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Spiking neural networks (SNNs), which are the next generation of artificial

neural networks (ANNs), o�er a closer mimicry to natural neural networks

and hold promise for significant improvements in computational e�ciency.

However, the current SNNmodel is trained to infer over a fixed duration, thereby

overlooking the potential for dynamic inference in the SNN model. In this paper,

we strengthen the relationship between SNN and event-driven processing by

proposing the inclusion of a cuto� in SNN, that can terminate SNN at any

time during inference to achieve e�cient inference. Two novel optimization

techniques are presented to achieve an inference-e�cient SNN: a Top-K cuto�

and regularization. The proposed regularization influences the training process

by optimizing the SNN for the cuto�, whereas the Top-K cuto� technique

optimizes the inference phase. We conducted an extensive set of experiments

on multiple benchmark frame-based datasets, such as CIFAR10/100, Tiny-

ImageNet, and event-based datasets, including CIFAR10-DVS, N-Caltech101,

and DVS128 Gesture. The experimental results demonstrate the e�ectiveness

of the proposed techniques in both the ANN-to-SNN conversion and direct

training, enabling SNNs to require 1.76 to 2.76 × fewer timesteps for CIFAR-10,

while achieving 1.64 to 1.95× fewer timesteps across all event-based datasets,

with near-zero accuracy loss. These findings a�rm the compatibility and

potential benefits of the proposed techniques in terms of enhancing accuracy

and reducing inference latency when integrated with existing methods. Code

available: https://github.com/Dengyu-Wu/SNNCuto�.

KEYWORDS

spiking neural network, ANN-to-SNN conversion, SNN regularization, SNN cuto�,

adaptive inference

1 Introduction

Spiking neural networks (SNNs) have recently attracted significant research and

industrial interest because of their energy efficiency and low latency, and there are

neuromorphic chips, such as Loihi (Davies et al., 2018) and TrueNorth (Akopyan et al.,

2015) on which SNN can be deployed. Mechanistically, the SNN mimics biological

neurons that independently process and forward spikes. With this asynchronous working

mechanism, only a small subset of neurons is activated during inference. In essence, an

SNN is inherently efficient in terms of computation.

The asynchronous mechanism indicates that the proposed SNN is more effective when

used with event-based inputs. Neuromorphic sensors, such as the dynamic vision sensor
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(DVS) proposed by Lichtsteiner et al. (2008), Delbrück et al. (2010),

and Gallego et al. (2020), and the dynamic audio sensor (DAS)

proposed by Anumula et al. (2018), were developed to generate

binary “events,” which are ideal inputs to SNNs. For instance, unlike

conventional frame-based cameras, which measure the “absolute”

brightness at a constant rate, DVS cameras are bio-inspired sensors

that asynchronously measure per-pixel brightness changes and

output a stream of events that encode the time, location, and

sign of the brightness changes (Gallego et al., 2020). DVS adapts

dynamically to the scene’s activity, with fewer events in static scenes

and higher volumes when significant changes occur. Consequently,

the energy and bandwidth consumption scale efficiently based on

the actual demand (Amir et al., 2017; Kim et al., 2021), and leads to

and SNN operates in a sparse manner (Messikommer et al., 2020).

However, an additional encoding step, such as rate-based coding

(Rueckauer et al., 2017) and Poisson’s code (Sengupta et al., 2019),

is necessary for frame-based input before forward propagation in

the SNN. Irrespective of the input type—event-based or frame-

based—SNN can deliver sequential predictions at their outputs,

demonstrating that they can predict at any timestep. To exploit

these features, we explored the cutoff optimal SNN, which allowed

termination at any time during inference on a spike train (i.e.,

input) and returned the best possible inference result.

One approach to train as SNN is through ANN-to-SNN

conversion, which leverages the mature training regime of the

ANN to first train a high-accuracy ANN and then convert it into

an SNN. The proposed method has led to research focused on

achieving near-zero conversion loss (Deng and Gu, 2021; Bu et al.,

2022; Han et al., 2020). Another methodology involves the use

of backpropagation in SNN training (Wu et al., 2018, 2019; Fang

et al., 2021a,b). Due to the non-differentiable nature of spiking,

this approach requires the deployment of a surrogate gradient (Wu

et al., 2018, 2019). In this paper, we explore a novel SNN cutoff

mechanism and propose general optimization strategies for this

process. Our goal is to develop an optimal SNN that effectively

balances accuracy and latency.

This paper makes two key technical contributions. First, instead

of always predicting at the maximum timestep T, we explore an

early cutoff mechanism that allows the SNN model to achieve an

optimal latency and computing efficiency automatically. As shown

in Figure 1, the SNN model runs a monitoring mechanism to

determine whether the decision-makers are sufficiently confident.

Once this decision is made at timestep t < T, i.e., t ∈ {1, 2, . . . ,T},
a cutoff action is triggered so that the SNN does not take future

inputs until T. Therefore, the proposed approach has lower latency

and fewer computations because a decision is made at time t rather

than time T.

The second contribution is the proposed regularization

technique, which improves the SNN cut-off performance. This

technique influences the activation distribution during ANN or

SNN training, resulting in an SNN that can classify with less input

information. As discussed in Method (Section 4), the proposed

regularizer effectively mitigates the impact of “worst-case” inputs

during both the ANN and SNN training phases. These worst-

case samples are typically inputs that can cause failures in early

inference. The experiments presented in Section 5.2 demonstrate

that state-of-the-art methods can be enhanced, including ANN-to-

SNN conversion and direct training.

To facilitate the analysis, we use the following notations

bold symbol represents a vector, l denotes the layer index, and i

denotes the element index. For example, al is a vector, and ali is the

i-th element in a
l. W l is weight matrix at the l-th layer.

2 Related work

The implementation of SNN involves two phases: training

and inference. The training algorithms for SNN can be broadly

categorized into two main approaches: ANN-to-SNN conversion

and direct training.

2.1 ANN-to-SNN conversion

The ANN-to-SNN conversion is a widely studied approach for

converting a pre-trained ANN into an SNN model. This process

relies on the average spiking rate of neurons, which is closely

linked to the normalized activation of the rectified linear unit

(ReLU) function in the ANN (Rueckauer et al., 2017). Early studies

on ANN-to-SNN conversion, such as Diehl et al. (2015) and

Rueckauer et al. (2017), utilized the maximum activation value in

each layer of the ANN to normalize the corresponding weights.

Sengupta et al. (2019) demonstrated an alternative approach,

where normalization can be achieved by greedily searching for the

optimal threshold using an input spike train. A unified conversion

framework was proposed by Wu et al. (2022), which incorporates a

scaling factor that can be applied to either the threshold or weights.

Additionally, this framework includes thresholding for residual

elimination to mitigate information loss at the last time step, which

further enhances conversion efficiency. In a recent study, Deng

and Gu (2021) and Wu et al. (2022) demonstrated that outlier

elimination in ANN activations can be implemented by applying

a clipping operation after ReLU. Based on this, Li et al. (2021a)

and Bu et al. (2022) further minimized the quantization error by

employing quantization-aware training. In addition, there are other

hybrid methods were used to fine-tune the weights in the converted

SNN. For example, Rathi et al. (2020) and Rathi and Roy (2021)

combined conversion and direct training. Tandem Learning (Wu

et al., 2021) leveraged the gradient from the ANN to update the

SNN during training.

2.2 Direct training

In contrast to conversion-based approaches, direct training of

an SNN allows the processing of temporal features effectively (Fang

et al., 2021b; Yao et al., 2021). Numerous studies have focused on

designing surrogate gradients (Wu et al., 2018, 2019; Neftci et al.,

2019; Li et al., 2021b) to tackle the non-differentiable nature of spike

generation in SNN, thereby enabling efficient backpropagation. Yao

et al. (2021) demonstrated how integrating temporal attention can

significantly bolster SNN performance. Advancements in temporal

batch normalization (Kim and Panda, 2021; Duan et al., 2022)

have been proposed to normalize the input current to SNN layers,

thereby expediting the convergence process during direct training.

Meanwhile, Guo et al. (2023b) introduced an additional membrane
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FIGURE 1

Illustrative diagram showing the regularization process for optimizing the SNN and the cuto� mechanism for reducing latency on the CIFAR10-DVS

dataset. The cuto� value is triggered when Ygap is greater than β, a value dynamically determined by at a confidence rate introduced in Section 4.1.

potential normalization, applied after updating the membrane

potential with the input current.

Alongside direct training, additional training optimizations,

such as knowledge distillation from ANNs (Guo et al., 2023a;

Zhang et al., 2024), have been explored as complementary

methods to enhance SNN representations. Furthermore, spike-

based transformers (Zhou et al., 2023; Zhang et al., 2022; Wang

et al., 2023) provide new perspectives by adapting the self-attention

mechanism for spike-based computation, replacing complex

multiplications with efficient spike-based operations using spike-

form queries, keys, and values. Transitioning from conventional

binary spikes to ternary spikes (including negative spikes) has

also demonstrated performance gains with negligible increases

in energy cost, as reported by Guo et al. (2024). Additionally,

shrinking the maximum inference timestep as the layers deepen

effectively reduces the average inference latency (Ding et al., 2024).

2.3 Adaptive inference in SNN

Despite these significant advancements in training algorithms,

a fundamental limitation persists: the optimization of SNN is

predominantly focused on specific inference durations, neglecting

the potential for adaptive inference. The exploration of adaptive

inference in SNN is still in its early stages, and only a limited

number of studies. Specifically, Li et al. (2023b) introduced an

additional deep network to trigger early exiting in an SNN, which is

a solution that may be resource-intensive for small SNNs. Similarly,

Li et al. (2023a) focused on ANN-to-SNN conversion by applying

network calibration before dynamic prediction, while Chen et al.

(2023) employed conformal prediction (Shafer andVovk, 2008) as a

trigger mechanism. However, these approaches did not address the

optimization of SNN training for such scenarios requiring dynamic

timesteps. Our study aimed to fill this gap by combining the cutoff

with a general regularizer.

3 Leaky integrate-and-fire model

The Leaky Integrate-and-Fire (LIF) model is a foundational

component in SNN studies and is lauded for its simplicity and

resemblance to biological neural processing. Figure 2 illustrates the

inference process for a single LIF neuron. The dynamic updates in

the LIF neuron are described as

V
l−(t) =

{

V
l+(t − 1)+ Z

l(t), for l > 1,

Z
1(t), for l = 1,

(1)

where V l− and V
l+ denote the vector of membrane potentials

before and after reset, respectively. The process of resetting of V l
i (t)

is categorized as

V l+
i (t) =

{

τV l−
i (t)(1− θ li (t)), for hard reset,

τV l−
i (t)− V l

thr
θ li (t), for soft reset,

(2)

where θ
l(t) is a step function, i.e., θ li (t) = 1 if V l

i (t) ≥ V l
thr

and

θ li (t) = 0 otherwise. τ is decay factor and soft reset is introduced

for ANN-to-SNN conversion. Specifically, conversion-based SNN

inference with Integrate-and-Fire (IF) neuron (τ = 1.0) with

soft reset aimed at reducing the information loss caused by the

conversion (Rückauer et al., 2019; Han et al., 2020; Wu et al., 2022).
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FIGURE 2

Illustration of inference process for an LIF neuron within the hidden layer. The input spikes charge the membrane potential V l

i
(t) through weighted

and bias currents learned during training. When V
l

i
(t) reaches the threshold V

l

thr, the neuron generates a spike and then resets V l

i
(t). In our study, the

Integrate-and-Fire (IF) neuron with soft reset is a special case of the LIF model when τ = 1.

In the hidden layers, the weighted current Zl(t) is given by

Z
l(t) =W

l
θ
l−1(t)+ b

l when l > 1, (3)

where W
l is the weight matrix, and b

l is the bias current.

According to different inputs, Zl(t) at the first layer, i.e., Z1(t), can

be initialized as either

Event-based input: Z1
e (t) =W

1
X(t)+ b

1, (4)

where X(t) is the time-dependent spike train, i.e., the input may

change the charging current with time during the inference, or

Frame-based input: Z1
f =W

1
X̄ + b

1, (5)

where X̄ represents the constant current based on inputs, e.g.,

normalized pixel value of RGB Image. For each timestep, the first

layer of SNN transforms the frame-based input X̄ into weighted

current Z
1
f , which then stimulates the LIF neurons in the first

layer to generate spikes. Notably, for event-based input, SNN can

manifest faster inference due to immediate response after receiving

the first spike, and it completes the inference whenever the spike

train ends, i.e., at T. The event-based benchmarks are introduced

in Section 5.1. This characteristic allows the inference time to be

dynamic for different inputs. In this paper, with the cutoff technique

as in Section 4.1, we will show that the average latency of the

inference in SNN can be further reduced (to some t ≤ T).

4 Methods

Section 4.1 presents the theoretical underpinnings of cutoff

mechanism for the inference. Subsequently, Section 4.2 details the

design of a general regularizer to optimize SNN regarding the cutoff

mechanism.

4.1 Cuto� mechanism in SNN

Owing to its asynchronous working mechanism, the event-

driven SNN can predict when only part of the spike train is

processed. However, a naive cutoff of the spike train length (or the

event sensor’s sampling time) can easily lead to a loss of accuracy.

In this section, we propose a principled method to determine

inference time.

Our approach begins with a theoretical analysis of the cutoff

in Section 4.1.1, where we identify the optimal cutoff timestep

for each input. Specifically, we explore the optimal timesteps

that consistently allow the SNN to make correct predictions in

subsequent processing. This evaluation can only be performed in

simulations and requires knowledge of future predictions.

To approximate this process in practice, we introduce the

Top-K cutoff in Section 4.1.2. To elaborate, we define a confidence

rate, denoted as C(t,D{Ygap > βt}), based on the statistical

characteristics of processing a set D of inputs with respect to the

discrete time t and the gap between the logits of output neurons,

Ygap. The condition Ygap > βt is used to identify the samples in D

that are suitable for cutoff. We can plot a curve of the confidence

rate C(t,D{Ygap > βt}) with respect to time t and constant values

βt . A set of βt is extracted from the training samples to trigger the

Top-K cutoff.

4.1.1 Optimal cuto� timestep
To define a theoretically optimal cutoff within SNN, we

propose identifying the cutoff point where subsequent predictions

remain positively true. This criterion establishes the cutoff as the

minimal necessary duration of input processing required to uphold

predictive reliability. Thus, we define optimal cutoff timestep

(OCT) as the smallest timestep t̂ ∈ {1, 2...,T} at which the SNN

prediction function f (X, t) remains correct prediction for all future

timesteps t greater than t̂, formulated as

OCT(X) = min{t̂ | ∀t > t̂, f (X, t) is correct}. (6)
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This equation expresses the earliest timestep from which the

prediction function f (·) can be accurately and correctly classified

according to the partial input. The function OCT(X) represents a

theoretical lower bound of the average inference timestep, ensuring

that each input sample can undergo a minimal inference timestep

without sacrificing accuracy.

In our evaluations, we used the OCT as a new metric to

assess the performance of SNN models in terms of their cutoff

efficiency. This metric allows us to quantitatively determine the

lower boundary of the cutoff for any given sample, thereby

pinpointing the earliest timestep at which our SNN models can

deliver reliable predictions.

4.1.2 Top-K gap for cuto� approximation
During runtime inference, a critical challenge emerges due

to the unpredictability of future predictions, which makes

determining the OCT in real time impractical. To address this issue,

we introduce a cutoff mechanism based on the gap between the

largest (top-1) and second-largest (top-2) output logits. This “Top-

K” approach suggests that a larger gap between these two output

logits indicates a low likelihood of changing the prediction during

inference, thereby marking an appropriate point for cutoff.

To formalize this concept, let Topk(Y(t)) be the top-k logit of

one neuron at the output layer. We define the function Ygap to

represent the gap of top-1 and top-2 values of output Y(t) as

Ygap = Top1(Y(t))− Top2(Y(t)). (7)

Then, we let D{·} denote the inputs in subset of D that

satisfy a certain condition. Now, we can define the confidence rate

C(t,D{Ygap > βt}) as

Confidence rate: C(t,D{Ygap > βt}) =
1

|D{Ygap > βt}|
∑

X∈D{Ygap>βt}
(OCT(X) ≤ t).

(8)

The confidence rate intuitively computes the percentage of

inputs in D that can achieve the prediction success at or before T.

|D{Ygap > βt}| denotes the number of samples in D satisfying the

condition. It is not hard to see that when t = 0, C(t,D{Ygap > βt})
is also 0, and with the increase in time t, C(t,D{Ygap > βt}) will also
increase until reaching 1. Our algorithm searches for a minimum

βt ∈ R
+ at a specific t, as expressed in the following optimization

objective

argmin
βt

C(t,D{Ygap > βt}) ≥ 1− ǫ, (9)

where ǫ is a pre-specified constant such that 1−ǫ represents an

acceptable level of confidence for activating cutoff.

Figure 3 provides a visual representation of Equations 6–9,

illustrating the theoretical concepts comprehensively. Additionally,

Figure 3B highlights the performance disparity between OCT the

and Top-K cutoff. The OCT identifies the minimum theoretical

timestep t̂ for each sample, ensuring that predictions remain

accurate as if processed until the maximum timestep T. Adjusting

the ǫ parameter in the Top-K cutoff allows for a reduced average

timestep; however, this may lead to a compromise in accuracy. This

insight directs our primary optimization goal toward enhancing

SNN cutoff performance, a significant departure from traditional

SNN optimizations (Bu et al., 2022; Deng et al., 2022; Yao et al.,

2021; Fang et al., 2021a,b) that typically emphasize inference over a

fixed duration.

4.2 Optimizing SNN for cuto�

To improve the cutoff performance, we concentrated on

maximizing the cosine similarity between the actual spiking rate

at time t, rl(t), and the desired spiking rate, r̃l. This objective is

achieved byminimizing the inverse of the cosine similarity between

these two rates across hidden layers during training, formalized

through the introduction of the regularizer of cosine similarity

(RCS), defined as

min
W

(

r̃
l · rl(t)

‖r̃l‖2‖rl(t)‖2

)−1

, (10)

where r̃
l is desired spiking rate, and r

l(t) denotes the spiking

rate at time t. Both spiking rates were approximated differently

according to conversion (Section 4.2.1) and direct training (Section

4.2.2).

The motivation for using cosine similarity lies in its proven

correlation with the final accuracy of quantised neural networks,

as demonstrated by Banner et al. (2018). In a similar vein, we

hypothesized that a higher cosine similarity between r̃
l and r

l(t)

would correlate with a smaller accuracy drop at time t. However,

approximating these spike rates poses a significant challenge,

particularly within the frameworks of ANN-to-SNN conversion

and direct training.

To address these challenges, we differentiate the spiking rates

in the context of conversion and direct training as follows r̃
l
c

and r
l
c(t) denote the desired and actual spiking rates at time t,

respectively, in the conversion-based method with IF neurons,

while r̃
l
d and r

l
d
(t) are used for direct training with LIF neurons.

Each method necessitates a distinct approach to approximate these

rates, reflecting their unique operational contexts.

It is important to note that there is no established evidence

that Equation 10 directly optimizes accuracy at maximum timestep

T. This is because the cosine similarity term primarily serves as

a penalty for alignment between features at different timesteps

rather than an explicit measure of distance to the ground truth.

Therefore, to avoid any potential degradation in the original

training performance, our RCS is applied selectively, focusing only

on those samples that yield correct predictions at T.

4.2.1 Regularizing ANN before conversion
For conversion-based SNN, Wu et al. (2022) introduced on

a fundamental relationship between spiking rates rlc(t) and ReLU

activation a
l, which gives

r
l
c(t) =

1

V l
thr

(

W
l
r
l−1
c (t)+ b

l
)

−1
l(t), (11)
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FIGURE 3

Evaluation of the Top-K cuto� on CIFAR10-DVS, using a directly trained SNN model with T = 10 (as detailed in Section 5): (A) The increase of β limits

the number of samples eligible for cuto�, while concurrently enhancing the confidence in the cuto� decision. (B) To enhance the readability, the

inference timestep of 16 samples from the test dataset under varied trigger conditions.

where r
l
c(t) = 1

t

∑t
θ
l(t′) denotes the spiking rate at time t,

with t′ representing each discrete timestep leading up to t at the at l-

th layer, and 1
l(t) , V

l+(t)/(tV l
thr
) represents the residual spiking

rate.

The spiking rate in the first layer can be initialized as r1c (t) =
a
1/V1

thr
− 1

1(t). When t is sufficiently large to make 1
l(t)

negligible, we have the desired spiking rate for the l-th layer as

r̃
l
c =

a
l

V1
thr

. (12)

Given that rlc(t) = r̃
l
c −1

l(t), the cosine similarity is given by

r̃
l
c · rlc(t)

‖r̃lc‖2‖rlc(t)‖2
≥ ‖r̃lc‖2
‖r̃lc‖2 + ‖1l(t)‖2

= ‖al‖2
‖al‖2 + ‖V l+(t)/(t)‖2

.

(13)

Assuming that elements in V
l+(t) satisfy uniform distribution

over the time t and they are in [0,Vthr], we can derive boundary for

expected value of ‖V l+(t)/t‖2 as E(‖V l+(t)/t‖2) ≤
√
nlVthr/(

√
3t)

(proof in Supplementary Material). Moreover, at high dimensions,

the relative error made as considering E(‖V l+(t)/t‖2) instead of

the random variable ‖V l+(t)/t‖2 becomes asymptotically negligible

(Biau andMason, 2015). Therefore, the lower bound of Equation 13

is given by

r̃
l
c · rlc(t)

‖r̃lc‖2‖rlc(t)‖2
≥ ‖al‖2
‖al‖2 +

√
nlV l

thr
/(
√
3t)

=
√
3t

√
3t +
√
nlV l

thr
/‖al‖2

.

(14)

This equation explicitly explains that: (a) the increase of t

to t ≫
√
nlV l

thr
/‖al‖2, where nl is the number of elements in

activation a
l, can increase the lower bound, and (b) it is possible

to minimize term
√
nlV l

thr
/‖al‖2 for developing an SNN with

optimized performance at any time during the inference. In other

words, for a conversion-based SNN to achieve optimal cutoff

performance, the model expects a good (small) ratio of threshold

Require: Dataset D, ANN prediction function fann(·), L

total layer number, batch size B

1: for each batch B in D of size B do

2: Initialize A
l

batch to store activations for layer

l

3: Initialize A
l
norm to store L2 norms for layer l

4: for each data point X̄ in B do

5: if fann(X̄) is correct then

6: Append layer l activations a
l to A

l

batch

7: end if

8: end for

9: Compute Amax as the maximum value in A
l

batch

10: for each a
l in A

l

batch do

11: Append ‖al‖2 to A
l
norm

12: end for

13: Compute A
l
min

as the minimum value in A
l
norm

14: LRCS ← 1
L

∑L

l

√
nl

Almax

A
l
min

15: end for

Algorithm 1. Compute RCS loss in ANN training.

voltage V l
thr

to average accumulated current, i.e., ‖al‖2/
√
nl, while

not degrading SNN classification performance.

In the ANN training, we aim to affect the training process to

result in SNN for optimal cutoff. For this purpose, Algorithm 1

was designed to increase the lower bound defined in Equation 14.

Following Rueckauer et al. (2017) and Wu et al. (2022), we use

the maximum activation value, denoted as Amax in the algorithm

to approximate the threshold voltage V l
thr

at each layer. The

algorithm optimizes activation ratios within each layer during

training, directly enhancing SNN performance.

4.2.2 Regularizing direct training
In the case of direct training, SNN indicates its potential at

processing spatiotemporal data, leading to a dynamic spiking rate

r
l
d
(t) throughout the inference process. This capability, highlighted

in Yao et al. (2021), sets direct training apart from ANN-to-

SNN conversion, which is designed only for static input. Given
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FIGURE 4

Comparison of SNN with and without Top-K cuto� on CIFAR10 (left) and CIFAR10-DVS (right) across various training methods: (A) The Top-K cuto�

is determined by ǫ values ranging from 0.00 to 0.50 in increments of 0.05. (B) The statistical data is extracted from testing samples under ǫ = 0.02 for

CIFAR10 ǫ = 0.0 for CIFAR10-DVS. The x-axis label has been revised.

that spikes can vary across timesteps in direct training, and their

average may not accurately capture the temporal information, we

approximate the spiking rate at each timestep by normalizing the

membrane potential at that specific timestep. Thus, rl
d
(t) is defined

as

r
l
d(t) = θ

l(t)+ V
l+(t)

V l
thr

, (15)

where θ
l(t) is generated spikes and the normalized residual

membrane potential V l+(t)/Vthr reflects the firing intention of

neurons.

In the next step, we focus on computing the desired spiking rate

r̃d. The trend where SNN accuracy improves more timesteps, which

is attributed to the accumulation of relevant information over time,

is illustrated in Figure 4 in Section 5. This observation forms the

basis for our estimation of r̃d, which is calculated as

r̃
l
d =

1

N

T
∑

t=T−N
r
l
d(t), (16)

where N is an integer hyperparameter. The proposed method

posits that the later spiking rates can provide more representative

information for a given sample. As indicated in Equation 6 from

Section 4.1.1, consistent and correct predictions are crucial for

optimal cutoff performance. Thus, we only optimize rd(t) using

Equation 10 only when the last N predictions are correct. The

details of this approach are described in Algorithm 2.

4.2.3 Optimization objective
Building on the LRCS computed in Algorithms 1, 2 for ANN and

SNN, respectively, we integrate the regularization term into our

overall optimization objective for each model. LRCS captures the

worst-case features across layers during training, and minimizing

LRCS helps mitigate these issues.We followed Deng et al. (2022) and

Bu et al. (2022), and we used cross-entropy loss (denoted as Lce) as

the primary training loss. The final training objective with the RCS

regularization is

min
W

(Lce + αLRCS) , (17)

Require: Dataset D, SNN prediction function f(·), L

total layer number, batch size B

1: for each batch B in D of size B do

2: Initialize S
l

batch to store cosine similarity for

the layer l

3: for each data point X in B do

4: Set consistent_correct = True

5: for t = T − N to T do

6: if f(X,t) is not correct then

7: Set consistent_correct = False

8: end if

9: end for

10: if consistent_correct is True then

11: for each layer l do

12: Compute r̃d = 1
N

∑T

t=T−N r
l

d
(t)

13: Compute 1
T

∑T

t

r̃
l

d
·rl
d
(t)

‖r̃l
d
‖2‖rld(t)‖2

and append to S
l

batch

14: end for

15: end if

16: end for

17: for each layer l do

18: Compute S
l
min as the minimum value in S

l

batch

19: LRCS ← 1
L

∑L

l(S
l
min)

−1

20: end for

21: end for

Algorithm 2. Compute RCS loss in SNN training.

whereW is the weight matrix of the ANN or SNN to be trained,

and α is a hyperparameter to the balance two loss terms.

5 Experiment

In this section, we discuss comprehensive experiments

conducted to evaluate SNN models using our newly proposed

metric “OCT,” in conjunction with the “Top-K” cutoff and the

“RCS” regularization technique. These experiments were designed

to explore the compatibility of the proposed approaches with
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TABLE 1 Comparison of accuracy and latency before and after applying RCS across di�erent training methods on frame-based datasets.

Dataset Method
OCT Top-K(0) Top-K(0.05)

Acc. Tavg Acc. Tavg Acc. Tavg

CIFAR10

QCFS(4) 94.04 1.27 94.04 4.00 94.04 2.40

QCFS(4) + RCS 94.32 1.26 94.32 4.00 94.32 2.94

TET(4) 94.89 1.20 94.89 4.00 94.86 1.45

TET(4) + RCS 95.24 1.19 95.24 2.10 95.23 1.67

TEBN(4) 95.30 1.22 95.30 4.00 95.24 1.57

TEBN(4) + RCS 95.49 1.22 95.49 4.00 95.47 1.58

CIFAR100

QCFS(4) 75.20 2.03 75.20 4.00 75.20 3.80

QCFS(4) + RCS 76.21 2.00 76.21 4.00 76.21 3.72

TET(4) 77.02 1.84 77.02 4.00 77.02 3.30

TET(4) + RCS 77.81 1.81 77.81 4.00 77.81 3.23

TEBN(4) 77.93 1.85 77.93 4.00 77.93 3.03

TEBN(4) + RCS 78.13 1.85 78.13 4.00 78.13 3.08

Tiny-ImageNet

QCFS(4) 47.11 2.97 47.11 3.98 47.11 3.91

QCFS(4) + RCS 47.71 2.94 47.71 3.99 47.71 3.97

TET(4) 56.56 2.52 56.56 3.74 56.56 3.65

TET(4) + RCS 56.69 2.52 56.69 3.75 56.69 3.56

TEBN(4) 56.19 2.56 56.19 3.87 56.19 3.63

TEBN(4) + RCS 56.69 2.54 56.69 3.82 56.69 3.51

OCT reflects the theoretical cutoff performance, indicating undiminished accuracy and the average optimal cutoff timesteps. Top-K cutoff with ǫ values of 0.0 and 0.05 demonstrates the

performance of the approximated cutoff. The bold values highlight the best results for each objective.

prevalent SNN training methods. For example, in conversion-

based training, we implement the quantised clip-floor-shift (QCFS)

method proposed by Bu et al. (2022). The proposed method

replaces ReLU with the QCFS activation function to reduce

the loss of accuracy after conversion. For direct training, we

adopted the temporal efficient training (TET) (Deng et al., 2022)

and temporal efficient batch normalization (TEBN) (Duan et al.,

2022), both of which represent the most recent developments in

SNN training algorithms. For clarity, each configuration in our

experimental setup is denoted within brackets: QCFS(·) indicates
the quantization length, while TET(·) and TEBN(·) refer to the

maximum timestep for training. Additionally, Top-K(·) indicates
the setting of ǫ. For easy reference to the techniques incorporated

in the models, we use notations such as “TET(·) + RCS, w/ Top-K,”

indicating that the SNN model has been enhanced with both RCS

regularization and the Top-K cutoff strategy. In our experiments,

the ANN-to-SNN conversion method, such as QCFS, was applied

only to frame-based datasets. We do not evaluate it on event-based

datasets, which inherently involve temporal dynamicsbecause they

focus primarily on spatial information.

5.1 Experimental datasets and setup

The experiments were conducted on various datasets,

including both frame-based and event-based inputs, and network

architectures. Specifically, we evaluated our approaches across

diverse settings: ResNet-18 (He et al., 2016) for CIFAR10/100

(Krizhevsky et al., 2009) and Tiny-ImageNet (Le and Yang, 2015),

VGGSNN (Deng et al., 2022) for CIFAR10-DVS (Li et al., 2017)

and N-Caltech101 (Orchard et al., 2015), along with a five-layer

convolutional network (Fang et al., 2021b) for DVS128 Gesture

(Amir et al., 2017). To effectively process event-based datasets,

we implement a downsampling strategy by integrating a 4 × 4

kernel with a stride of 4 at the beginning of the original network

architecture. This adjustment can directly feed event data into the

SNN, as suggested by Shrestha and Orchard (2018).

The samples in the event-based datasets record event addresses

with on/off events over a specific period. The CIFAR10-DVS

consists of 10,000 samples extracted from CIFAR10 (Li et al., 2017).

Each sample has 128 × 128 spatial resolution. The length of each

spike train is less than or equal to 1.3s. The N-Caltech101, dataset

contains 8,709 samples categorized into 101 classes. The number

of samples in each class ranged from 31 to 800. The length of each

spike train was approximately 0.3s. The width in the x-direction

does not exceed 240 pixels, and that in the y-direction does not

exceed 180 pixels. For these two datasets, we used 90% samples

in each class for training and 10% for testing. DVS128 Gesture

comprises of 1,341 samples with 11 categories. Each sample is was

analyzed for 6.0s. Due to repetitive information in these samples,

the first 1.3 s were selected. All event-based samples were split into

10 frames for training and evaluation.

For training, the hyper-parameter α varied depending on the

training method and dataset, and it was chosen from 0.001, 0.002,

0.003 for conversion-based methods and 0.001, 0.003, 0.005 for

event-based datasets. For the frame-based datasets CIFAR10/100
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TABLE 2 Comparison of accuracy and latency before and after applying RCS across direct training methods on event-based datasets.

Dataset Method
OCT Top-K(0) Top-K(0.05)

Acc. Tavg Acc. Tavg Acc. Tavg

CIFAR10-DVS

TET(10) 81.10 3.16 81.10 6.24 75.30 1.53

TET(10) + RCS 83.10 3.05 83.10 6.10 76.90 1.43

TEBN(10) 81.70 4.46 81.70 8.14 79.95 3.71

TEBN(10) + RCS 82.20 3.94 82.20 7.88 79.10 3.27

N-Caltech101

TET(10) 85.01 2.64 85.01 7.39 83.48 1.96

TET(10) + RCS 85.66 2.57 85.67 6.06 84.03 1.77

TEBN(10) 82.49 3.01 82.49 7.44 79.32 1.86

TEBN(10) + RCS 83.15 2.99 83.15 5.95 80.20 1.91

DVS128 Gesture

TET(10) 96.97 2.18 96.97 6.31 96.21 4.28

TET(10) + RCS 97.35 1.66 97.35 5.14 95.83 2.53

TEBN(10) 96.21 3.00 96.21 9.30 96.21 7.42

TEBN(10) + RCS 96.97 2.73 96.97 9.10 96.97 7.21

The bold values highlight the best results for each objective.

FIGURE 5

Comparison of Top-K cuto� accuracy before (dashed lines) and after (solid lines) regularization across a range of ǫ values from 0.00 to 0.50,

increasing in steps of 0.05. The accuracy of the full-length input is detailed in the legend. The x-axis label has been revised. (A) CIFAR10. (B)

CIFAR100. (C) Tiny-ImageNet. (D) CIFAR10-DVS. (E) N-Caltech101. (F) DVS128 Gesture.

and Tiny-ImageNet, we used a batch sizes of 128 and 300 epochs.

The auto augmentation method proposed by Cubuk et al. (2019)

was deployed on Cifar-10/100 to enhance the accuracy. For the

event-based datasets, the training parameters were set to 100 epochs

with batch sizes of 128 for CIFAR10-DVS, 64 for N-Caltech101, and

32 for DVS128 Gesture.

The evaluation of the Top-K cutoff requires a set of β values

derived from the training dataset. To evaluate the efficiency, each

sample is simulated until its corresponding OCT t̂. We used

Tavg to represent the average number of timesteps required for

the inputs from the entire test dataset. As models often exhibit

overconfidence post-training, we integrated dropout layers with a

0.3 dropout rate after each spiking layer to counteract this effect

during characterization. The efficacy of this dropout is explained

in Srivastava et al. (2014) and Jin et al. (2022). To implement RCS

in direct training, Equation 16 suggests that the later spiking rates

are expected to align with the desired spiking rates. Thus, we set

N = 1 for T = 4 and N = 3 for T = 10, guided by the

ratio N/T ≈ 0.3.

5.2 Experimental results

Figure 4A demonstrates the implementation of the Top-K

cutoff across various SNN training methods, demonstrating its

ability to enhance computational efficiency by reducing the number
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FIGURE 6

Histograms of cosine similarity at di�erent layers for SNNs trained with and without the RCS regularizer. (A) Results for SNN (ResNet-18) trained with

QCFS on CIFAR10 at t = 2. (B) Results for SNN (VGGSNN) trained with TET on CIFAR10-DVS at t = 3. Each subplot corresponds to a specific layer

index. Note that layer index −2 indicates the second last layer.

TABLE 3 Comparison of accuracy and latency between our methods and state-of-the-art SNN work.

Dataset
(Architecture)

Training
Framework

Method Acc. (Tavg,1) Acc. (Tavg,2) Acc. (Tavg,3)

CIFAR10
(ResNet-18)

CFFS (Li et al., 2023a) DC 94.11 (2.52) – –

QCFS

DC 94.27 (11.51) – –

SEENN-I 95.08 (2.01) 93.63 (1.40) 91.08 (1.18)

RCS+Top-K 94.31 (1.71) 93.96 (1.46) 91.59 (1.12)

TET RCS+Top-K 95.23 (1.58) 95.16 (1.32) 94.38 (1.07)

CIFAR100
(ResNet-18)

QCFS
SEENN-I 65.48 (6.19) 56.99 (4.41) 39.33 (2.57)

RCS+Top-K 76.21 (3.33) 75.22 (2.23) 71.94 (1.75)

TET RCS+Top-K 77.81 (2.73) 77.57 (1.91) 76.17 (1.45)

CIFAR10-DVS
(VGGSNN) TET

SEENN-I 82.7 (5.17) 77.60 (2.53) –

SEENN-II 82.6 (4.49) – –

RCS+Top-K 82.80 (4.14) 81.10 (2.52) 76.90 (1.43)

The ǫ value for each model is adjusted within the range [0, 0.5] with step size of 0.01 to evaluate accuracy at specific timesteps. The bold values highlight the best results for each objective.

of timesteps required to achieve comparable accuracy. Specifically,

the SNN method requires 1.76 to 2.76× fewer timesteps for

CIFAR-10 with a near-zero accuracy drop of 0.01% to 0.06%,

and 1.23 to 1.60× fewer timesteps for CIFAR10-DVS with

the same accuracy. However, while Top-K serves as a practical

approximation, a discernible gap exists between this empirical

approach and the theoretical cutoff by OCT. As illustrated in

Figure 4, in Top-K cutoff effectively implements an adaptive

timestep strategy but falls short of achieving the ideal cutoff,

particularly in terms of correctly classifying samples at the first

timestep compared to OCT. To provide further insight, we revisit

Figure 3B from Section 4.1.2, which visually illustrates the impact

of ǫ on Top-K cutoff across different samples. A larger ǫ may

indicate fewer timestep for each sample; however, the accuracy is

reduced. This highlights the need to optimize the Top-K cutoff

during training via RCS.

Given that RCS is designed to complement the OCT, our

experimental results consider the OCT as a key metric associated

with Top-K on frame-based inputs (Table 1) and event-based

inputs (Table 2). As seen in both tables, a smaller OCT always

indicates better accuracy performance and a more effective cutoff.

In Table 1, RCS facilitates a significant OCT reduction for the

QCFS models, ranging from 0.01 to 0.03 across CIFAR10/100 and

Tiny-ImageNet. Specifically, on CIFAR100, this improvement was

marked by a 0.3-fold decrease in OCT and a 1.01% increase in

accuracy, thereby underlining the effectiveness of RCS in enhancing

SNN from ANN training. Conversely, when RCS is applied to

direct training methods, such as TET and TEBN, improvements in
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on frame-based datasets appear to be more modest. This limited

improvement may be due to direct training methods are designed

to optimize the network’s performance at small timesteps, such as

configuring a small maximum timestep (T = 4) during training.

Furthermore, OCT estimates the theoretically optimal cutoff point

(without accuracy loss), reflecting the upper bound of accuracy

achievable during cutoff. In practical, the Top-K cutoff, as an

approximation of OCT, achieves accuracy less than or equal to that

of OCT, depending on the setting of ǫ.

The effect of RCS becomes more significant for event-based

datasets, as shown in Table 2, with OCT reductions ranging from

0.02 to 0.52. For the TET with RCS, Top-K(0) enabled the

SNN to achieve zero accuracy loss across all event-based datasets

while requiring 1.64 to 1.95× fewer timesteps. This performance

surpasses that of TET without RCS, which requires only 1.35

to 1.60× fewer timesteps. Moreover, Figure 5 illustrates that the

implementation of RCS shifts the accuracy curve upward compared

to the curve without RCS, which means that the similar accuracy

can have less inference timesteps.

5.3 Comparison with existing work on
cuto�

Previous studies have investigated adaptive inference strategies

for SNNs to improve inference efficiency. For instance, SEENN (Li

et al., 2023b) employs reinforcement learning to train an auxiliary

network jointly with the SNN, enabling early exits, whereas the

dynamic confidence (DC) strategy (Li et al., 2023a) relies on post-

training calibration.

In contrast, the proposed approach eliminates the need for

auxiliary networks, offers a more efficient cutoff solution, and

leverages RCS to assist training, enhancing cutoff robustness.

Figure 6 shows the impact of RCS on feature alignment. The

histograms show that RCS consistently improves cosine similarity

across layers, indicating better alignment between the early

timestep features and the expected features. Table 3 compares our

results with those of SNN models that employ adaptive inference

strategies. The results indicate that integrating the RCS and Top-

K SNN cutoff techniques leads to superior performance at low

timestep.

6 Conclusions

In this paper, we focus on developing an SNN that achieves

high efficiency throughout both training and inference processes,

making them particularly well-suited for inferring with adaptive

timestep. We introduce two key innovations designed to enhance

SNN performance: a regularizer targets the training phase,

and a cutoff mechanism optimizes the inference stage. Our

comprehensive experiments demonstrate these advancements,

indicating notable enhancements in accuracy and inference

efficiency over traditional methods. The Top-K cutoff technique

introduced here proves to be versatile across various SNN neuron

models, such as IF and LIF, provided the predictions rely solely on

output analysis.

While our approach shows strong potential, some limitations

remain. The current evaluation was primarily conducted on the

VGG and ResNet architectures, and its applicability to advanced

architectures like spiking transformers, has not been explored.

Additionally, the regularizer increases memory requirements, as

seen with a 26% increase in memory usage—from 8.9 to 11.3

GB—when directly training an SNN (T = 4) with ResNet-18 on

CIFAR10. This overhead could pose challenges in training larger-

scale networks. Furthermore, our evaluation relies on GPU-based

simulations rather than hardware implementations.

Future studies could explore integrating these techniques

with advanced architectures, such as spiking transformers.

Expanding the evaluation to more complex datasets and real-

world applications will provide a deeper understanding of the

scalability and practical utility of the proposed methods. Further,

optimizing the RCS to reduce its memory overhead would improve

its suitability for larger-scale models, thereby addressing resource

constraints. Finally, implementing and testing the cutoff with

the SNN on Field Programmable Gate Arrays (FPGAs) provide

valuable insights into their performance and feasibility for real-

world applications.
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