) for different brain networks in ADNI data and TLSA data.

3.2 Classification using top ten most
persistent features

The analysis of persistence diagrams reveals notable differences

in the topological characteristics of MCI and its sub-types

compared to HC, as derived through graph filtration. The

differences in the number, persistence, and variation of topological

features provide valuable insights into the progression of brain

network changes from healthy to early and late MCI. As discussed

earlier, features that persist longer tend to better capture the

underlying topological structure of the graph compared to the

features that do not persist longer and might actually be a

result of noise. Therefore, for classification purpose, the top ten

most persistent features of H0 and H1 are used separately to

differentiate the three groups using stacked ensemble classifier.

However, while comparing the classification performance between

the two homology dimensions, the best classification accuracy is

found with most persistent H1 features, with 63.9% in classifying

EMCI vs. LMCI in the DMN. For our in-house TLSA data, the

model classified HC vs. MCI with the accuracy of 71.4% in the

DMN. The performance of the stacked classifier in classifying

MCI sub-types and healthy controls is summarized in Table 3.

While graph filtration successfully captures some degree of network

topology, the model’s limited performance suggests that the raw

persistent homology features may not fully exploit the complexity

of the underlying brain network’s structure, particularly in more

challenging classification tasks.

3.3 Classification using inter-ROI
Wasserstein distance as features

In addition to graph filtration, Vietoris-Rips filtration is utilized

to derive persistence diagrams. As previously discussed, Vietoris-

Rips filtration applies persistent homology to dimensions 0, 1, and

2 on 3D point clouds constructed from rs-fMRI time series data.

This process helps identify persistent topological features within

the point clouds. To quantify the dissimilarities between persistence

diagrams, the Wasserstein distance metric is employed. The inter-

ROIWasserstein distance (WDROI) is calculated for each homology

dimension (H0,H1, andH2) based on the persistence diagrams, and

these distances are then used as input features in a convolutional

neural network (CNN)model for classification. The performance of

the proposed CNN model, using inter-ROI Wasserstein distances

as features, in classifying MCI and its subtypes is summarized in

Table 4. The CNNmodel achieves a classification accuracy of 85.7%

for the in-house TLSAMCI cohort. However, when classifyingMCI

subtypes from healthy controls, the accuracy drops to 70.8% in

distinguishing EMCI from HC and classification of LMCI from

HC achieves an accuracy of 81.0%, which is on par with the TLSA

HC vs. MCI classification.When distinguishing between EMCI and

LMCI, the model attains an accuracy of 77.3%.

3.4 Comparison between graph vs.
Vietoris-Rips filtration

While comparing the classification performance between these

two types of filtrations, it is seen that the proposed CNN

model using Vietoris-Rips filtration and inter-ROI Wasserstein

distance features outperformed the stacked ensemble classifier

based on graph filtration in all classification tasks. The Vietoris-Rips

filtration demonstrated better accuracy in differentiating between

MCI subtypes and HC, indicating that it captures more detailed

topological features of brain connectivity networks. This suggests

that Vietoris-Rips filtration provides a more robust representation

of brain network topology for MCI classification. The superior

performance of Vietoris-Rips filtration when comparing these two

filtration methods can be attributed to three key factors, which have

both methodological and biological significance. This comparison

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2025.1518984
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bhattacharya et al. 10.3389/fnins.2025.1518984

TABLE 3 The classification accuracy (in %) as obtained across six functional brain networks using stacked ensemble classifier with top ten most

persistent raw homology features for dimension-1.

Network ADNI data TLSA Data

HC vs. EMCI HC vs. LMCI EMCI vs. LMCI HC vs. MCI

DMN 53.6 50.0 63.9 71.4

FP 55.1 51.6 50.8 60.0

OP 57.9 56.0 49.0 50.0

SM 53.6 54.7 57.0 66.67

CO 61.8 53.0 54.0 60.0

CB 58.8 50.0 59.0 60.9

The maximum accuracy values, obtained from graph filtration are shown in “bold”.

TABLE 4 The classification accuracy (in %) as obtained across six distinct brain networks using CNN with Inter-ROI Wasserstein Distance as features.

Comparison Dataset Homology
dimension

DMN FP OP SM CO CB

HC vs. EMCI ADNI H0 70.8 56.0 56.7 57.8 61.4 67.2

H1 70.2 56.3 66.0 66.7 61.9 60.9

H2 66.6 60.0 69.1 66.52 55.4 66.1

HC vs. LMCI ADNI H0 66.7 71.0 81.0 60.0 66.1 63.2

H1 67.6 58.7 75.0 67.2 68.2 64.3

H2 74.6 59.7 65.6 63.6 71.4 50.0

EMCI vs. LMCI ADNI H0 69.8 54.5 68.2 69.9 62.9 63.3

H1 58.1 75.4 65.7 70.0 77.3 58.3

H2 58.7 71.9 57.7 66.7 61.4 71.6

HC vs. MCI In-house

TLSA

H0 85.7 78.6 64.7 78.6 71.4 70.6

H1 64.7 64.3 71.4 71.4 82.4 78.6

H2 85.7 64.7 71.4 78.6 85.7 64.3

Split based on Unique subjects. The highest accuracy values are shown in “bold”.

is depicted in Figure 6 through a bar diagram and is further

elaborated in the subsequent subsections.

3.4.1 Point cloud representation vs. fixed graph
structure

Vietoris-Rips filtration operates on 3D point clouds generated

from rs-fMRI time series data, offering a more dynamic and

flexible representation of brain connectivity. These point clouds

allow the method to capture the underlying topological features

of functional connectivity across brain regions. Each point

represents temporal interactions between regions, making this

method particularly sensitive to the non-linear and time-varying

nature of brain dynamics. Graph filtration, by contrast, relies on

fixed connectivity matrices, which are based on static, pairwise

relationships. While this approach captures local connectivity

between specific brain regions, it lacks the flexibility to reflect the

dynamic changes that occur over time in the brain’s functional

network. In neurodegenerative diseases like MCI, brain networks

undergo dynamic reorganization as cognitive decline progresses.

The flexibility of Vietoris-Rips filtration allows for the detection

of subtle changes in functional connectivity over time, offering a

deeper understanding of early disease progression. Capturing these

temporal variations is crucial for early diagnosis and intervention

in MCI, as it provides a more complete picture of how functional

networks are disrupted.

3.4.2 Inter-ROI Wasserstein distance vs. lifespan
features

The key distinction between the two approaches lies in

the use of inter-ROI Wasserstein distance in Vietoris-Rips

filtration. This distance metric quantifies the similarity between

persistence diagrams across all ROIs, enabling a more direct

and comprehensive comparison between subjects. This offers

more global insights into how the overall network topology

changes in response to disease progression. In contrast, graph

filtration uses the lifespan of the topological features (connected

components in dimension 0 and loops in dimension 1) within

the connectivity matrix. This approach focuses on local features,

emphasizing persistence within individual brain regions but

potentially overlooking global interactions across different parts of

the brain. Neurodegenerative diseases like MCI are characterized

by disruptions in inter-regional brain communication and
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FIGURE 6

Illustration of the comparative analysis between graph filtration and Vietoris-Rips filtration for both dimension-0 (H0) and dimension-1 (H1) in the

classification of (A) healthy controls (HC) vs. early mild cognitive impairment (EMCI), (B) HC vs. late mild cognitive impairment (LMCI), (C) EMCI vs.

LMCI, and (D) HC vs. mild cognitive impairment (MCI) based on TLSA data. The plot clearly highlights the superiority of Vietoris-Rips filtration over

graph filtration, showcasing its enhanced ability to di�erentiate between these cognitive states.

synchronization. The Wasserstein distance, by comparing

persistence diagrams across ROIs, better captures the overall

dissimilarity in brain network topology between healthy and

diseased states. It reflects how disease-related changes impact the

global organization of brain networks, including how different

regions fall out of synchrony or lose coordination, a hallmark of

MCI. In contrast, the lifespan features from graph filtration may

miss these more global and inter-regional shifts in connectivity.

3.4.3 Richer topological features in Vietoris-Rips
filtration

While both graph filtration and Vietoris-Rips capture

topological features like connected components (dimension 0) and

loops (dimension 1), Vietoris-Rips goes beyond by incorporating

dimension 2 (voids), which graph filtration inherently cannot

do due to its 1D simplicial complex structure. This additional

dimensionality allows for a more comprehensive representation of

brain connectivity, capturing complex relationships among brain

regions that could reflect higher-order cognitive processes. Study

of this higher-order dynamics could be essential in understanding

the breakdown of brain networks in MCI. Since cognitive decline

affects complex networks, Vietoris-Rips filtration is better suited to

reflect the disruptions in these interactions. Although individual

inter-ROI Wasserstein distance features from each dimension are

fed into the CNN, the additional dimensionality (H2) provided

by Vietoris-Rips filtration enriches the feature set by capturing

higher-order interactions, global topological structures, and

interdependencies between dimensions. These factors contribute

to the improved classification performance, as they offer a more

comprehensive representation of the brain’s connectivity network,

critical for detecting early pathological changes in MCI. The

methodological advantages of Vietoris-Rips filtration, including

its capacity to operate with flexible point clouds, the application

of inter-ROI Wasserstein distance for global comparisons, and the

incorporation of higher-dimensional simplices, hold substantial

clinical significance for enhancing our understanding of MCI. The

superior performance of Vietoris-Rips filtration in distinguishing

MCI sub-types from healthy indivisuals demonstrates its potential

to capture complex, dynamic changes in brain connectivity that are
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crucial for early detection and classification of neurodegenerative

diseases. These factors combine to make Vietoris-Rips filtration

a more biologically meaningful and technically robust approach

for classifying brain network alterations in MCI, offering deeper

insights into the disease’s impact on brain topology and potential

for improved diagnosis and intervention strategies.

3.5 Comparison with state-of-the-art
techniques

To assess the effectiveness of our proposed methodology,

we compared the classification results from our approach with

those from previous studies. Various methodologies previously

have been employed for the automated diagnosis of MCI sub-

types and HC, including the sub-network kernel method (Jie

et al., 2018b), a multiple-BFN-based 3D CNN framework (Kam

et al., 2020, 2018), integrating temporal and spatial properties of

network (Jie et al., 2018a), the Spatial-Temporal convolutional-

recurrent neural Network (STNet) (Wang et al., 2020). Although

these methods demonstrate commendable performance, our

approach of leveraging inter-ROI Wasserstein distance as features

for classification, significantly outperforms them. We achieved

accuracy of 70.8% for distinguishing between HC and EMCI,

81% for HC vs. LMCI, 77.3% for differentiating between EMCI

and LMCI, and 85.7% for HC vs. MCI in the TLSA dataset.

Our results specifically highlight the potential of using inter-

ROI Wasserstein distance to capture subtle differences in brain

connectivity patterns. Table 5 presents a detailed comparison of the

classification performance between the proposed methodology and

other state-of-the-art approaches, underscoring the robustness and

clinical relevance of our findings in the context of MCI diagnosis.

4 Discussion

Over the past two decades, numerous fMRI studies have been

conducted to examine brain connectivity patterns in individuals

with neurological and psychiatric disorders, as well as in healthy

controls, both during various cognitive tasks and in resting-state

conditions (Bhattacharya et al., 2025; Devika and Ramana Murthy,

2021; Devisetty andAmsitha, 2022; Venkatapathy, 2023;Manickam

et al., 2024). However, the lack of a standardized clinical test and

the absence of a cure for dementia have prompted the exploration

of machine learning as a means to identify individuals at risk

of developing cognitive impairment, thereby enabling proactive

intervention (Stamate et al., 2018). In this context, the application

ofmachine learning techniques has shown significant promise, with

studies reporting their ability to accurately differentiate between

individuals with early and late stages of MCI, as well as those who

are cognitively healthy (Stamate et al., 2018; Danso et al., 2021;

Basheera and Sai Ram, 2019). One of the key advantages of using

machine learning is its capacity to identify subtle, complex patterns

in data that may not be easily discernible to the human eye. This is

particularly relevant in the context of neurodegenerative diseases,

where the underlying pathological changes often occur years before

the onset of clinical symptoms (Danso et al., 2021).

TABLE 5 Comparative analysis of the proposed method with recent

state-of-the-art techniques that used fMRI data to di�erentiate MCI

sub-types and healthy.

References Modality Comparison Accurcay

Kam et al.

(2018)

fMRI (ADNI) HC vs. EMCI 74.23%

Jie et al.

(2018b)

fMRI (ADNI) EMCI vs. LMCI 74.8%

HC vs. MCI 82.6%

Jie et al.

(2018a)

fMRI (ADNI) EMCI vs. LMCI 78.8%

Kam et al.

(2020)

fMRI (ADNI) HC vs. EMCI 76.07%

Wang et al.

(2020)

fMRI (ADNI) EMCI vs. LMCI 79.36%

Lee et al.

(2021)

fMRI (ADNI) HC vs. EMCI 74.42%

Yang et al.

(2021)

fMRI (ADNI) HC vs. LMCI 87.23%

Bolla et al.

(2023)

fMRI (ADNI) HC vs. MCI 90%

Ammu et al.

(2024)

fMRI (ADNI) HC vs. MCI 89.47%

Proposed Methodology (2024)

Graph

Filtration

fMRI (ADNI) HC vs. EMCI 61.8%

HC vs. LMCI 56.0%

EMCI vs. LMCI 63.9%

In-House TLSA HC vs. MCI 71.4%

Vietoris-Rips

Filtration

fMRI (ADNI) HC vs. EMCI 70.8%

HC vs. LMCI 81.0%

EMCI vs. LMCI 77.3%

In-House TLSA HC vs. MCI 85.7%

The best result as obtained from the proposed methodology is shown in “bold”.

Numerous studies have attempted to distinguish MCI and its

sub-types, often with moderate success in terms of classification

accuracy. Unlike traditional methods, our approach introduces

an innovative technique grounded in computational topology,

specifically utilizing persistent homology from topological data

analysis. The proposed study is unique in its application of machine

learning combined with persistent homology to explore changes

in brain network topology between HC and MCI subtypes (early

and late) using fMRI time series data. While most state-of-the-

art techniques, such as deep learning and network-based methods,

focus on spatial and temporal features or rely on predefined

connectivity metrics, our approach captures deeper, more intrinsic

properties of brain networks. Persistent homology allows us to

identify topological structures, such as connected components,

loops, and voids, offering a global view of brain connectivity beyond

pairwise interactions. Our study goes beyond conventional network

metrics by applying topological data analysis to brain networks,

enabling a deeper exploration of the complex geometry and

topology of brain function. This approach captures subtle structural

differences in brain network topology that are often overlooked by
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FIGURE 7

Illustrating the di�erences in six standard Clinical Dementia Rating (CDR) features between two distinct study populations: (i) the ADNI cohort and (ii)

the in-house TLSA cohort.

traditional methods. Additionally, Persistent homology is leveraged

using two different kinds of filtration techniques: Vietoris-Rips

filtration on 3D point cloud and graph filtration on positively

correlated network, as constructed from rs-fMRI time series

data. This dual approach introduces novelty by offering a more

comprehensive understanding of brain network topology. The

graph filtration captures local connectivity features, while Vietoris-

Rips filtration incorporates higher-dimensional interactions and

global topological insights. By comparing these methods, the

study highlights how different filtration techniques can reveal

unique aspects of brain network reorganization in MCI; setting a

new direction for the application of topological data analysis in

neurological research.

In case of Vietoris-Rips filtration, the 3D point cloud is

generated from 1D fMRI time series using sliding window

embedding. Vietoris-Rips filtration is then applied to construct

simplicial complexes and compute persistent homology features

across dimension-0, 1, and 2. Inter-ROI Wasserstein distances

are computed between persistence diagrams for each subject

and for each dimension which is then used as features for

classification via a CNN. In contrast, for graph filtration,

connectivity matrices are constructed from 1D fMRI time

series data using partial and marginal correlations. Persistent

homology is computed for dimensions 0 and 1, and the top

10 most persistent features are used for classification via a

stacked ensemble classifier. Furthermore, inter-subject Wasserstein

distances between persistence diagrams as obtained through graph

filtration for both homology dimensions are computed to assess

statistically significant differences between the study groups.

Though both methods gave decent performance in distinguishing

for healthy and MCI, but, classification accuracy obtained

using inter-ROI Wasserstein distance between persistent diagrams

obtained using Vietoris-Rips filtration as feature significantly

outperformed the graph filtration method that used the raw top

ten most persistent homology features for classification. This is

primarily because of its ability to work with flexible point clouds

generated from rs-fMRI time series, rather than being constrained

to fixed graph structures. This flexibility allows Vietoris-Rips

to capture more detailed topological features across multiple

dimensions- dimension-0 (connected components), 1 (loops), and

2 (voids), whereas graph filtration is limited to dimensions 0 and 1.

Additionally, the use of inter-ROIWasserstein distance in Vietoris-

Rips filtration offers amore global comparison of brain connectivity

patterns, enabling better characterization of the overall network

topology. Neurodegenerative diseases like MCI affect large-scale

brain networks, disrupting both local and global connectivity.

Vietoris-Rips filtration captures these disruptions more effectively,

making it a more robust tool for identifying subtle changes in

brain network organization that are critical for early detection

and classification of MCI subtypes. This enhanced sensitivity to

complex network dynamics holds clinical relevance, as it may

improve the accuracy of diagnostic models forMCI and other brain

disorders.

Significant differences in classification accuracy are observed

between the two distinct cohorts, which is one limitation

of this study. These discrepancies arise from several factors.

Populations from different regions or ethnicities may exhibit

distinct demographic characteristics, genetic backgrounds, lifestyle

factors, cultural practices, socioeconomic conditions, education

levels, environmental exposures, and disease prevalence rates. Such

differences can influence brain structure, function, and connectivity

patterns, impacting the results of fMRI analyses. Figure 7

illustrates clear differences in six standard CDR features between

the two cohorts. Additionally, variations in data acquisition

protocols and imaging parameters may contribute to differences

in functional connectivity patterns between datasets. To mitigate

these limitations and strengthen the findings, further research

should aim to validate results across more diverse and larger
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cohorts. Moreover, future scope may include employing advanced

analytical approaches, such as multi-field topological analysis, may

provide deeper insights into the influence of these variables and

improve the generalizability of the results.

The present study underscores the clinical potential of

persistent homology as a powerful tool for analyzing complex

brain network dynamics. By leveraging persistent homology,

we were able to capture intricate topological features that

traditional methods might overlook, allowing for a more refined

differentiation between distinct cognitive states. Our findings

demonstrate the effectiveness of this approach in improving the

classification accuracy of MCI subtypes, supporting its potential

application in clinical diagnostics and decision-making. The

novelty of our study lies in its application of persistent homology

to identify subtle yet significant topological differences in brain

connectivity, which could enhance the precision of MCI diagnoses,

aid in tracking disease progression, and inform personalized

treatment strategies. Moreover, the success of our model suggests

that persistent homology could be extended to a wide range of

clinical settings for improving diagnostic accuracy and patient

outcomes across various neurological and medical conditions. Our

study highlights the potential of integrating persistent homology

into clinical workflows, offering the ability to enhance the precision

and effectiveness of cognitive assessments. In future, this represents

a significant advancement in the field of personalized medicine.

5 Conclusion

This study investigated the use of persistent homology

techniques, specifically Vietoris-Rips and graph filtration methods,

to examine complex brain network dynamics related to MCI.

Persistent homology offers a powerful mathematical approach

for analyzing topological features within data, and it shows

potential in detecting subtle connectivity patterns that may

indicate early cognitive decline. Through a comprehensive

comparative analysis, our results suggest that Vietoris-Rips

filtration may serve as an effective tool for diagnosing and

monitoring MCI. This technique provides a refined view of brain

connectivity alterations, with implications for advancing research

and interventions aimed at early detection and management of

cognitive decline.
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