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We describe OHBA Software Library for the analysis of electrophysiology data 
(osl-ephys). This toolbox builds on top of the widely used MNE-Python package 
and provides unique analysis tools for magneto−/electro-encephalography (M/
EEG) sensor and source space analysis, which can be used modularly. In particular, 
it facilitates processing large amounts of data using batch parallel processing, 
with high standards for reproducibility through a config API and log keeping, and 
efficient quality assurance by producing HTML processing reports. It also provides 
new functionality for doing coregistration, source reconstruction and parcellation 
in volumetric space, allowing for an alternative pipeline that avoids the need for 
surface-based processing, e.g., through the use of Fieldtrip. Here, we introduce 
osl-ephys by presenting examples applied to a publicly available M/EEG data (the 
multimodal faces dataset). osl-ephys is open-source software distributed on the 
Apache License and available as a Python package through PyPi and GitHub.
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1 Introduction

The analysis of neuroimaging data typically involves a series of complicated analysis steps 
which are deployed heterogeneously to suit both the dataset and the scientific question. In 
non-invasive human electrophysiology data, particularly magnetoencephalography (MEG) 
and electroencephalography (EEG), these steps include but are not limited to: preprocessing 
to clean the raw recordings, co-registration with other data modalities (e.g., Polhemus, MRI), 
source reconstruction, and a plethora of (mass) univariate or multivariate statistical analyses.

To this aim, the field has traditionally relied on a suite of open-source software toolboxes 
developed by individual research groups or community efforts (Delorme and Makeig, 2004; 
Litvak et al., 2011; Oostenveld et al., 2011; Tadel et al., 2011; Jenkinson et al., 2012; Gramfort, 
2013; Lopez-Calderon and Luck, 2014; OHBA Analysis Group, 2014). However, most of these 
rely on licensed, third-party software like MATLAB (The MathWorks Inc, 2020), which makes 
it costly and limits processing of large amounts of data. Because of this, there is a current shift 
in the field to adopt the Python programming language and multiple Python packages 
specifically designed for the analysis of electrophysiology data have recently been published 
(Gramfort, 2013; Schirrmeister et al., 2017; Lu, 2020; Sabbagh et al., 2020; Brodbeck et al., 
2023; Gohil et al., 2023; Jas et al., 2023; Ågren, 2023). Of these, MNE-Python (Gramfort, 2013; 
Larson et al., 2023) is by far the most widely adopted.
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The field also sees an increasing use of publicly available and large 
datasets. At the same time, there are higher requirements for 
transparency and reproducibility by academic journals. Therefore, 
analysis tools must adapt to help meet these needs. One solution is 
MNE-Python’s MNE-BIDS-pipeline, which offers automated 
processing of M/EEG data in BIDS format through a configuration 
API. However, specification of the configuration is arguably 
non-trivial, and the pipeline does not allow for full analysis flexibility.

Here, we present the osl-ephys toolbox, a free and open-source 
Python package for the analysis of electrophysiology data, and part of 
the OHBA Software Library (OSL). It is built on, and augments, the 
MNE-Python toolbox (Gramfort, 2013; Larson et al., 2023), and is 
developed with the following core principles:

 1. Efficient processing of large amounts of data;
 2. A concise configuration API that summarises a reproducible 

processing pipeline, and is easy to specify, interpret, and share;
 3. Automatic generation of log files and HTML processing reports 

to enable reproducibility and provide quality assurance.
 4. A modular setup, to facilitate integration with MNE-Python 

and other, third-party toolboxes in Python, or other 
programming languages (e.g., MATLAB).

Moreover, the toolbox contains unique processing functions for 
analysing M/EEG data, including FSL-based (Freesurfer independent) 
coregistration and volumetric source reconstruction pipeline 
(Jenkinson et al., 2012).

The toolbox has a user friendly Application Programming 
Interface (API) based on the specification of a “config” object, which 
concisely holds all the information needed for the processing steps to 
apply. This helps ensure reproducibility and facilitates the processing 
of large amounts of data. Below we briefly outline the architecture of 
the toolbox and the API, before presenting examples of each module.

2 Methods

2.1 Documentation

Documentation is available on readthedocs.1 This includes 
installation instructions (including setting up, e.g., Conda, FSL, etc.), 
a full list of function references (API), and tutorials. Source code is 
available on GitHub,2 and includes a list of requirements.

2.2 Overview

Osl-ephys uses MNE-Python as a backbone. For example, data 
classes like Raw, Epochs, Evoked, Info, and other classes are directly 
adopted and used, and M/EEG data derivatives are typically saved as 
“fif ” files. This allows for a seamless integration of our toolbox with 
MNE-Python, or with other Python and MATLAB based toolboxes. 
It is straightforward for a user to a subset of the data processing 

1 https://osl-ephys.readthedocs.io/en/latest/

2 https://github.com/OHBA-analysis/osl-ephys/tree/main

pipeline in MNE-Python or other analysis toolboxes, while switching 
to and from ours. Table 1 summarises the added functionality of our 
toolbox over MNE-Python and MNE-BIDS-pipeline.

Because the field of cognitive neuroscience is inherently 
multidisciplinary, individual researchers often lack formal training in 
programming. Therefore, usability and reproducibility are at the heart 
of the toolbox’s design philosophy. In particular, in the two main 
modules (preprocessing and source_recon, see below) a processing 
pipeline is defined in the form of a comprehensive configuration 
(“config”) API. This is a Python dictionary that specifies the call to 
individual functions and the parameter settings for each. The user will 
typically specify the config as a string. During the processing, the 
toolbox handles data bookkeeping and other complexities behind the 
scenes. A feature of the config is that it is easily shareable and can 
be easily used to reproduce analyses.

In the two main modules, the user typically interacts with high 
level pipeline “chain” and “batch” functions. These functions simply 
loop over the analysis steps specified in the config and call the 
appropriate function, together with the parameter arguments, to the 
data. Here, the batch function is used if the user wants to process 
multiple datasets at a time by efficiently looping the chain function 
over the datasets (see Section “Batch processing”). Both functions take 
as main input arguments the config, and the input and output 
directories. In addition, these functions can create log files and HTML 
reports (see below). The log files improve reproducibility by writing 
information on processing steps, random seed, etc. The reports 
summarise the processing and can guide quality assurance.

2.3 Modules

The toolbox contains several modules that provide tools for a 
specific analysis goal, e.g., preprocessing, source reconstruction, GLM, 
etc. These modules are designed such that they can be  flexibly 
combined with third party toolboxes.

2.3.1 Preprocessing
The preprocessing module contains functionality to pre-process 

M/EEG data. A simple example is given in Listing 1A. Preprocessing 
can include (wrapper) functions for, e.g., filtering, selecting data, 
resampling, bad channel/segment detection (Independent Component 
Analysis). It can also include more advanced analysis steps, e.g., 
spectral analysis using multi-tapers, and even group-level analysis. 
Beside the plethora of functions offered by MNE-Python, this module 
also contains unique functions, e.g., identifying bad channels/
segments using a generalised ESD test (Rosner, 1983). It also includes 
wrappers to licensed MaxFilter™ software for maxwell filtering 
(though the open-source implementation in MNE-Python is also 
available). User defined functions can also be supplied to the toolbox 
to offer fully flexible pipelines (see Listing 1B and section “Custom 
functions”). Lastly, this module also allows for functions to be run on 
the group level, e.g., for statistical analysis.

The main user functions in the preprocessing module are the 
“chain” and “batch” pipeline functions. These load in the input data 
and represent them in a Python dictionary. Other derivatives 
generated during preprocessing will be added to the dictionary, which 
is ultimately returned by the chain/batch functions and individual 
items are saved to disk.
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In addition to the above, the preprocessing module contains 
command line functionality for interactive labelling of bad ICs using 
a graphical user interface (see section “Examples”).

2.3.2 Source reconstruction
The source_recon module contains tools for coregistration, 

volumetric and surface based source reconstruction, and for 
working with source space data more generally. The module 
enables a cortical surface source reconstruction pipeline based on 
FreeSurfer (Fischl, 2012), as is used in MNE-Python, or a 
volumetric source reconstruction pipeline based on FSL (Jenkinson 
et  al., 2012), which is computationally less expensive. The 
FSL-based pipeline is currently not available in MNE-Python and 
is unique to our Python toolbox (though it still relies on low-level 
MNE-Python functions on the backend).

Typically, the steps used in the coregistration and source 
reconstruction pipeline are as follows:

 1. Compute surfaces. Options for using FSL to extract the inner 
skull, outer skin (scalp) and brain surfaces from structural, T1 
weighted MRI (sMRI) data, or to use FreeSurfer’s recon-all for 
cortical reconstruction.

 2. Coregistration. Coregisters the M/EEG data, head digitisation 
points (i.e., Polhemus), and sMRI data. This can be done using 
FSL-based Registration using Headshapes Including Nose in OSL 
(RHINO), analogous to the MATLAB implementation (OHBA 
Analysis Group, 2014), or using the FreeSurfer-based automatic 
pipeline in MNE-Python.

 3. Forward modelling. This is a wrapper for mne.
make_forward_solution.

 4. Source modelling. Typically done using a LCMV beamformer 
(Van Veen et  al., 1997), or linear inverse methods (e.g., 
Minimum Norm Estimate).

Source reconstruction to the source dipole grid can then 
be followed by use of a pre-defined parcellation to extract parcel time 
courses, and including the reduction of spatial leakage and correction 
for sign ambiguities:

 5. Parcellation. Parcellates a volumetric or surface-based dipole 
grid of source estimates by taking the principal component 
(or spatial basis set) of all dipoles in a parcel from a chosen 
Nifti parcellation or FreeSurfer annotation. Multiple 
standard volumetric parcellation templates are supplied 
[e.g., AAL (Tzourio-Mazoyer et al., 2002)], as well as fMRI-
derived parcellations optimised for M/EEG data (i.e., with a 
lower amount of parcels to match the rank of M/EEG data; 
e.g., Giles39 (Colclough et al., 2015), and Glasser52 (Kohl 
et al., 2023)), as well as those supplied by FreeSurfer (e.g., 
Desikan et  al., 2006; Destrieux et  al., 2010; Thomas Yeo 
et al., 2011).

 6. Symmetric orthogonalisation. The inverse problem in MEG is 
ill-posed because there are many more potential sources than 
MEG sensors. Estimated source activity is therefore correlated 
over spaces, which can cause spurious correlations between 
source time courses. We use symmetric multivariate leakage 
reduction (Colclough et al., 2015) to correct for these artificial 
correlations between a set of multiple regions of interest (i.e., 
parcels). Note that by being multivariate, this also corrects for 
so-called “ghost interactions” or “inherited connections” 
(Colclough et al., 2015; Palva et al., 2018).

 7. Sign flipping. Ambiguities in the orientation of source dipoles 
and calculation of parcel time courses (e.g., through PCA) 
result in an ambiguity in the orientation, or polarity, of the 
parcel time courses. We adjust the orientation/polarity of the 
parcel time courses using the assumption that we  expect 
correspondence in the functional connectomes from different 

TABLE 1 Comparison of Osl-ephys to MNE-Python and MNE-BIDS-pipeline.

Osl-ephys MNE-Python MNE-BIDS-pipeline

Pipeline API Text config Custom scripts Text config

Flexibility – order of analysis steps Any Any Fixed

Flexibility – third-party functions Internal + external Internal + external Internal

Flexibility – input data organisation Any format Any format BIDS format

Parallelisation Processing duration 

(Example in 3.1 or equivalent)

Parallelization using Dask 21 min on 16 CPU cores* N/A 175 min on 1 CPU core* Parallelization using Dask N/A

Transparancy/Reproducibility  - Automatic generation of log files and HTML reports

 - Config is saved in MNE objects

N/A  - Automatic generation of 

HTML reports

Quality assurance Automatic HTML subject and summary reports Manual HTML report building 

(i.e., mne.Report)

Automatic HTML reports

Inputs for source reconstruction FreeSurfer or FSL FreeSurfer FreeSurfer

Extra functionalities (not exhaustive)  - Efficient interactive ICA labelling

 - More options for detecting bad segments/channels

 - FSL based coregistration and source reconstruction

 - Volumetric parcellations

 - Resolving sign ambiguity

 - Orthogonalising parcel time courses

 - GLM

*Using Intel Xeon Gold 6,136 @ 3.0GHz processors and a total of 1.5 TB RAM.
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subjects. As such, we  maximise the correlation of the 
covariance matrices between subjects.

As with the preprocessing module, the source_recon module has 
high-level pipeline functions that work with a config API, and can 
optionally generate log files and HTML reports.

2.3.3 Custom functions
It is in general possible to supply the chain and batch functions 

with custom written functions, defined by the user. These can 
be readily supplied to the toolbox by specifying the function in the 
config and supplying the list of custom functions to the extra_funcs 
input variable in the chain/batch function. The only requirement is 
that they adhere to the same structure as is used in lower level 
functions throughout the toolbox (this is slightly different for 
preprocessing and source reconstruction modules). This also facilitates 
external contributions to the toolbox: if a user defines a custom 
function that would be  useful to a wider audience, it can easily 
be adopted into the main toolbox (i.e., through Github). The general 
function structure is outlined below.

Preprocessing module

 - The function must take “dataset” and “userargs” as inputs
 - Any options for the functions that are specified in the config can 

be retrieved from userargs [i.e., using userargs.pop()]
 - The function must return “dataset”
 - Any key in “dataset” can be manipulated, either in place or by 

adding a new key. New keys are saved by default in the 
subject folder.

Source reconstruction module

 - The function can take any user-defined variables as input. All 
inputs to the pipeline function are always passed to the 
custom function.

 - Changes must be directly saved to disk, rather than returning 
function outputs.

2.3.4 General linear model (GLM)
The GLM module contains data classes and functions that 

combine functions from MNE-Python, custom code, and Python 
packages for linear modelling (Quinn, 2019; Quinn and Hymers, 
2020) into modality specific (e.g., M/EEG data) tools for linear 
modelling. This includes the ability to do confound modelling and 
hierarchical modelling, including for spectral analysis [i.e., instead of 
the commonly used Welch periodogram, where the average is used; 
(Quinn et  al., 2024)], and significance testing via non-parametric 
statistics. Additionally, it contains functions for visualising (statistically 
significant) effects.

The GLM functionality cannot be directly added to a config for 
the preprocessing or source_recon pipeline function, because of the 
added complexity of specifying a design matrix. These tools are 
typically applied in a separate Python script or by specifying a custom 
function that is supplied to the preprocessing config (see section 
“Examples”).

2.3.5 Utilities
The utils module contains several helpful utility functions that can 

be directly deployed by the user, and/or is used in some of the higher 
level toolbox functions. Current utility functions include data loaders 
(for, e.g., OPM-MEG, SPM data), and functions for parallel processing 

LISTING 1B

As in 1a, but now including a custom written function. The function 
is defined at the top, and takes as input “dataset” (a dictionary 
containing the MNE-Python objects, e.g., Raw), and a “userargs” 
dictionary (containing the function variable specifications). The 
function is included in the config, and supplied to chain function as a 
list of extra functions in the “extra_funcs” input variable.

LISTING 1A

Example API in the preprocessing module. The config specifies the 
processing recipe applied to the input. Preprocessed data are saved 
in the processed/subject001 directory. Note that the source 
reconstruction module works similarly (see section “Examples”).
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(see 2.3 Batch processing), logging, simulation, and file handling (see 
section “Examples”).

2.3.6 Report
The report module allows for the generation of interactive HTML 

reports to gain insights into the analysis carried out by the high-level 
pipeline functions and guide quality assurance (QA). Separate reports 
are generated by default when using the preproc and source_recon batch 
processing functions, but can also be created manually. They include a 
subject report for in depth information about individual subjects/session, 
and a summary report summarising measures all across subjects/session.

The subject report contains information about each recording 
(e.g., number of sensors recorded, duration of the recording), and the 
analysis in the form of data tables and (interactive) figures, e.g., 
showing which channels were marked as “bad,” the result of the 
coregistration, etc. These figures are generated in a reports directory, 
in subdirectories for each individual subject/session, together with a 
data.pkl file. This file contains symbolic links to the appropriate 
figures, as well as plain text and numeric information about the 
session (e.g., also including a copy of the text from the log files).

The summary report gives an overview of the processing pipeline, 
including custom function definitions, and has interactive data tables 
summarising various metrics from all subject/session reports. This can 
guide the user to have a detailed look at specific subject report, for 
example for those subjects that had excessive number of channels 
marked as “bad,” or high errors in the coregistration.

2.4 Batch processing

Essential in the design philosophy is the ability to process large 
batches of data efficiently. The toolbox’s high-level “chain” functions 
therefore have “batch” function counterparts, which take in a config 
and lists of file paths for the data to be processed. We integrated Dask 
(Dask Development Team, 2016) for parallel processing these batches 
of data efficiently, using as many computational resources (i.e., CPU 
cores) as the user has available. While this parallelisation is also 
available in MNE-BIDS-pipeline, the analysis flexibility and unique 
config API are not.

2.5 Log files

The chain and batch functions create log files to keep track of all 
the functions and configuration options that were applied to the data, 
and the output they generated. The log files also include the random 
seed, which improves reproducibility of the pipeline (a global random 
seed can also be set manually). Separate log files are created for each 
subject/session, and a separate batch log is also created when using the 
batch functions. The subject/session logs are also appended to the 
preprocessed data, so a processed file will always contain a history of 
the functions applied to it.

2.6 Examples

We use the publicly available multimodal faces dataset (Wakeman 
and Henson, 2015), v0.1.1 available on OpenfMRI (Poldrack and 

Gorgolewski, 2017), to illustrate the use of the toolbox. This dataset 
contains data of 19 subjects, each of which participated in six MEG 
recording sessions. The subjects engaged in a visual perception task 
where they saw a series of famous, novel, familiar (repetitions of novel 
faces) faces, and scrambled faces. To ensure participants were paying 
attention, participants had to indicate whether faces were symmetrical 
or asymmetrical with a button press. We analyse these data in a typical 
analysis workflow that optimally demonstrates the use cases and API 
of the toolbox; the research question is not based on scientific novelty. 
Concretely, we first preprocess the MEG data in sensor space, and 
then reconstruct the sources and combine them into 52 parcels (Kohl 
et al., 2023). Next, we epoch the parcel time courses, and use a first 
level GLM to contrast real faces minus scrambled faces, separately for 
each session. We then model the group effect of this contrast in a 
second level GLM. All scripts used for this analysis are available on 
GitHub.3 HTML reports and log files are available on OSF.4

2.7 Development

The toolbox is under active development, and community 
contributions are welcome on the GitHub page,5 in the form of GitHub 
Issues and pull requests. New osl-ephys versions will be released on 
GitHub and PiPy when significant changes in the toolbox have 
been made.

2.8 Citing osl-ephys

For the most up to date information on how to cite the toolbox 
read the CITATION file on GitHub.6

3 Results

Below, we show the results of using osl-ephys on the multimodal 
faces dataset with a typical analysis pipeline, including:

 1. preprocessing,
 2. coregistration and source reconstruction.
 3. epoching and first-level GLM.
 4. second level (group) statistical analysis using a GLM.

The results shown here are based on osl-ephys 2.1.0, mne 1.3.1, 
fslpy 3.11.3, and Python 3.8.16.

3.1 Batch preprocessing

Listing 2 shows how the preprocessing pipeline is setup in the 
__main__ body of a Python script (Listing 2), which is necessary 

3 https://github.com/OHBA-analysis/osl-ephys/tree/main/examples/

toolbox-paper

4 https://osf.io/2rnyg/

5 https://github.com/OHBA-analysis/osl-ephys/tree/main

6 https://github.com/OHBA-analysis/osl-ephys/blob/main/CITATION.cff
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in order to use Dask for parallel processing. This first specifies the 
inputs to preprocessing “batch” function and the config. The config 
contains a meta section specifying the event codes and names for 
each event, and a preproc section with each preprocessing step that 
will be run in turn. The appropriate function is found by matching 
the function name to (1) any custom written functions (supplied 
to the “extra_funcs” parameter), (2) toolbox specific functions, and 
(3) MNE-Python methods on Raw, and Epochs classes.

Next, the paths to the raw MEG data are specified using the 
“Study” class. This enables data paths to be specified using multiple 
wild cars, and selects existing paths that satisfy the wild cards [here, 
all paths are selected, but, for example, one can select only the 
sessions of, e.g., subject 1 using study.get(sub_id = 1)]. An output 
directory and session subdirectories are then specified for saving each 
session’s preprocessed data. Lastly, parallel computation is enabled 
using Dask (having already specified the Dask Client). Running 

LISTING 2

Osl-ephys batch preprocessing script.
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Listing 2 creates the output structure and derivatives in Figure 1. 
Preprocessing of all 114 files took XX minutes on 12 CPU cores, 
whereas it took XX times longer (XX minutes) when simply looping 
the MNE-Python pipeline over sessions on a single CPU.

3.2 Logs and preprocessing report

The preprocessing batch function has additionally generated log 
files for each session and a batch log file. The batch log documents high 
level information about the batch processing including time stamps, 
the random seed, the config, and in how many files preprocessing was 
successful. Each session specific log file documents all processing steps 
applied to the data, including other relevant function outputs (e.g., the 
number of bad channels detected). The log files thus provide detailed 
information and can aid in reproducibility of the pipeline.

The batch function additionally generates reports that can be used 
for quality assurance (QA), and which can easily be shared. It contains 
two HTML files: one for a subject level report (Figure 2) and one for a 
summary (i.e., group-level) report (Figure 3). The subject report presents 
detailed qualitative and quantitative metrics of the preprocessing applied 
to each subject (e.g., general data info, number of bad channels/segments 
detected, power spectra, etc.), whereas the summary report summarises 

the batch preprocessing. It includes a table with summary metrics for 
each subject (e.g., percentage of data marked as “bad,” number of bad 
channels, number of ECG-related ICs, etc.). This table is interactive and 
can guide the user to individual subjects/sessions which need to 
be manually checked. This is especially useful when a large amount of 
data is processed and manually checking each subject is not feasible.

For example, sorting the table based on Bad ICA (total) reveals 
there were 27 bad ICs detected in sub008-run03, of which 26 were 
labelled EOG. The subject report shows that most of these are 
spurious, and thus this dataset requires extra attention, for example by 
changing the preprocessing options or manually adapting the labels 
(see 3.3 Manual ICA labelling). The reports also contain the batch and 
subject logs respectively, and if present, the summary report contains 
error logs for files that returned errors during preprocessing.

3.3 Manual ICA rejection

In MEG preprocessing, ICA is typically used to remove cardiac-and 
ocular-related artefacts. The ICs that capture these physiological 
artefacts can potentially be identified using the correlation with the 
electrocardiogram (ECG) and electrooculogram (EOG) time series, if 
these were recorded. If they are not, or if they are not of sufficient quality, 
manual inspection might be necessary. A combination of automatic and 
manual detection is recommended, i.e., manually refining the automatic 
first-pass labelling based on the preprocessing report.

During batch preprocessing, ICA is run and identifies ICs with 
high correlations with the EOG/ECG signals. However, these ICs have 
not yet removed from the MEG data. As mentioned above, many ICs 
were spuriously labelled in sub008-run03. The user can use the 
interactive labelling tool to manually correct the selection of bad ICs. 
It can be called from the command line (in the correct toolbox conda 
environment) with only a handful required inputs, explained below:

(osle) > osl_ica_label reject_option 
preproc_dir session_name

 • reject_option: indicating which of the ICs should be removed 
from the data. Can be  “all” (i.e., automatically and manually 
labelled ICs), “manual” (i.e., only manually labelled ICs), or 
“None” (i.e., save the ICA object but do not remove any 
components from the data).

 • preproc_dir: general output directory, i.e., the same as supplied 
to the pipeline function.

 • session_name: subject/session specific identifier, i.e., the same as 
supplied to the pipeline function.

In this example, no components have yet been removed from the 
data. First, the selected components need to be manually checked for 
a few sessions. Therefore, the command line call is as follows:

(osle) > osl_ica_label None processed 
sub008-ses03

This opens the interactive tool (Figure 4), which shows the IC 
weights and time courses (and ECG/EOG time courses at the bottom). 
The user can browse through ICs (vertical scroll bar) and time 
(horizontal scroll bar) and (de-)select ICs where appropriate, using 

FIGURE 1

The output directory structure of run_proc_batch. All outputs are 
saved in the general output directory specified in the function call 
(“processed”). Within this, a subdirectory is created for each subject/
session that contains the preprocessed data, as well as logs, and 
preproc_report directories, containing the relevant files for all subjects.

https://doi.org/10.3389/fnins.2025.1522675
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


van Es et al. 10.3389/fnins.2025.1522675

Frontiers in Neuroscience 08 frontiersin.org

button pressed to optionally label selected ICs as correlate of artefact 
types indicated on the right.

Further inspecting the summary and subject report also reveals that 
the automatic bad IC detection did not identify any EOG-related 
components and identified spurious ECG-related components in subject 
19, and similarly in session 5 of subject 10. The ICA labels of these sessions 
are also adapted using the same interactive graphical user interface. Once 
the user is satisfied with the rejected components, the following command 
line function is used to iteratively remove all the selected components 
from the data, which will also automatically update the logs and reports:

(osle) > osl_ica_apply processed

3.4 Coregistration and source 
reconstruction

As mentioned before (see section “Source reconstruction”), the 
toolbox allows to use either outputs from FreeSurfer, or FSL for 
coregistration and source reconstruction. It also contains wrapper 
functions to both softwares such that extracting surfaces from sMRI 
scans can be directly adopted in an osl-ephys pipeline. We here used a 
pipeline using FSL, since this is a unique feature to this toolbox. Note 
that examples for using FreeSurfer outputs are available on readthedocs.

For coregistration, the digitized head shape (i.e., from Polhemus) 
is extracted from the preprocessed fif-file and stray points are 

FIGURE 2

Example of the preprocessing subject report. This HTML page contains tabs for different aspects of QA for each subject/session. The user can browse 
between tabs on the left for each subject/session in the list on the right. Each tab contains quantitative and qualitative information regarding the 
preprocessing output.
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FIGURE 3

Example of the preprocessing summary report. Contains summary information and quantitative metrics of all files processed. The Preproc Summary 
table is interactive and can guide the user to specific subjects/sessions which might require further attention.

FIGURE 4

Interactive labelling of independent components (ICs) using the osl_ica_label tool. The weights and time courses for each IC are shown as rows. Bad 
ICs are indicated as coloured the time courses (i.e., other than black, see types on the right); annotations in the time courses indicate bad segments.
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removed (see Supplementary Listing 1). FSL is used to compute 
surfaces of the full head surface, including the nose, and of the inside 
and outside of the skull (i.e., using FLIRT and BET). The coordinate 
systems of the MEG (device) space, (Polhemus) head space, and the 
sMRI are coregistered with RHINO (OHBA Analysis Group, 2014), 
which uses the additional information provided by the nose for 
coregistration. Then, a forward model is computed using a single 
shell Boundary Element Model (BEM), and volumetric LCMV 
beamforming (Van Veen et  al., 1997) is used to estimate source 
activity on an 8 mm volumetric source grid. Source dipoles are 
combined into a 52 parcels (Kohl et al., 2023) by estimating a spatial 
basis set over all dipole locations within each parcel, and spatial 
leakage is reduced between the parcels (Colclough et  al., 2015). 

Lastly, the orientation for each parcel is aligned over subjects 
(Supplementary Listing 2). This pipeline generates all output data in 
the same directory structure as the preprocessed data (SI Figure 1), 
and in addition generates source subject and summary HTML 
reports (Figure 5), which can be used for quality assurance.

3.5 Epoching and statistical analysis using 
GLMs

For this example, we compare the activity in each parcel between 
real faces and scrambled faces (Supplementary Listing 3). We use the 
versatility of the preprocessing batch function to epoch the data around 

FIGURE 5

Example of the source_recon subject (top) and summary (bottom) report. The subject report contains figures showing the extracted surfaces, the 
parcel power spectra, and interactive figures showing the coregistration. The summary report contains summary information and quantitative metrics 
of all processed files, including interactive tables that can guide the user to specific subjects/sessions which might require further attention.
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stimulus onset and then run a first-level GLM on each session with 
regressors for the three different stimulus types (famous, unfamiliar, 
and scrambled faces) along with a mean and faces vs. scrambled contrast.

In the same config, we can specify the group (second-level) GLM 
to be run on the outputs of the first-levels. A design matrix with a 
regressor for each subject is constructed along with a group mean 
contrast. Finally, maximum statistic permutation test is used to test 
whether there is a difference between normal face stimuli, and 
scrambled faces in the 50–300 ms post stimulus onset window, and 
significant differences are visualised (Figure 6).

4 Discussion

We have presented how the osl-ephys toolbox for the analysis of 
M/EEG data. This is not a standalone toolbox, but heavily relies on 
the widely adopted MNE-Python toolbox, FSL and other popular 
python packages: numpy, scipy, matplotlib, etc. The toolbox aims to 
augment MNE-Python by providing a config API for reproducible 
processing of large quantities of data, while providing quality 
assurance and unique functionalities for data analysis. This includes 
functions for automatic and manual data preprocessing, FSL-based 

(Freesurfer independent) volumetric source reconstruction, and 
statistical analysis, in particular, using GLMs.

Researchers face a number of challenges when analysing M/EEG 
data. Firstly, analysis is complex and heterogenous. The analysis 
pipeline depends on the nature and quality of the data, as well as the 
experimental design and research question. Therefore, analysis 
flexibility is essential for analysis software. However, analysis 
complexity and flexibility come with caveats, particularly in terms of 
transparency and reproducibility. In particular, it is cumbersome and 
error-prone to manually provide all details of an analysis pipeline in 
the Methods section of academic publications. Even with the growing 
requirement of funders and journals to provide analysis scripts upon 
publication of a manuscript, the full details for the analysis pipeline 
often remain unclear.

Therefore, the toolbox uses a concise and easily shareable “config” 
API, which reduces the amount of custom written scripts and 
functions that the researchers need to write (whilst retaining analysis 
flexibility). In addition, the toolbox keeps track of all processing that 
took place in log files, and it generates analysis reports that can 
be used for both reproducibility efforts, and quality assurance.

The high complexity also means that no single analysis toolbox 
can provide all possible analytical methods, and therefore, the 

FIGURE 6

Pictures of real faces elicit statistically different event-related fields than pictures of scrambled faces. (A) example of a first level (session) design matrix, 
with three regressors and two contrasts. (B) The second level (group) design contains 19 subject regressors, and one mean contrast. (C) The group 
Faces – Scrambled contrast. Coloured lines show individual parcels, with colours in an anterior–posterior gradient (inset). Shaded areas show 
significant time periods, and topographies the mean t-statistic in each period. (D) Extent of significant times periods.
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researcher typically needs to stitch together various third-party 
toolboxes in their analysis pipeline. The toolbox presented here is built 
on top of the most adopted Python M/EEG analysis toolbox 
(MNE-Python), and many other Python (and MATLAB) toolboxes 
contain plugins and/or documentation on how to use their toolbox in 
combination with MNE-Python. This makes it more straightforward 
to use different toolboxes. Additionally, the toolbox can be used in a 
modular fashion, and custom-written and third-party functionality 
can be easily implemented as an extension to the toolbox by supplying 
the chain/batch functions with extra function definitions.

Another challenge is that high analysis complexity means a 
high entrance barrier for new researchers in the field of M/EEG 
analysis, and/or programming, especially considering the 
multidisciplinary nature of the field. This toolbox alleviates this by 
combining the config API a limited number of functions (in 
particular the chain and batch functions) that the user interacts 
with and taking care of much of the complexity in programming 
and data bookkeeping on the backend. This is further aided by 
comprehensive documentation and tutorials. Finally, the analysis 
reports can also help researchers new to the field, by providing a 
platform for quality assurance.

In conclusion, the osl-ephys toolbox represents a significant 
advancement in M/EEG data analysis, offering a balance between 
flexibility, reproducibility, and ease of use, while addressing key 
challenges in the field and paving the way for more accessible and 
robust neuroimaging research.
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