
Frontiers in Neuroscience 01 frontiersin.org

osl-ephys: a Python toolbox for
the analysis of electrophysiology
data
Mats W. J. van Es 1*, Chetan Gohil 1,2, Andrew J. Quinn 1,3 and
Mark W. Woolrich 1

1 Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department
of Psychiatry, University of Oxford, Oxford, United Kingdom, 2 Brain and Mind Centre, School of
Medical Sciences, University of Sydney, Sydney, NSW, Australia, 3 Centre for Human Brain Health,
School of Psychology, University of Birmingham, Birmingham, United Kingdom

We describe OHBA Software Library for the analysis of electrophysiology data
(osl-ephys). This toolbox builds on top of the widely used MNE-Python package
and provides unique analysis tools for magneto−/electro-encephalography (M/
EEG) sensor and source space analysis, which can be used modularly. In particular,
it facilitates processing large amounts of data using batch parallel processing,
with high standards for reproducibility through a config API and log keeping, and
efficient quality assurance by producing HTML processing reports. It also provides
new functionality for doing coregistration, source reconstruction and parcellation
in volumetric space, allowing for an alternative pipeline that avoids the need for
surface-based processing, e.g., through the use of Fieldtrip. Here, we introduce
osl-ephys by presenting examples applied to a publicly available M/EEG data (the
multimodal faces dataset). osl-ephys is open-source software distributed on the
Apache License and available as a Python package through PyPi and GitHub.

KEYWORDS

magnetoencephalography (MEG), electroencephalography (EEG), MNE-Python,
electrophysiology, python, toolbox, analysis, M/EEG

1 Introduction

The analysis of neuroimaging data typically involves a series of complicated analysis steps
which are deployed heterogeneously to suit both the dataset and the scientific question. In
non-invasive human electrophysiology data, particularly magnetoencephalography (MEG)
and electroencephalography (EEG), these steps include but are not limited to: preprocessing
to clean the raw recordings, co-registration with other data modalities (e.g., Polhemus, MRI),
source reconstruction, and a plethora of (mass) univariate or multivariate statistical analyses.

To this aim, the field has traditionally relied on a suite of open-source software toolboxes
developed by individual research groups or community efforts (Delorme and Makeig, 2004;
Litvak et al., 2011; Oostenveld et al., 2011; Tadel et al., 2011; Jenkinson et al., 2012; Gramfort,
2013; Lopez-Calderon and Luck, 2014; OHBA Analysis Group, 2014). However, most of these
rely on licensed, third-party software like MATLAB (The MathWorks Inc, 2020), which makes
it costly and limits processing of large amounts of data. Because of this, there is a current shift
in the field to adopt the Python programming language and multiple Python packages
specifically designed for the analysis of electrophysiology data have recently been published
(Gramfort, 2013; Schirrmeister et al., 2017; Lu, 2020; Sabbagh et al., 2020; Brodbeck et al.,
2023; Gohil et al., 2023; Jas et al., 2023; Ågren, 2023). Of these, MNE-Python (Gramfort, 2013;
Larson et al., 2023) is by far the most widely adopted.

OPEN ACCESS

EDITED BY

Adeel Razi,
Monash University, Australia

REVIEWED BY

Gareth Barnes,
University College London, United Kingdom
Marco Tagliaferri,
University of Trento, Italy

*CORRESPONDENCE

Mats W. J. van Es
 mats.vanes@psych.ox.ac.uk

RECEIVED 04 November 2024
ACCEPTED 30 January 2025
PUBLISHED 21 February 2025

CITATION

van Es MWJ, Gohil C, Quinn AJ and
Woolrich MW (2025) osl-ephys: a Python
toolbox for the analysis of electrophysiology
data.
Front. Neurosci. 19:1522675.
doi: 10.3389/fnins.2025.1522675

COPYRIGHT

© 2025 van Es, Gohil, Quinn and Woolrich.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Methods
PUBLISHED 21 February 2025
DOI 10.3389/fnins.2025.1522675

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1522675&domain=pdf&date_stamp=2025-02-21
https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/full
https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/full
mailto:mats.vanes@psych.ox.ac.uk
https://doi.org/10.3389/fnins.2025.1522675
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1522675

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 02 frontiersin.org

The field also sees an increasing use of publicly available and large
datasets. At the same time, there are higher requirements for
transparency and reproducibility by academic journals. Therefore,
analysis tools must adapt to help meet these needs. One solution is
MNE-Python’s MNE-BIDS-pipeline, which offers automated
processing of M/EEG data in BIDS format through a configuration
API. However, specification of the configuration is arguably
non-trivial, and the pipeline does not allow for full analysis flexibility.

Here, we present the osl-ephys toolbox, a free and open-source
Python package for the analysis of electrophysiology data, and part of
the OHBA Software Library (OSL). It is built on, and augments, the
MNE-Python toolbox (Gramfort, 2013; Larson et al., 2023), and is
developed with the following core principles:

 1. Efficient processing of large amounts of data;
 2. A concise configuration API that summarises a reproducible

processing pipeline, and is easy to specify, interpret, and share;
 3. Automatic generation of log files and HTML processing reports

to enable reproducibility and provide quality assurance.
 4. A modular setup, to facilitate integration with MNE-Python

and other, third-party toolboxes in Python, or other
programming languages (e.g., MATLAB).

Moreover, the toolbox contains unique processing functions for
analysing M/EEG data, including FSL-based (Freesurfer independent)
coregistration and volumetric source reconstruction pipeline
(Jenkinson et al., 2012).

The toolbox has a user friendly Application Programming
Interface (API) based on the specification of a “config” object, which
concisely holds all the information needed for the processing steps to
apply. This helps ensure reproducibility and facilitates the processing
of large amounts of data. Below we briefly outline the architecture of
the toolbox and the API, before presenting examples of each module.

2 Methods

2.1 Documentation

Documentation is available on readthedocs.1 This includes
installation instructions (including setting up, e.g., Conda, FSL, etc.),
a full list of function references (API), and tutorials. Source code is
available on GitHub,2 and includes a list of requirements.

2.2 Overview

Osl-ephys uses MNE-Python as a backbone. For example, data
classes like Raw, Epochs, Evoked, Info, and other classes are directly
adopted and used, and M/EEG data derivatives are typically saved as
“fif ” files. This allows for a seamless integration of our toolbox with
MNE-Python, or with other Python and MATLAB based toolboxes.
It is straightforward for a user to a subset of the data processing

1 https://osl-ephys.readthedocs.io/en/latest/

2 https://github.com/OHBA-analysis/osl-ephys/tree/main

pipeline in MNE-Python or other analysis toolboxes, while switching
to and from ours. Table 1 summarises the added functionality of our
toolbox over MNE-Python and MNE-BIDS-pipeline.

Because the field of cognitive neuroscience is inherently
multidisciplinary, individual researchers often lack formal training in
programming. Therefore, usability and reproducibility are at the heart
of the toolbox’s design philosophy. In particular, in the two main
modules (preprocessing and source_recon, see below) a processing
pipeline is defined in the form of a comprehensive configuration
(“config”) API. This is a Python dictionary that specifies the call to
individual functions and the parameter settings for each. The user will
typically specify the config as a string. During the processing, the
toolbox handles data bookkeeping and other complexities behind the
scenes. A feature of the config is that it is easily shareable and can
be easily used to reproduce analyses.

In the two main modules, the user typically interacts with high
level pipeline “chain” and “batch” functions. These functions simply
loop over the analysis steps specified in the config and call the
appropriate function, together with the parameter arguments, to the
data. Here, the batch function is used if the user wants to process
multiple datasets at a time by efficiently looping the chain function
over the datasets (see Section “Batch processing”). Both functions take
as main input arguments the config, and the input and output
directories. In addition, these functions can create log files and HTML
reports (see below). The log files improve reproducibility by writing
information on processing steps, random seed, etc. The reports
summarise the processing and can guide quality assurance.

2.3 Modules

The toolbox contains several modules that provide tools for a
specific analysis goal, e.g., preprocessing, source reconstruction, GLM,
etc. These modules are designed such that they can be flexibly
combined with third party toolboxes.

2.3.1 Preprocessing
The preprocessing module contains functionality to pre-process

M/EEG data. A simple example is given in Listing 1A. Preprocessing
can include (wrapper) functions for, e.g., filtering, selecting data,
resampling, bad channel/segment detection (Independent Component
Analysis). It can also include more advanced analysis steps, e.g.,
spectral analysis using multi-tapers, and even group-level analysis.
Beside the plethora of functions offered by MNE-Python, this module
also contains unique functions, e.g., identifying bad channels/
segments using a generalised ESD test (Rosner, 1983). It also includes
wrappers to licensed MaxFilter™ software for maxwell filtering
(though the open-source implementation in MNE-Python is also
available). User defined functions can also be supplied to the toolbox
to offer fully flexible pipelines (see Listing 1B and section “Custom
functions”). Lastly, this module also allows for functions to be run on
the group level, e.g., for statistical analysis.

The main user functions in the preprocessing module are the
“chain” and “batch” pipeline functions. These load in the input data
and represent them in a Python dictionary. Other derivatives
generated during preprocessing will be added to the dictionary, which
is ultimately returned by the chain/batch functions and individual
items are saved to disk.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://osl-ephys.readthedocs.io/en/latest/
https://github.com/OHBA-analysis/osl-ephys/tree/main

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 03 frontiersin.org

In addition to the above, the preprocessing module contains
command line functionality for interactive labelling of bad ICs using
a graphical user interface (see section “Examples”).

2.3.2 Source reconstruction
The source_recon module contains tools for coregistration,

volumetric and surface based source reconstruction, and for
working with source space data more generally. The module
enables a cortical surface source reconstruction pipeline based on
FreeSurfer (Fischl, 2012), as is used in MNE-Python, or a
volumetric source reconstruction pipeline based on FSL (Jenkinson
et al., 2012), which is computationally less expensive. The
FSL-based pipeline is currently not available in MNE-Python and
is unique to our Python toolbox (though it still relies on low-level
MNE-Python functions on the backend).

Typically, the steps used in the coregistration and source
reconstruction pipeline are as follows:

 1. Compute surfaces. Options for using FSL to extract the inner
skull, outer skin (scalp) and brain surfaces from structural, T1
weighted MRI (sMRI) data, or to use FreeSurfer’s recon-all for
cortical reconstruction.

 2. Coregistration. Coregisters the M/EEG data, head digitisation
points (i.e., Polhemus), and sMRI data. This can be done using
FSL-based Registration using Headshapes Including Nose in OSL
(RHINO), analogous to the MATLAB implementation (OHBA
Analysis Group, 2014), or using the FreeSurfer-based automatic
pipeline in MNE-Python.

 3. Forward modelling. This is a wrapper for mne.
make_forward_solution.

 4. Source modelling. Typically done using a LCMV beamformer
(Van Veen et al., 1997), or linear inverse methods (e.g.,
Minimum Norm Estimate).

Source reconstruction to the source dipole grid can then
be followed by use of a pre-defined parcellation to extract parcel time
courses, and including the reduction of spatial leakage and correction
for sign ambiguities:

 5. Parcellation. Parcellates a volumetric or surface-based dipole
grid of source estimates by taking the principal component
(or spatial basis set) of all dipoles in a parcel from a chosen
Nifti parcellation or FreeSurfer annotation. Multiple
standard volumetric parcellation templates are supplied
[e.g., AAL (Tzourio-Mazoyer et al., 2002)], as well as fMRI-
derived parcellations optimised for M/EEG data (i.e., with a
lower amount of parcels to match the rank of M/EEG data;
e.g., Giles39 (Colclough et al., 2015), and Glasser52 (Kohl
et al., 2023)), as well as those supplied by FreeSurfer (e.g.,
Desikan et al., 2006; Destrieux et al., 2010; Thomas Yeo
et al., 2011).

 6. Symmetric orthogonalisation. The inverse problem in MEG is
ill-posed because there are many more potential sources than
MEG sensors. Estimated source activity is therefore correlated
over spaces, which can cause spurious correlations between
source time courses. We use symmetric multivariate leakage
reduction (Colclough et al., 2015) to correct for these artificial
correlations between a set of multiple regions of interest (i.e.,
parcels). Note that by being multivariate, this also corrects for
so-called “ghost interactions” or “inherited connections”
(Colclough et al., 2015; Palva et al., 2018).

 7. Sign flipping. Ambiguities in the orientation of source dipoles
and calculation of parcel time courses (e.g., through PCA)
result in an ambiguity in the orientation, or polarity, of the
parcel time courses. We adjust the orientation/polarity of the
parcel time courses using the assumption that we expect
correspondence in the functional connectomes from different

TABLE 1 Comparison of Osl-ephys to MNE-Python and MNE-BIDS-pipeline.

Osl-ephys MNE-Python MNE-BIDS-pipeline

Pipeline API Text config Custom scripts Text config

Flexibility – order of analysis steps Any Any Fixed

Flexibility – third-party functions Internal + external Internal + external Internal

Flexibility – input data organisation Any format Any format BIDS format

Parallelisation Processing duration

(Example in 3.1 or equivalent)

Parallelization using Dask 21 min on 16 CPU cores* N/A 175 min on 1 CPU core* Parallelization using Dask N/A

Transparancy/Reproducibility - Automatic generation of log files and HTML reports

 - Config is saved in MNE objects

N/A - Automatic generation of

HTML reports

Quality assurance Automatic HTML subject and summary reports Manual HTML report building

(i.e., mne.Report)

Automatic HTML reports

Inputs for source reconstruction FreeSurfer or FSL FreeSurfer FreeSurfer

Extra functionalities (not exhaustive) - Efficient interactive ICA labelling

 - More options for detecting bad segments/channels

 - FSL based coregistration and source reconstruction

 - Volumetric parcellations

 - Resolving sign ambiguity

 - Orthogonalising parcel time courses

 - GLM

*Using Intel Xeon Gold 6,136 @ 3.0GHz processors and a total of 1.5 TB RAM.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 04 frontiersin.org

subjects. As such, we maximise the correlation of the
covariance matrices between subjects.

As with the preprocessing module, the source_recon module has
high-level pipeline functions that work with a config API, and can
optionally generate log files and HTML reports.

2.3.3 Custom functions
It is in general possible to supply the chain and batch functions

with custom written functions, defined by the user. These can
be readily supplied to the toolbox by specifying the function in the
config and supplying the list of custom functions to the extra_funcs
input variable in the chain/batch function. The only requirement is
that they adhere to the same structure as is used in lower level
functions throughout the toolbox (this is slightly different for
preprocessing and source reconstruction modules). This also facilitates
external contributions to the toolbox: if a user defines a custom
function that would be useful to a wider audience, it can easily
be adopted into the main toolbox (i.e., through Github). The general
function structure is outlined below.

Preprocessing module

 - The function must take “dataset” and “userargs” as inputs
 - Any options for the functions that are specified in the config can

be retrieved from userargs [i.e., using userargs.pop()]
 - The function must return “dataset”
 - Any key in “dataset” can be manipulated, either in place or by

adding a new key. New keys are saved by default in the
subject folder.

Source reconstruction module

 - The function can take any user-defined variables as input. All
inputs to the pipeline function are always passed to the
custom function.

 - Changes must be directly saved to disk, rather than returning
function outputs.

2.3.4 General linear model (GLM)
The GLM module contains data classes and functions that

combine functions from MNE-Python, custom code, and Python
packages for linear modelling (Quinn, 2019; Quinn and Hymers,
2020) into modality specific (e.g., M/EEG data) tools for linear
modelling. This includes the ability to do confound modelling and
hierarchical modelling, including for spectral analysis [i.e., instead of
the commonly used Welch periodogram, where the average is used;
(Quinn et al., 2024)], and significance testing via non-parametric
statistics. Additionally, it contains functions for visualising (statistically
significant) effects.

The GLM functionality cannot be directly added to a config for
the preprocessing or source_recon pipeline function, because of the
added complexity of specifying a design matrix. These tools are
typically applied in a separate Python script or by specifying a custom
function that is supplied to the preprocessing config (see section
“Examples”).

2.3.5 Utilities
The utils module contains several helpful utility functions that can

be directly deployed by the user, and/or is used in some of the higher
level toolbox functions. Current utility functions include data loaders
(for, e.g., OPM-MEG, SPM data), and functions for parallel processing

LISTING 1B

As in 1a, but now including a custom written function. The function
is defined at the top, and takes as input “dataset” (a dictionary
containing the MNE-Python objects, e.g., Raw), and a “userargs”
dictionary (containing the function variable specifications). The
function is included in the config, and supplied to chain function as a
list of extra functions in the “extra_funcs” input variable.

LISTING 1A

Example API in the preprocessing module. The config specifies the
processing recipe applied to the input. Preprocessed data are saved
in the processed/subject001 directory. Note that the source
reconstruction module works similarly (see section “Examples”).

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 05 frontiersin.org

(see 2.3 Batch processing), logging, simulation, and file handling (see
section “Examples”).

2.3.6 Report
The report module allows for the generation of interactive HTML

reports to gain insights into the analysis carried out by the high-level
pipeline functions and guide quality assurance (QA). Separate reports
are generated by default when using the preproc and source_recon batch
processing functions, but can also be created manually. They include a
subject report for in depth information about individual subjects/session,
and a summary report summarising measures all across subjects/session.

The subject report contains information about each recording
(e.g., number of sensors recorded, duration of the recording), and the
analysis in the form of data tables and (interactive) figures, e.g.,
showing which channels were marked as “bad,” the result of the
coregistration, etc. These figures are generated in a reports directory,
in subdirectories for each individual subject/session, together with a
data.pkl file. This file contains symbolic links to the appropriate
figures, as well as plain text and numeric information about the
session (e.g., also including a copy of the text from the log files).

The summary report gives an overview of the processing pipeline,
including custom function definitions, and has interactive data tables
summarising various metrics from all subject/session reports. This can
guide the user to have a detailed look at specific subject report, for
example for those subjects that had excessive number of channels
marked as “bad,” or high errors in the coregistration.

2.4 Batch processing

Essential in the design philosophy is the ability to process large
batches of data efficiently. The toolbox’s high-level “chain” functions
therefore have “batch” function counterparts, which take in a config
and lists of file paths for the data to be processed. We integrated Dask
(Dask Development Team, 2016) for parallel processing these batches
of data efficiently, using as many computational resources (i.e., CPU
cores) as the user has available. While this parallelisation is also
available in MNE-BIDS-pipeline, the analysis flexibility and unique
config API are not.

2.5 Log files

The chain and batch functions create log files to keep track of all
the functions and configuration options that were applied to the data,
and the output they generated. The log files also include the random
seed, which improves reproducibility of the pipeline (a global random
seed can also be set manually). Separate log files are created for each
subject/session, and a separate batch log is also created when using the
batch functions. The subject/session logs are also appended to the
preprocessed data, so a processed file will always contain a history of
the functions applied to it.

2.6 Examples

We use the publicly available multimodal faces dataset (Wakeman
and Henson, 2015), v0.1.1 available on OpenfMRI (Poldrack and

Gorgolewski, 2017), to illustrate the use of the toolbox. This dataset
contains data of 19 subjects, each of which participated in six MEG
recording sessions. The subjects engaged in a visual perception task
where they saw a series of famous, novel, familiar (repetitions of novel
faces) faces, and scrambled faces. To ensure participants were paying
attention, participants had to indicate whether faces were symmetrical
or asymmetrical with a button press. We analyse these data in a typical
analysis workflow that optimally demonstrates the use cases and API
of the toolbox; the research question is not based on scientific novelty.
Concretely, we first preprocess the MEG data in sensor space, and
then reconstruct the sources and combine them into 52 parcels (Kohl
et al., 2023). Next, we epoch the parcel time courses, and use a first
level GLM to contrast real faces minus scrambled faces, separately for
each session. We then model the group effect of this contrast in a
second level GLM. All scripts used for this analysis are available on
GitHub.3 HTML reports and log files are available on OSF.4

2.7 Development

The toolbox is under active development, and community
contributions are welcome on the GitHub page,5 in the form of GitHub
Issues and pull requests. New osl-ephys versions will be released on
GitHub and PiPy when significant changes in the toolbox have
been made.

2.8 Citing osl-ephys

For the most up to date information on how to cite the toolbox
read the CITATION file on GitHub.6

3 Results

Below, we show the results of using osl-ephys on the multimodal
faces dataset with a typical analysis pipeline, including:

 1. preprocessing,
 2. coregistration and source reconstruction.
 3. epoching and first-level GLM.
 4. second level (group) statistical analysis using a GLM.

The results shown here are based on osl-ephys 2.1.0, mne 1.3.1,
fslpy 3.11.3, and Python 3.8.16.

3.1 Batch preprocessing

Listing 2 shows how the preprocessing pipeline is setup in the
__main__ body of a Python script (Listing 2), which is necessary

3 https://github.com/OHBA-analysis/osl-ephys/tree/main/examples/

toolbox-paper

4 https://osf.io/2rnyg/

5 https://github.com/OHBA-analysis/osl-ephys/tree/main

6 https://github.com/OHBA-analysis/osl-ephys/blob/main/CITATION.cff

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://github.com/OHBA-analysis/osl-ephys/tree/main/examples/toolbox-paper
https://github.com/OHBA-analysis/osl-ephys/tree/main/examples/toolbox-paper
https://osf.io/2rnyg/
https://github.com/OHBA-analysis/osl-ephys/tree/main
https://github.com/OHBA-analysis/osl-ephys/blob/main/CITATION.cff

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 06 frontiersin.org

in order to use Dask for parallel processing. This first specifies the
inputs to preprocessing “batch” function and the config. The config
contains a meta section specifying the event codes and names for
each event, and a preproc section with each preprocessing step that
will be run in turn. The appropriate function is found by matching
the function name to (1) any custom written functions (supplied
to the “extra_funcs” parameter), (2) toolbox specific functions, and
(3) MNE-Python methods on Raw, and Epochs classes.

Next, the paths to the raw MEG data are specified using the
“Study” class. This enables data paths to be specified using multiple
wild cars, and selects existing paths that satisfy the wild cards [here,
all paths are selected, but, for example, one can select only the
sessions of, e.g., subject 1 using study.get(sub_id = 1)]. An output
directory and session subdirectories are then specified for saving each
session’s preprocessed data. Lastly, parallel computation is enabled
using Dask (having already specified the Dask Client). Running

LISTING 2

Osl-ephys batch preprocessing script.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 07 frontiersin.org

Listing 2 creates the output structure and derivatives in Figure 1.
Preprocessing of all 114 files took XX minutes on 12 CPU cores,
whereas it took XX times longer (XX minutes) when simply looping
the MNE-Python pipeline over sessions on a single CPU.

3.2 Logs and preprocessing report

The preprocessing batch function has additionally generated log
files for each session and a batch log file. The batch log documents high
level information about the batch processing including time stamps,
the random seed, the config, and in how many files preprocessing was
successful. Each session specific log file documents all processing steps
applied to the data, including other relevant function outputs (e.g., the
number of bad channels detected). The log files thus provide detailed
information and can aid in reproducibility of the pipeline.

The batch function additionally generates reports that can be used
for quality assurance (QA), and which can easily be shared. It contains
two HTML files: one for a subject level report (Figure 2) and one for a
summary (i.e., group-level) report (Figure 3). The subject report presents
detailed qualitative and quantitative metrics of the preprocessing applied
to each subject (e.g., general data info, number of bad channels/segments
detected, power spectra, etc.), whereas the summary report summarises

the batch preprocessing. It includes a table with summary metrics for
each subject (e.g., percentage of data marked as “bad,” number of bad
channels, number of ECG-related ICs, etc.). This table is interactive and
can guide the user to individual subjects/sessions which need to
be manually checked. This is especially useful when a large amount of
data is processed and manually checking each subject is not feasible.

For example, sorting the table based on Bad ICA (total) reveals
there were 27 bad ICs detected in sub008-run03, of which 26 were
labelled EOG. The subject report shows that most of these are
spurious, and thus this dataset requires extra attention, for example by
changing the preprocessing options or manually adapting the labels
(see 3.3 Manual ICA labelling). The reports also contain the batch and
subject logs respectively, and if present, the summary report contains
error logs for files that returned errors during preprocessing.

3.3 Manual ICA rejection

In MEG preprocessing, ICA is typically used to remove cardiac-and
ocular-related artefacts. The ICs that capture these physiological
artefacts can potentially be identified using the correlation with the
electrocardiogram (ECG) and electrooculogram (EOG) time series, if
these were recorded. If they are not, or if they are not of sufficient quality,
manual inspection might be necessary. A combination of automatic and
manual detection is recommended, i.e., manually refining the automatic
first-pass labelling based on the preprocessing report.

During batch preprocessing, ICA is run and identifies ICs with
high correlations with the EOG/ECG signals. However, these ICs have
not yet removed from the MEG data. As mentioned above, many ICs
were spuriously labelled in sub008-run03. The user can use the
interactive labelling tool to manually correct the selection of bad ICs.
It can be called from the command line (in the correct toolbox conda
environment) with only a handful required inputs, explained below:

(osle) > osl_ica_label reject_option
preproc_dir session_name

 • reject_option: indicating which of the ICs should be removed
from the data. Can be “all” (i.e., automatically and manually
labelled ICs), “manual” (i.e., only manually labelled ICs), or
“None” (i.e., save the ICA object but do not remove any
components from the data).

 • preproc_dir: general output directory, i.e., the same as supplied
to the pipeline function.

 • session_name: subject/session specific identifier, i.e., the same as
supplied to the pipeline function.

In this example, no components have yet been removed from the
data. First, the selected components need to be manually checked for
a few sessions. Therefore, the command line call is as follows:

(osle) > osl_ica_label None processed
sub008-ses03

This opens the interactive tool (Figure 4), which shows the IC
weights and time courses (and ECG/EOG time courses at the bottom).
The user can browse through ICs (vertical scroll bar) and time
(horizontal scroll bar) and (de-)select ICs where appropriate, using

FIGURE 1

The output directory structure of run_proc_batch. All outputs are
saved in the general output directory specified in the function call
(“processed”). Within this, a subdirectory is created for each subject/
session that contains the preprocessed data, as well as logs, and
preproc_report directories, containing the relevant files for all subjects.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 08 frontiersin.org

button pressed to optionally label selected ICs as correlate of artefact
types indicated on the right.

Further inspecting the summary and subject report also reveals that
the automatic bad IC detection did not identify any EOG-related
components and identified spurious ECG-related components in subject
19, and similarly in session 5 of subject 10. The ICA labels of these sessions
are also adapted using the same interactive graphical user interface. Once
the user is satisfied with the rejected components, the following command
line function is used to iteratively remove all the selected components
from the data, which will also automatically update the logs and reports:

(osle) > osl_ica_apply processed

3.4 Coregistration and source
reconstruction

As mentioned before (see section “Source reconstruction”), the
toolbox allows to use either outputs from FreeSurfer, or FSL for
coregistration and source reconstruction. It also contains wrapper
functions to both softwares such that extracting surfaces from sMRI
scans can be directly adopted in an osl-ephys pipeline. We here used a
pipeline using FSL, since this is a unique feature to this toolbox. Note
that examples for using FreeSurfer outputs are available on readthedocs.

For coregistration, the digitized head shape (i.e., from Polhemus)
is extracted from the preprocessed fif-file and stray points are

FIGURE 2

Example of the preprocessing subject report. This HTML page contains tabs for different aspects of QA for each subject/session. The user can browse
between tabs on the left for each subject/session in the list on the right. Each tab contains quantitative and qualitative information regarding the
preprocessing output.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 09 frontiersin.org

FIGURE 3

Example of the preprocessing summary report. Contains summary information and quantitative metrics of all files processed. The Preproc Summary
table is interactive and can guide the user to specific subjects/sessions which might require further attention.

FIGURE 4

Interactive labelling of independent components (ICs) using the osl_ica_label tool. The weights and time courses for each IC are shown as rows. Bad
ICs are indicated as coloured the time courses (i.e., other than black, see types on the right); annotations in the time courses indicate bad segments.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 10 frontiersin.org

removed (see Supplementary Listing 1). FSL is used to compute
surfaces of the full head surface, including the nose, and of the inside
and outside of the skull (i.e., using FLIRT and BET). The coordinate
systems of the MEG (device) space, (Polhemus) head space, and the
sMRI are coregistered with RHINO (OHBA Analysis Group, 2014),
which uses the additional information provided by the nose for
coregistration. Then, a forward model is computed using a single
shell Boundary Element Model (BEM), and volumetric LCMV
beamforming (Van Veen et al., 1997) is used to estimate source
activity on an 8 mm volumetric source grid. Source dipoles are
combined into a 52 parcels (Kohl et al., 2023) by estimating a spatial
basis set over all dipole locations within each parcel, and spatial
leakage is reduced between the parcels (Colclough et al., 2015).

Lastly, the orientation for each parcel is aligned over subjects
(Supplementary Listing 2). This pipeline generates all output data in
the same directory structure as the preprocessed data (SI Figure 1),
and in addition generates source subject and summary HTML
reports (Figure 5), which can be used for quality assurance.

3.5 Epoching and statistical analysis using
GLMs

For this example, we compare the activity in each parcel between
real faces and scrambled faces (Supplementary Listing 3). We use the
versatility of the preprocessing batch function to epoch the data around

FIGURE 5

Example of the source_recon subject (top) and summary (bottom) report. The subject report contains figures showing the extracted surfaces, the
parcel power spectra, and interactive figures showing the coregistration. The summary report contains summary information and quantitative metrics
of all processed files, including interactive tables that can guide the user to specific subjects/sessions which might require further attention.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 11 frontiersin.org

stimulus onset and then run a first-level GLM on each session with
regressors for the three different stimulus types (famous, unfamiliar,
and scrambled faces) along with a mean and faces vs. scrambled contrast.

In the same config, we can specify the group (second-level) GLM
to be run on the outputs of the first-levels. A design matrix with a
regressor for each subject is constructed along with a group mean
contrast. Finally, maximum statistic permutation test is used to test
whether there is a difference between normal face stimuli, and
scrambled faces in the 50–300 ms post stimulus onset window, and
significant differences are visualised (Figure 6).

4 Discussion

We have presented how the osl-ephys toolbox for the analysis of
M/EEG data. This is not a standalone toolbox, but heavily relies on
the widely adopted MNE-Python toolbox, FSL and other popular
python packages: numpy, scipy, matplotlib, etc. The toolbox aims to
augment MNE-Python by providing a config API for reproducible
processing of large quantities of data, while providing quality
assurance and unique functionalities for data analysis. This includes
functions for automatic and manual data preprocessing, FSL-based

(Freesurfer independent) volumetric source reconstruction, and
statistical analysis, in particular, using GLMs.

Researchers face a number of challenges when analysing M/EEG
data. Firstly, analysis is complex and heterogenous. The analysis
pipeline depends on the nature and quality of the data, as well as the
experimental design and research question. Therefore, analysis
flexibility is essential for analysis software. However, analysis
complexity and flexibility come with caveats, particularly in terms of
transparency and reproducibility. In particular, it is cumbersome and
error-prone to manually provide all details of an analysis pipeline in
the Methods section of academic publications. Even with the growing
requirement of funders and journals to provide analysis scripts upon
publication of a manuscript, the full details for the analysis pipeline
often remain unclear.

Therefore, the toolbox uses a concise and easily shareable “config”
API, which reduces the amount of custom written scripts and
functions that the researchers need to write (whilst retaining analysis
flexibility). In addition, the toolbox keeps track of all processing that
took place in log files, and it generates analysis reports that can
be used for both reproducibility efforts, and quality assurance.

The high complexity also means that no single analysis toolbox
can provide all possible analytical methods, and therefore, the

FIGURE 6

Pictures of real faces elicit statistically different event-related fields than pictures of scrambled faces. (A) example of a first level (session) design matrix,
with three regressors and two contrasts. (B) The second level (group) design contains 19 subject regressors, and one mean contrast. (C) The group
Faces – Scrambled contrast. Coloured lines show individual parcels, with colours in an anterior–posterior gradient (inset). Shaded areas show
significant time periods, and topographies the mean t-statistic in each period. (D) Extent of significant times periods.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 12 frontiersin.org

researcher typically needs to stitch together various third-party
toolboxes in their analysis pipeline. The toolbox presented here is built
on top of the most adopted Python M/EEG analysis toolbox
(MNE-Python), and many other Python (and MATLAB) toolboxes
contain plugins and/or documentation on how to use their toolbox in
combination with MNE-Python. This makes it more straightforward
to use different toolboxes. Additionally, the toolbox can be used in a
modular fashion, and custom-written and third-party functionality
can be easily implemented as an extension to the toolbox by supplying
the chain/batch functions with extra function definitions.

Another challenge is that high analysis complexity means a
high entrance barrier for new researchers in the field of M/EEG
analysis, and/or programming, especially considering the
multidisciplinary nature of the field. This toolbox alleviates this by
combining the config API a limited number of functions (in
particular the chain and batch functions) that the user interacts
with and taking care of much of the complexity in programming
and data bookkeeping on the backend. This is further aided by
comprehensive documentation and tutorials. Finally, the analysis
reports can also help researchers new to the field, by providing a
platform for quality assurance.

In conclusion, the osl-ephys toolbox represents a significant
advancement in M/EEG data analysis, offering a balance between
flexibility, reproducibility, and ease of use, while addressing key
challenges in the field and paving the way for more accessible and
robust neuroimaging research.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at: https://osf.io/2rnyg/; https://openfmri.
org/dataset/ds000117/; https://github.com/OHBA-analysis/osl-ephys/
tree/main.

Ethics statement

Ethical approval was not required for the study involving humans
in accordance with the local legislation and institutional requirements.
Written informed consent to participate in this study was not required
from the participants or the participants’ legal guardians/next of kin
in accordance with the national legislation and the
institutional requirements.

Author contributions

ME: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing – original
draft, Writing – review & editing. CG: Conceptualization, Data
curation, Formal analysis, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Writing – original draft. AQ: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Writing – review &
editing. MW: Conceptualization, Funding acquisition, Methodology,
Resources, Software, Supervision, Validation, Writing – review &
editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This project
was funded by the Wellcome Trust (106183/Z/14/Z, 215573/Z/19/Z),
the New Therapeutics in Alzheimer’s Diseases (NTAD) and Synaptic
Health in Neurodegeneration (SHINE) studies supported by the MRC
and the Dementia Platform UK (RG94383/RG89702) and supported
by the NIHR Oxford Health Biomedical Research Centre
(NIHR203316). The views expressed are those of the author(s) and not
necessarily those of the NIHR or the Department of Health and Social
Care. The Wellcome Centre for Integrative Neuroimaging is supported
by core funding from the Wellcome Trust (203139/Z/16/Z and
203139/A/16/Z). For the purpose of open access, the author has
applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The views expressed are those of the author(s) and not necessarily
those of the NIHR or the Department of Health and Social Care.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/
full#supplementary-material

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://osf.io/2rnyg/
https://openfmri.org/dataset/ds000117/
https://openfmri.org/dataset/ds000117/
https://github.com/OHBA-analysis/osl-ephys/tree/main
https://github.com/OHBA-analysis/osl-ephys/tree/main
https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2025.1522675/full#supplementary-material

van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 13 frontiersin.org

References
Ågren, W. (2023). Neurocode. Available at: https://github.com/neurocode-ai/

neurocode/tree/main?tab=MIT-1-ov-file (Accessed February, 2025).

Brodbeck, C., Das, P., Brooks, T. L., and Reddigari, S. (2023). Eelbrain. Available at:
https://pypi.org/project/eelbrain/ (Accessed February 2025).

Colclough, G. L., Brookes, M. J., Smith, S. M., and Woolrich, M. W. (2015). A
symmetric multivariate leakage correction for MEG connectomes. NeuroImage 117,
439–448. doi: 10.1016/j.neuroimage.2015.03.071

Dask Development Team (2016). Dask: library for dynamic task scheduling. Available
at: http://dask.pydata.org (Accessed February, 2025).

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al.
(2006). An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. NeuroImage 31, 968–980. doi: 10.1016/j.
neuroimage.2006.01.021

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation of
human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53,
1–15. doi: 10.1016/j.neuroimage.2010.06.010

Fischl, B. (2012). FreeSurfer. NeuroImage 62, 774–781. doi: 10.1016/j.
neuroimage.2012.01.021

Gohil, C., Huang, R., Roberts, E., Van Es, M. W. J., Quinn, A. J., Vidaurre, D., et al.
(2023). Osl-dynamics: a toolbox for modelling fast dynamic brain activity. Neuroscience
12:RP91949. doi: 10.1101/2023.08.07.549346

Gramfort, A. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci.
7:267. doi: 10.3389/fnins.2013.00267

Jas, M., Thorpe, R., Tolley, N., Bailey, C., Brandt, S., Caldwell, B., et al. (2023). HNN-
core: A Python software for cellular and circuit-level interpretation of human MEG/
EEG. Available at: https://pypi.org/project/hnn-core/ (Accessed February, 2025).

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M.
(2012). FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kohl, O., Woolrich, M., Nobre, A. C., and Quinn, A. (2023). Glasser52. Zenodo: A
parcellation for MEG-analysis.

Larson, E., Gramfort, A., Engemann, D. A., Leppakangas, J., Brodbeck, C., Jas, M.,
et al. (2023). MNE-Python.

Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., et al. (2011). EEG
and MEG data analysis in SPM8. Comput. Intell. Neurosci. 2011, 1–32. doi:
10.1155/2011/852961

Lopez-Calderon, J., and Luck, S. J. (2014). ERPLAB: an open-source toolbox for the
analysis of event-related potentials. Front. Hum. Neurosci. 8:213. doi: 10.3389/
fnhum.2014.00213

Lu, Z. (2020). PyCTRSA: A Python package for cross-temporal representational
similarity analysis-based E/MEG decoding. GitHub.

OHBA Analysis Group (2014). OSL MATLAB. Available at: https://github.com/
OHBA-analysis/osl (Accessed February, 2025).

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput. Intell. Neurosci. 2011, 1–9. doi: 10.1155/2011/156869

Palva, J. M., Wang, S. H., Palva, S., Zhigalov, A., Monto, S., Brookes, M. J., et al. (2018).
Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling
measures. NeuroImage 173, 632–643. doi: 10.1016/j.neuroimage.2018.02.032

Poldrack, R. A., and Gorgolewski, K. J. (2017). OpenfMRI: open sharing of task fMRI
data. NeuroImage 144, 259–261. doi: 10.1016/j.neuroimage.2015.05.073

Quinn, A. J. (2019). glmtools. Available at: https://gitlab.com/ajquinn/glmtools
(Accessed February, 2025).

Quinn, A. J., Atkinson, L. Z., Gohil, C., Kohl, O., Pitt, J., Zich, C., et al. (2024). The
GLM-spectrum: a multilevel framework for spectrum analysis with covariate and
confound modelling. Imaging Neurosci. 2, 1–26. doi: 10.1162/imag_a_00082

Quinn, A., and Hymers, M. (2020). SAILS: spectral analysis in linear systems. JOSS
5:1982. doi: 10.21105/joss.01982

Rosner, B. (1983). Percentage points for a generalized ESD many-outlier procedure.
Technometrics 25, 165–172. doi: 10.1080/00401706.1983.10487848

Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A., and Engemann, D. A. (2020).
Predictive regression modeling with MEG/EEG: from source power to signals and
cognitive states. NeuroImage 222:116893. doi: 10.1016/j.neuroimage.2020.116893

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with convolutional
neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420.
doi: 10.1002/hbm.23730

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm:
a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 1–13.
doi: 10.1155/2011/879716

The MathWorks Inc (2020). MATLAB. Natick, MA: The MathWorks Inc.

Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/
jn.00338.2011

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a
macroscopic anatomical Parcellation of the MNI MRI single-subject brain. NeuroImage
15, 273–289. doi: 10.1006/nimg.2001.0978

Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997). Localization
of brain electrical activity via linearly constrained minimum variance spatial filtering.
IEEE Trans. Biomed. Eng. 44, 867–880. doi: 10.1109/10.623056

Wakeman, D. G., and Henson, R. N. (2015). A multi-subject, multi-modal human
neuroimaging dataset. Sci Data 2:150001. doi: 10.1038/sdata.2015.1

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://github.com/neurocode-ai/neurocode/tree/main?tab=MIT-1-ov-file
https://github.com/neurocode-ai/neurocode/tree/main?tab=MIT-1-ov-file
https://pypi.org/project/eelbrain/
https://doi.org/10.1016/j.neuroimage.2015.03.071
http://dask.pydata.org
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1101/2023.08.07.549346
https://doi.org/10.3389/fnins.2013.00267
https://pypi.org/project/hnn-core/
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1155/2011/852961
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.3389/fnhum.2014.00213
https://github.com/OHBA-analysis/osl
https://github.com/OHBA-analysis/osl
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.neuroimage.2018.02.032
https://doi.org/10.1016/j.neuroimage.2015.05.073
https://gitlab.com/ajquinn/glmtools
https://doi.org/10.1162/imag_a_00082
https://doi.org/10.21105/joss.01982
https://doi.org/10.1080/00401706.1983.10487848
https://doi.org/10.1016/j.neuroimage.2020.116893
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1155/2011/879716
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1109/10.623056
https://doi.org/10.1038/sdata.2015.1

	osl-ephys: a Python toolbox for the analysis of electrophysiology data
	1 Introduction
	2 Methods
	2.1 Documentation
	2.2 Overview
	2.3 Modules
	2.3.1 Preprocessing
	2.3.2 Source reconstruction
	2.3.3 Custom functions
	2.3.4 General linear model (GLM)
	2.3.5 Utilities
	2.3.6 Report
	2.4 Batch processing
	2.5 Log files
	2.6 Examples
	2.7 Development
	2.8 Citing osl-ephys

	3 Results
	3.1 Batch preprocessing
	3.2 Logs and preprocessing report
	3.3 Manual ICA rejection
	3.4 Coregistration and source reconstruction
	3.5 Epoching and statistical analysis using GLMs

	4 Discussion

	References

