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Introduction: Inhibition mechanisms are essential in daily life, helping individuals 
adapt to environmental demands. However, the causal interactions between large-
scale functional networks involved in response inhibition remain poorly understood.

Methods: In this study, we examined the effective connectivity (EC) underlying 
inhibitory processes in the brain using dynamic causal modeling (DCM) and 
independent component analysis (ICA). We conducted a Go-NoGo fMRI task 
with 19 healthy participants to investigate these networks.

Results: Our results identified four functional networks activated during correct 
motor response inhibition: the salience network (SN), the right and left executive 
control networks (ECNs), and the ventral default mode network (vDMN). We observed 
a significant causal inhibitory influence from the vDMN to the left ECN (lECN). 
Under conditions of unsuccessful response inhibition, the SN, bilateral ECNs, and 
somatomotor network (SMN) were found to be prominently activated. Furthermore, 
we  identified a significant correlation between the inhibitory influence from the 
SMN to the SN and the commission error rate. Finally, correlation analyses between 
self-reported impulsivity levels and causal network interactions revealed that highly 
impulsive individuals require greater interhemispheric integration between the right 
and left ECNs for effective inhibition, as well as a causal excitatory modulation from 
the right executive control network (rECN) to the vDMN.

Discussion: In summary, our study reveals complex hierarchical dynamics 
among functional networks during response inhibition. These findings offer 
valuable insight into the neural mechanisms supporting inhibition and provide 
avenues for future research on the neural underpinnings of this critical cognitive 
function across the lifespan.
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1 Introduction

Response inhibition is a multifaceted process, characterized by three main dimensions: a 
cancellation mechanism, which involves stopping an ongoing response and is typically 
measured using the Stop-Signal Task (SST); a withholding process, which involves stopping a 
prepared but not yet initiated response, which is commonly measured using the Go-NoGo 
task; and finally, an interference resolution function, which is the process of selecting 
information relevant to an ongoing task while suppressing the processing of irrelevant 
information, which is typically tested using Stroop, Simon, Flanker, and Antisaccade tasks 
(Dambacher et al., 2014; Zhang et al., 2017). Overall, these cognitive processes play a critical 
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role as executive control mechanisms supporting future-oriented goals 
(Miller and Cohen, 2001).

The prefrontal cortex is widely recognized as a crucial cortical hub 
for response inhibition. However, the localization of activated regions 
within the frontal cortex varies across studies, with this variation 
appearing to be  task-dependent (Fuster, 1991; Wager et  al., 2005; 
Mostofsky et al., 2003; Simmonds et al., 2008). This region exerts 
top-down control to determine which stimulus–response associations 
should be activated in a given context (Zhang et al., 2017; Curtis and 
D'Esposito, 2003). Substantial evidence supports a dorsal/ventral 
dissociation within the prefrontal cortex during response inhibition, 
indicating that ventral lateral prefrontal regions (VLPFC) are involved 
in the maintenance of information, while the dorsolateral prefrontal 
cortex (DLPFC) is responsible for manipulating information in 
working memory (WM) (Simmonds et  al., 2008; Curtis and 
D'Esposito, 2003). Given its critical role in the domain of WM, the 
prefrontal region is essential for guiding response inhibition, 
particularly under conditions of increased working memory demand 
(Zhang et  al., 2017; Simmonds et  al., 2008; Curtis and 
D'Esposito, 2003).

Focusing on the widely implemented Go-NoGo task, the 
prefrontal region is not the only pivotal hub sustaining response 
inhibition. The cortical–subcortical nodes involved in response 
inhibition encompass the supplementary motor area (SMA), left 
premotor cortex, bilateral inferior parietal region, bilateral occipital 
regions, putamen, and bilateral insula (Buchsbaum et  al., 2005). 
Overall, all of these regions are implicated in the processes of stimulus 
recognition, maintenance, and manipulation during the selection of 
the motor response (Curtis and D'Esposito, 2003; Rubia et al., 2001; 
Corbetta and Shulman, 2002; Bellgrove et al., 2004; Blasi et al., 2006).

In modern neuroscience, it is well established that the brain is 
organized into large-scale functional networks. Cortical–subcortical 
regions form specific functional networks that regulate low-frequency 
fluctuations underlying resting states and influence cognitive task 
performance. Widely recognized functional networks include the 
default mode network (DMN), the salience network (SN), and the 
executive control network (ECN). The DMN mediates emotional 
processes, self-referential mental activity, and spontaneous cognition 
(Park and Friston, 2013; Raichle, 2015). This network can be divided 
into a dorsal subsystem (e.g., dorsal medial prefrontal cortex, 
precuneus, and posterior cingulate cortex) and a ventral subsystem 
(ventral medial prefrontal cortex, posterior inferior parietal lobule, 
retrosplenial cortex, and medial temporal pole). The ECN, on the 
other hand, comprises the dorsolateral prefrontal cortex and posterior 
parietal cortex hubs, is primarily activated when a cognitively 
demanding task requires attention and top-down control processes 
(Goulden et al., 2014; Fox et al., 2006). Finally, the SN involves the 
ventral lateral prefrontal cortex, anterior insula, and anterior cingulate 
cortex seed regions (Raichle, 2015; Seeley et  al., 2007). The SN 
responds when an emotional, cognitive, or homeostatic stimulus 
captures attention, regulating both the internal and external 
attentional processes (Raichle, 2015; Seeley et al., 2007). Particularly 
during motor tasks, a widely studied functional system is the 
somatomotor network (SMN). This network comprises cortico-
striato-thalamo circuits involved in skeletomotor control, with main 
hubs located in the precentral and postcentral gyri, as well as the SMA 
(Kozlowska et al., 2018; Wieclawski et al., 2024). The SMN serves 
multiple functions, including orchestrating motor responses such as 

error detection, motor initiation, inhibition, and feedback (Kozlowska 
et al., 2018; Wieclawski et al., 2024).

The top-down and bottom-up hierarchies of large-scale networks 
can be investigated by assessing the causal (directional) relationships 
underlying their connectivity patterns, highlighting the importance of 
effective connectivity (EC) (Park and Friston, 2013). EC describes the 
causal influence of one neuronal population on another, reflecting 
specific models of causal dynamics (Park and Friston, 2013). A widely 
used method for inferring these causal network interplays is dynamic 
causal modeling (DCM). DCM aims to uncover the causal architecture 
of coupled or distributed dynamical systems by defining a causal 
model characterized by interregional connections and self-
connections within each brain region (Park and Friston, 2013). Thus, 
DCM enables the inference of the causal synaptic strength of 
connections between and within regions of interest (Friston et al., 
2003). Combining independent component analysis (ICA) and DCM 
is a promising approach to investigating causal connectivities among 
different large-scale functional networks. ICA separates data into 
spatially independent patterns of activity, enabling the identification 
of brain networks engaged in a task or resting-state conditions without 
imposing predefined regions of interest/priors when specifying DCM 
models (Hidalgo-Lopez et al., 2021).

Specifically, multiple networks appear to be involved in response 
inhibition; however, their causal interactions are largely unknown 
(Stevens et al., 2007; Erika-Florence et al., 2014). To the best of our 
knowledge, only one recent study has employed both DCM and ICA 
approaches to infer causal connectivities between brain regions 
identified based on a spatially distributed and aggregated pattern of 
activity during successful response inhibition (Stevens et al., 2007). 
Through DCM model specification and the estimation of the ECs 
between these regions, the study highlighted distinct anatomical areas 
that exhibit task-related activation patterns during the stopping of 
planned but not yet initiated motor responses (withholding). 
Hierarchical patterns of EC are described, where the causal and 
dependent interplay between fronto-striatal-thalamic, premotor, and 
frontal–parietal regions is crucial for response suppression (Stevens 
et al., 2007). Specifically, the fronto-striatal-thalamic regions regulate 
both direct and indirect modulations of other brain components to 
achieve successful withholding of a prepotent response (Stevens et al., 
2007). These findings align with another study that implemented an 
ICA approach to extract time series from regions correlated with a 
stop-signal task. The authors highlighted that spatially distributed 
brain activations occur during the cancellation-inhibition processes 
(Erika-Florence et al., 2014). In this context, the insular, opercular, 
premotor, and anterior cingulate regions are identified as key 
components for processing infrequent and novel stimuli that should 
be  suppressed (Erika-Florence et  al., 2014). Overall, these studies 
suggest that behavioral inhibition arises from different localized brain 
components that are not solely confined to frontal modules, forming 
a holistic neuronal system for multiple cognitive demands during the 
inhibition mechanisms (Stevens et al., 2007; Erika-Florence et al., 
2014). Nevertheless, focusing on spatially distributed regions to 
parameterize withholding models may be somewhat limiting. This 
perspective involves aggregating various remote and localized brain 
regions based on their activation patterns across different conditions 
or tasks. Thus, emphasis is placed on regions where activity is 
integrated from various areas grouped into discrete or localized 
regions. Therefore, more studies should focus on the relationship 
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between large-scale networks, which are considered widespread brain 
systems characterized by functional connections or correlated 
functional activity patterns. This approach would provide a solid 
scientific foundation for understanding how functional network 
modulations orchestrate correct or incorrect response inhibition as a 
crucial cognitive function. Thus, to the best of our knowledge, a deep 
understanding of the EC (directional) interplay between established 
large-scale functional networks (e.g., DMN, SN, and ECN) during 
response inhibition is timely. In fact, EC between large-scale 
functional networks is primarily investigated during resting-state 
fMRI designs (Li et al., 2020).

To bridge this gap, we used Dynamic Causal Modeling (DCM) to 
assess the causal influences of functional networks related to response 
inhibition during a Go-NoGo task in a healthy population. 
We hypothesize that the main top-down and bottom-up networks play 
different roles during a successful withholding response compared to 
an incorrect inhibition of the motor response. Specifically, we aim to 
test the top-down and bottom-up causal connectivities between large-
scale functional networks that affect the correct and incorrect response 
inhibition mechanisms. Our study thus addresses the neural 
mechanisms underlying the dynamics of the withholding process. 
Understanding the dynamics could lead us to propose a new 
perspective as a starting point, which may serve as a target 
endophenotype for future clinical interventions (Abramovitch et al., 
2015; Slaats-Willemse et al., 2003; Wylie et al., 2007; Collantoni et al., 
2016; Glass et al., 2011; Kaladjian et al., 2011; Sneed et al., 2007).

2 Materials and methods

2.1 Participants

The participants consisted of 19 healthy individuals (9 men and 
10 women; mean age = 27.6 years, SD = 6.5) were recruited from the 
local community and interviewed by a medical research assistant. 
Individuals with a history of drug use, any medical conditions, 
neurological or psychiatric disorders, and/or first-degree relatives with 
Axis I psychiatric disorders were excluded from participation. All 
subjects were native German speakers, right-handed according to the 
modified version of Annett’s Handedness Inventory (Briggs and 
Nebes, 1975), and provided written informed consent before 
participation. To assess and better understand the general 
neuropsychological profile of our sample, we utilized a set of self-
report questionnaires, including the State–Trait Anxiety Inventory 
(STAI-S/T) and the Barratt Impulsiveness Scale-11 (BIS-11). Main 
anamnestic and subclinical scores, means, and standard deviations are 
reported in Table 1 (Laux et al., 1981; Patton et al., 1995). The Ethics 
Committee of the University of Jena approved the study protocol. All 
subjects were compensated with €8 per hour for their participation.

2.2 Go-NoGo task design

The Go-NoGo paradigm is a commonly used task for measuring 
the ability to inhibit a prepotent response (Leimkuhler and Mesulam, 
1985). The NoGo signal, which triggers the inhibitory processes, is 
presented unexpectedly following a Go signal, assessing the inhibition 
of a planned response (action restraint; Eagle et  al., 2008). Our 

research group developed a modified version of the task, which is 
described in detail in our previous study (Köhler et  al., 2018). 
Typically, the task is weighted toward the Go stimuli to build a 
prepotent tendency to respond, thereby increasing the inhibitory 
effort required to successfully withhold responses to NoGo stimuli. In 
short, at the beginning of the experiment, participants saw the word 
“READY” in the middle of the screen. The word “READY” was then 
replaced by a clay jug from which water frequently dripped, 
representing our baseline measure.

After varying time intervals, a stimulus appeared, which was 
either a Go or a NoGo trial. The Go stimulus included two types of 
transverse cracks originating from either the left side or the right side 
of the jug. The NoGo stimulus consisted of two types of vertical cracks 
originating from either the upper end or the bottom end of the jug. 
The stimuli were presented for 600 ms. The inter-stimulus intervals 
(ISI) were 3,800, 6,000, and 8,200 ms, presented sequentially and 
equally, with corresponding stimulus-onset asynchronies (SOAs) of 
4,400, 6,600, and 8,800 ms. Initially, the stimulus presentation onsets 
were delayed by 0 to 1.6 s as additional temporal jitter to prevent the 
water drops from serving as the stimulus timing and to enhance the 
temporal resolution of the hemodynamic responses. Subsequently, 
immediately after the stimulus presentation, water continued to drop 
into the jug: there were more Go stimuli (∼74% of cases) than NoGo 
stimuli (∼26% of cases). This imbalance enabled us to create a 
prepotent response tendency and better distinguish the cognitive 
withholding mechanism in suppressing the planned but not yet 
initialized motor response.

All subjects were asked to indicate which type of crack was 
presented by either pressing a button (with their right index finger) as 
quickly as possible when a Go stimulus appeared or by restraining 
their response when a NoGo stimulus appeared. In the present study, 
we adapted the experiment in terms of total duration and structure. 
Thus, in this study, the Go-NoGo experiment lasted approximately 
23 min, featuring 160 Go and 42 NoGo stimuli. Performance was 
assessed by the number of correct reactions in both the Go and NoGo 

TABLE 1 Main demographics and subclinical data.

General Mean ± standard 
deviation

Age (years) 27.6 ± 6.5 (18 to 47)

Sex M = 9; F = 10

Education

No = 0

Primary = 1

Secondary = 1

Higher level = 17

Neuropsychological assessments

 STAI-S 36.8 ± 8.1 (22 to 50)

 STAI-T 38.5 ± 8.9 (20 to 50)

 BIS-11 total score 58.5 ± 11.3 (44 to 87)

 BIS-11 Non-Planning subscale 21.4 ± 3.9 (17 to 30)

 BIS-11 Attentional-Impulsivity subscale 16.5 ± 4.4 (10 to 27)

 BIS-11 Motor-Impulsivity subscale 20.7 ± 4.5 (14 to 31)

Mean ± standard deviation values, including their range, are reported for demographic and 
subclinical variables. M, male; F, female; STAI-S/T, State–Trait Inventory; BIS-11, Barratt 
Impulsiveness Scale-11.
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conditions. In summary, the benefits of implementing a revised 
version of the task follow this rationale: the Go-NoGo task typically 
relies on frequent and fast-paced Go trials to establish pre-potency. 
However, the BOLD signal measured during fMRI is relatively slow, 
with the peak hemodynamic response occurring approximately 5 s 
after the stimulus onset. To better resolve BOLD responses to the 
presented trials, we  increased the inter-stimulus interval while 
maintaining pre-potency. The scenario of water drops falling into a jar 
until it breaks was chosen as a relatable and intuitive representation 
for participants. Between trials, the falling water drops were intended 
to establish motor readiness. Additionally, the Go trials were presented 
more frequently. In earlier studies, this task was used while recording 
BOLD activations and physiological responses, which corroborated 
its basic functionality (Köhler et al., 2018).

2.3 Image acquisition and processing

Data were collected using a 3 T whole-body system equipped with 
a 64-element receive-only head matrix coil. T2*-weighted images were 
obtained through a gradient-echo echo-planar imaging (EPI) 
sequence (TR = 2,120 ms, TE = 36 ms, TA = 2,100 ms, 
FOV = 224 mm2, acquisition matrix = 160 × 160 mm2, flip 
angle = 90°) with 104 interleaved transverse slices of 1.4 mm 
thickness, a multi-band acceleration factor of 4, and an in-plane 
resolution of 1.4 × 1.4 mm2. A series of 606 whole-brain volume sets 
were acquired in one session lasting approximately 23 min. High-
resolution anatomical T1-weighted volume scans (MPRAGE) were 
captured in sagittal orientation (TR = 2,300 ms, TE = 3.03 ms, 
TI = 900 ms, flip angle = 9°, FOV = 256 mm × 256 mm, matrix =  
256 × 256, number of sagittal slices = 192, acceleration factor 
(PAT) = 2) with an isotropic resolution of (1 × 1 × 1) mm3. Data 
analysis was conducted using SPM12.1 The first four images were 
discarded to ensure a steady-state tissue magnetization condition. 
Further preprocessing steps of the fMRI data included slice timing 
correction, rigid body realignment to the mean of all images, and 
alignment of functional and anatomical data. Subsequently, images 
were normalized to MNI space and smoothed with a Gaussian kernel 
of 4 mm full-width at half-maximum.

2.4 Spatial ICA analysis

We opted for a multivariate, data-driven approach to explore 
response inhibition as a brain function. In this context, we conducted 
a spatial ICA. The ICA methods are available in the Group ICA of 
fMRI Toolbox (GIFT v1.3b) implemented in MATLAB.2 One of the 
first steps was to define the dimensionality reduction method, and 
we chose a Minimum Description Length Criterion (MDL) algorithm 
for model selection, approximation, and signal complexity reduction. 
MDL was used to avoid potential order selection biases that could 
hinder ICA in estimating the dimension of the signal subspace in 
fMRI data (Calhoun and de Lacy, 2017). Specifically, MDL allows for 

1 https://www.fil.ion.ucl.ac.uk/spm

2 http://icatb.sourceforge.net

the selection of an optimal model to approximate the data with 
minimal complexity (Calhoun and de Lacy, 2017). For the number of 
independent components (ICs) to extract, we adopted a standard 
figure of 20. A range of 20–50 components is typically reported in 
most studies; depending on the data, higher model orders yield more 
focal components, whereas lower model orders result in larger 
networks (Calhoun and de Lacy, 2017). Finally, by using a low-order 
model, we  differentiated between various lateralized functional 
networks and discarded noise components through visual inspection 
of each IC (Calhoun and de Lacy, 2017). Furthermore, to address the 
randomness inherent in the initialization of the ICA algorithm 
decomposition, we combined two specific ICA algorithms: ICASSO 
and Infomax. ICASSO performs the analysis multiple times with 
different random initializations and subsequently quantifies the 
consistency of the outcomes. The ICASSO software package is used 
for the quantitative evaluation of the stability of ICA estimation at 
different selected orders. Conversely, Infomax is an ICA algorithm 
designed to maximize information criteria by enhancing mutual 
information (Calhoun and de Lacy, 2017). Data were reduced through 
two principal component analysis (PCA) stages (first subject-specific 
PCA = 25; second group-based = 20) and concatenated at each stage 
for further reduction. The concatenated data from the reduction step 
were used to aggregate ICA components and back-reconstruct 
component time courses and spatial maps for each participant 
(group-ICA/GICA back reconstruction step). The aggregated 
components and the results from data reduction are used to compute 
individual subject components. The resulting single-subject time 
course amplitudes were then calibrated (scaled) using the raw data to 
reflect the percentage of fMRI signal change for comparison across 
participants. The individual back-reconstructed components were 
then used to compute a mean spatial map and time course, a standard 
deviation spatial map and time course, and a t-statistic spatial map 
(Stevens et al., 2007).

2.5 Functional network identification

The time course analysis involved parameterizing the time courses 
of each IC using a temporal multiple regression. We then estimated 
the association between each component’s time course and two 
conditions that characterize the Go-NoGo experimental design. The 
hemodynamic response results from three different conditions in the 
task design: correct rejects, false alarms, and hits. In line with our 
research aims, we  used the design matrices for correct response 
inhibition (correct rejects) and for incorrect response inhibition (false 
alarm errors) as two temporal regressors, which we  previously 
estimated with a first-level General Linear Model (GLM). This 
convolution model’s multiple regression analysis yielded R2 values that 
represented the overall association of each condition in the 
experimental design with each component’s time course. We examined 
the mean β-weights, showcasing the coupling of each component to 
the experimental conditions (correct rejects and false alarm errors) 
using one-sample t-tests against zero. Component p-values that 
differed significantly from zero indicated an association with that 
condition. We visually inspected these t-statistical maps produced by 
the GICA analysis for each significant IC. The detection and 
identification of each functional network were compared with ROIs 
in the MNI space commonly found in the literature (Abramovitch 

https://doi.org/10.3389/fnins.2025.1525038
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.fil.ion.ucl.ac.uk/spm
http://icatb.sourceforge.net


Di Giuliano et al. 10.3389/fnins.2025.1525038

Frontiers in Neuroscience 05 frontiersin.org

et al., 2015; Slaats-Willemse et al., 2003; Wylie et al., 2007; Collantoni 
et al., 2016; Glass et al., 2011; Kaladjian et al., 2011; Sneed et al., 2007). 
Additionally, we compared literature studies on large-scale network 
definitions with our visual inspection of each functional network by 
leveraging a built-in automatic labeling function of the GIFT-ICA 
toolbox, which serves as a spatial correlation of each IC with 
predefined functional network templates (Abramovitch et al., 2015; 
Slaats-Willemse et al., 2003; Wylie et al., 2007; Collantoni et al., 2016; 
Glass et al., 2011; Kaladjian et al., 2011; Sneed et al., 2007).

2.6 Dynamic causal modeling

The aim of dynamic causal modeling (DCM) is to infer the causal 
architecture of coupled or distributed dynamical systems. DCM posits 
a causal model in which neuronal activity in a given region influences 
changes in neuronal activity in other regions through interregional 
connections, as well as in its own activity through self-connections 
(Friston et  al., 2003). Additionally, any of these connections can 
be modulated by contextual variables. Importantly, the parameters are 
constrained to align with a priori specifications regarding the range 
within which they are likely to fall. These constraints, formulated as a 
prior distribution, are then combined with data through a likelihood 
distribution to establish a posterior distribution according to Bayes’ 
rule. Changes in EC can then be inferred using Bayesian inference 
based on the posterior densities (Calhoun and de Lacy, 2017; Li et al., 
2007; Calhoun et al., 2001). In this study, DCM was implemented to 
estimate the EC couplings and decouplings between each functional 
network detected for each Go-NoGo condition. To achieve this goal, 
we first estimated the global maximum activation in each IC’s time 
map to extract the eigenvariate representative of each network, which 
will be used to compute the DCM model specification. We defined 
these coordinates as the centers of the ROI masks. This procedure 
enabled us to extract, for each condition and subject, the volumes of 
interest (VOIs) necessary for the specification and estimation of the 
DCM models. Subject-specific coordinates were identified within an 
11 mm radius of the group-level peak within these region-specific 
masks. This procedure follows a pipeline already implemented in the 
context of the ICA-DCM approach to extract IC time series, which can 
be used as input for DCM models (Hidalgo-Lopez et al., 2021). The 
time series from these ROIs were then extracted for each subject, 
creating the VOIs. Our primary focus was on EC between ROIs in the 
left and right hemispheres. The inter-hemispheric differences fall 
outside the scope of this study. DCM operates on a hypothesis-driven 
model space specification, which requires some parameter 
specifications. For Bayes model specification, we implemented a DCM 
time-series model, as this technique is commonly used in fMRI task 
designs. We  opted for a bilinear model space with a two-state 
specification, allowing connections to remain unconstrained—neither 
exclusively excitatory nor exclusively inhibitory—without stochastic 
effects (i.e., no random influences). We explored all possible inter-
regional and intra-regional modulations between each network by 
comparing a fully connected model with a null/control model (where 
only matrix A is fully connected and activated). In this model space, 
we needed to specify prior parameters in matrix A, which are context-
independent and represent fixed EC among brain regions mediated by 
anatomical connections; matrix B, which represents context-dependent 
changes in EC induced by the task (u1); and matrix C, which represents 

context-dependent driving inputs of the task (u2) that modulate the 
activation of each node (Gelman et al., 1995). The order of each entry 
(VOIs) for each matrix is specific and driven by the hypothesis of 
modeling top-down and bottom-up forward/backward connections 
between each network, considering the roles these functional networks 
play during the cognitive control processes (Simmonds et al., 2008).

Then, we  conducted Bayesian Model Estimation to identify 
parameters (e.g., connection strengths) that provide the best trade-off 
between explaining the data and minimizing complexity (i.e., keeping 
parameters close to their prior or initial values). Model estimation 
combines priors with observed fMRI data to produce updated posterior 
beliefs. According to Bayes’ rule, the posterior distribution equals the 
likelihood multiplied by the prior, divided by the evidence (Gelman 
et al., 1995). Next, Bayesian Model Selection (BMS) was performed to 
identify the best-fitting model that explains the EC framework for each 
condition, using a Random Effects Analysis (RFX). In this analysis, the 
error variance is estimated from the variability of subject-specific 
effects across participants, enabling a population-level generalization 
of our results while balancing data fit and model complexity. The RFX 
results are summarized by the following parameters: the exceedance 
probability (xp), which assumes that each model has a different 
frequency within the group; the Bayesian Omnibus Risk (BOR), which 
indicates the probability that all models share the same frequency 
within the group; the protected exceedance probability (pxp), which 
adjusts xp using the BOR and was recently introduced as a summary 
statistic (Rigoux et al., 2014). These findings quantify the probability 
that any one model is more frequent than the others beyond chance.

Given that numerous parameters can best explain our model of 
evidence, one method to reduce and select the optimized parameters 
based on BMS and comparison is Bayesian Model Reduction. In brief, 
Bayesian Model Reduction enables the evaluation of model evidence 
when the model is simplified by removing one or more parameters. A 
key aspect of Bayesian model reduction is that this evidence can 
be evaluated using the posteriors and priors of a parent model that 
includes all potential parameters. Clearly, there are a vast number of 
parameter combinations that could be considered. Since Bayesian 
model reduction evaluates the effect of altering the precision of priors 
on model evidence, it can be  described as an automatic Bayesian 
sensitivity analysis (Wasserman, 2000; Friston et al., 2018).

2.6.1 Bayesian model averaging and analysis of 
network dynamics

Based on the winning models derived from the two separate RFX 
analyses for each condition, we aimed to parameterize the specific 
intra-regional modulation and inter-regional modulation strengths 
within and between each node in the three matrices by implementing 
Bayesian Model Averaging (BMA). Specifically, BMA eliminates the 
dependence of parameter inference on the selected model, considering 
the entire model space (or an optimal winning model/family of 
models) and computing the weighted averages of each model 
parameter, with the weights determined by the posterior probability 
for each model (Berger, 2011; Hoeting et al., 1999). We used BMA to 
compute the average parameter estimates across the winning models 
from the previous Bayesian Model Selection and Comparison step and 
then statistically compared these averages using one-sample t-tests on 
the input pathway coefficients to extract EC parameters that were 
significantly different from 0, after adjusting for the Bonferroni-Holm 
family-wise error method (0.05). The main results targeted for the 
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t-test and the multiple comparison correction were the posterior 
average expectations (mEP) and the posterior expectations standard 
deviation (sEP). These parameters were calculated in both group-wise 
and subject-wise manners.

2.7 Correlation between DCM parameters 
and behavioral data

To determine whether the DCM parameters accurately predicted 
performance in both correct and incorrect response inhibition 
conditions, we regressed the modulation parameters of the winning 
model against the behavioral data across participants. We examined 
two types of behavioral data: the number of correct rejects and the 
number of false alarms. Accordingly, we  conducted a Spearman 
correlation analysis (p = 0.05) between each coefficient BMA 
parameterized in the winning model matrices and the number of 
correct and incorrect response inhibitions. Simultaneously, 
we  correlated the BMA pathway coefficients with the total scores 
obtained from the Barratt Impulsiveness Scale-11 (BIS-11). The 
p-values were uncorrected for multiple comparisons, as these analyses 
form part of an exploratory approach.

3 Results

The spatial ICA yielded 20 ICs. Four of these components were 
identified as being primarily associated with successful response 

inhibition performance (p = 0.05): the right executive control network 
(rECN), the left ECN, the bilateral SN, and the left ventral default 
mode network (vDMN). Conversely, the functional networks mainly 
associated with incorrect response inhibition included (p = 0.05) the 
bilateral SN, the bilateral ECN, and the bilateral SMN. Each 
component defines a distinct functional network (Figure 1), which 
we  visually inspected and compared to established functional 
templates available in the literature (Abramovitch et al., 2015; Slaats-
Willemse et al., 2003; Wylie et al., 2007; Collantoni et al., 2016; Glass 
et al., 2011; Kaladjian et al., 2011; Sneed et al., 2007). Simultaneously, 
we utilized an automated labeling function in the GIFT-ICA toolbox, 
which facilitates the spatial correlation of each IC with predefined 
functional network templates (Seeley et al., 2007; Li et al., 2020; Habas 
et al., 2009; Raichle, 2011; Razi et al., 2017). We then implemented a 
dynamic causal modeling (DCM) approach. We selected four regions 
identified by the global maximum activation in each functional 
network’s t-statistical map (see Methods), corresponding to correct 
response inhibition: the right inferior temporal gyrus (rITG) for the 
right ECN (x = 60; y = −25; z = −22); the left inferior frontal gyrus, 
pars opercularis (lIFG) for the left ECN (x = −44; y = 18; z = 26); the 
right anterior prefrontal cortex (aPFC) for the SN (x = 12; y = 48; 
z = −6); and the left medial temporal gyrus (lMTG) for the vDMN 
(x = −50; y = −32; z = −8). For incorrect response inhibition, the 
following regions were noted: the left inferior frontal gyrus, pars 
triangularis (lIFG) for the ECN (x = −38; y = 36; z = 2); the left 
supplementary motor area (lSMA) for the SMN (x = 0; y = −6; z = 64); 
and ultimately, the same coordinates for the SN as in the correct 
response inhibition condition.

FIGURE 1

Spatial ICA t-maps (thresholded at p = 0.05) reassembling our functional networks resulting from correct and incorrect response inhibition showed 
that certain brain regions exhibited statistically significant activation during both task conditions. These regions were labeled as follows: the right ECN 
(a), left ECN (b), bilateral SN (c), and left vDMN (d). Conversely, regions that exhibited statistically significant activation during incorrect response 
inhibition were labeled as bilateral SMN (e) and bilateral ECN (f), including bilateral SN.
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We first established the endogenous (matrix A), task-modulatory 
(matrix B), and driven-effect (matrix C) inputs within our Bayesian 
model space by selecting subject-specific volumes of interest (VOIs). 
The VOIs represent the global maximum activation across each 
functional network. The Bayesian model specification and estimation 
procedures produced two bilinear models for each condition: one fully 
connected for all matrices and another serving as a control, in which 
only the priors in matrix A are fully connected.

Then, we conducted Bayesian model selection and comparison 
(BMS) using a random effects analysis (RFX) between the two 
specified models to identify the posterior distribution that best fits our 
data. The analysis favored the fully connected model over the null 
model. Specifically, for correct response inhibition, the winning model 
exhibited an expected probability (exp) of 0.95, an exceedance 
probability (xp) of 1, and a protected exceedance probability (pxp) of 
1. Similarly, for incorrect response inhibition, the winning model 
showed an exp. of 0.95, an xp of 1, and a pxp of 1.

We then investigated the intra-regional and inter-regional 
modulations, as well as the effect of each task condition on the 
excitatory/inhibitory state of the nodes present in the model space. By 
applying a Bayes Averaging Model (BMA), we eliminated redundant 
parameters, providing a clearer explanation for the differences among 
our connectivity parameters. At the same time, the BMA 
parameterized the EC of the single coefficient (posterior densities). 
During correct response inhibition, we  observed a significant 
decoupling between the ventral DMN and the left ECN (pFWE = 0.04), 

indicating an inhibitory forward decoupling from the ventral part of 
the DMN to the left ECN when a successful withholding of response 
is executed. Simultaneously, the task condition during which subjects 
correctly inhibited their motor response positively activated all the 
nodes representing each functional network, resulting in an excitatory 
effect on them (for all networks, pFWE <= 0.001).

Instead, when the subjects incorrectly inhibit their motor 
responses during the NoGo trials, a decoupling can be  observed 
between the SN and the bilateral ECN (pFWE = 0.01), as well as 
between the SN and the SMN networks (pFWE = 0.02). Inhibitory 
forward modulation of the SN is then outlined on both the ECN and 
the SMN. Notably, the specific incorrect NoGo condition drives 
positive and excitatory activation in the SN (pFWE = 0.03), in the 
bilateral ECN (pFWE = 0.009), and in the SMN (pFWE <= 0.001). In 
Figure 2, the most significant BMA coefficient posterior densities 
(coupling/decoupling) for both conditions are shown.

We finally investigated the behavioral relevance of the winning 
fully connected models specified for each condition. During the 
accurate response conditions, we did not find a significant correlation 
between the vDMN and lECN decoupling and the number of correctly 
rejected trials (R2 = 0.31, p = 0.1 uncorrected). Incidentally, no driven 
activations of the task condition on each node were found to 
be significantly correlated with the number of accurately withheld 
responses (SN, R2 = −0.16, p = 0.4 uncorrected; rECN, R2 = 0.11, 
p = 0.6 uncorrected; lECN, R2 = 0.009, p = 0.9 uncorrected; vDMN, 
R2 = −0.27, p = 0.2 uncorrected). Regarding the number of incorrect 

FIGURE 2

BMA posterior densities of the winning model (fully connected) during correct (a) and incorrect response inhibitions (b). For simplicity, only the 
statistically significant coefficients (mean of posterior probabilities) estimated using a one-sample t-test are displayed for matrix B (modulatory inputs, 
indicated by white arrows, u2) and matrix C (the driving effect of the task, indicated by orange arrows, u1). Each functional network is represented as an 
xn(t) neuronal node in the model, using different colors: red for the SN, blue for the rECN, violet for the left executive control network (lECN), green for 
the vDMN, light violet for the bilateral executive control network (ECN), and yellow for the SMN. For both winning fully connected models, the u1 and 
u2 modulatory inputs are shown with means of posterior distributions that are significant according to the one-sample t-tests (with Bonferroni-Holm 
correction, p = 0.05).
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response inhibitions (Figure  3), we  found a significant negative 
correlation between the SMN and SN decoupling modulation 
(R2 = −0.59; p = 0.007, uncorrected), as well as a negative correlation 
regarding the task-driven effect solely on the excitatory state of the SN 
(R2 = −0.50, p = 0.02 uncorrected). No significant correlation was 
found regarding the relevant forward inhibition from the SN to the 
ECN (R2 = 0.19, p = 0.4 uncorrected) or to the SMN (R2 = 0.19, 
p = 0.4 uncorrected).

Ultimately, we applied a Spearman correlation analysis to examine 
the association between the modulatory connectivities and the effects 
driven by the task conditions in relation to the Barratt Impulsiveness 
Scale (BIS-11). The correlation results between the EC parameters of 
the two conditions and the other three subscales of the BIS-11 
questionnaire (Non-Planning, Attention-Impulsivity, and Motor-
Impulsivity) are better detailed in the Supplementary materials. 
Specifically, we found a significant correlation between the effective 
parameters and the total BIS score only during the correct NoGo task 
condition (Figure 4): a positive association was found between the 
forward coupling from the rECN to the lECN and the total score 
obtained from the BIS-11 questionnaire (R2 = 0.52, p = 0.02, 
uncorrected) and the same was observed for the forward coupling 
between the rECN and vDMN (R2 = 0.56, p = 0.01, uncorrected).

4 Discussion

This study was conducted to characterize the EC of large-scale 
functional networks that play significant roles in both correct and 
incorrect response inhibitions. To the best of our knowledge, prior 
evidence regarding the networks contributing to successful response 
inhibition has primarily been inferred from studies focused on 
spatially distributed and localized brain regions aggregated based on 
activation patterns across different task conditions (Stevens et  al., 
2007; Erika-Florence et al., 2014).

From this starting point, our study aims to explore which well-
established large-scale functional networks—defined as widespread 
brain areas characterized by correlated functional activation patterns 
(e.g., DMN, ECN, and SN)—play a crucial role in both successful and 
unsuccessful response inhibition. Furthermore, we aimed to model 
and quantify the causal interactions between these different functional 
networks across each Go-NoGo condition.

4.1 Causal interactions of functional 
networks in correct response inhibition

During correct response inhibition conditions, we  identified 
several major functional networks that play important roles: the SN, 
the executive control networks (ECNs), and the vDMN. The SN 
regulates bottom-up attention to external and internal stimuli (Uddin, 
2015). Thus, the emotional and perceptual salience of these stimuli 
could lead to functional coupling between the SN and the ECNs, 
especially when attention to salient information requires top-down 
regulation (Uddin, 2015; Zabelina and Andrews-Hanna, 2016).

These two networks were found to be positively activated during 
the correct withholding condition, suggesting an excitatory effect on 
the involved nodes for this task. The IC maps of these two networks 
revealed widespread activation in the prefrontal, insular-opercular, 

dorsal anterior cingulate, striatal basal ganglia, parietal, and temporal 
regions for the SN, with peak global activation observed in the 
aPFC. Additionally, the bilateral ECNs exhibited extensive activation 
in the dorsolateral prefrontal and parietal regions, along with 
lateralized activations in the temporal, cingulate, and thalamic areas.

A recent finding highlights the excitatory driving effect of the task 
on the ventral counterpart of the DMN. Unlike the SN and the ECN, 
the DMN is a well-known network associated with internally directed 
cognition (Raichle, 2015). The DMN can be divided into two main 
subsystems. The first subsystem, termed the dorsal subsystem, 
includes the dorsal-medial prefrontal cortex and overlaps with other 
core regions of the DMN, such as the precuneus and the posterior 
cingulate cortex. The second subsystem, termed the “ventral DMN,” 
consists of the ventral medial prefrontal cortex, posterior inferior 
parietal lobule, retrosplenial cortex, parahippocampal cortex, 
hippocampal formation, and medial temporal pole (Raichle, 2015). 
The dDMN is involved in introspective, self-oriented processes, while 
the ventral DMN engages in decision-making and cognitive control 
processes (Raichle, 2015; Greicius et al., 2003; Shirer et al., 2012). 
Based on the findings we  outlined regarding correct response 
inhibition, we  hypothesized a differentiation between cognitive 
control processes for preparing to inhibit a response versus fully 
inhibiting a response. Indeed, during correct response withholding, a 
significant modulation of decoupling is observed between the vDMN 
and the left ECN (lIFG, pars opercularis). These findings suggest an 
inhibitory function originating from the vDMN toward the left ECN, 
revealing a specific temporal dynamic that may be necessary during 
NoGo trials (Simmonds et al., 2008; Raichle, 2015; Greicius et al., 
2003; Shirer et al., 2012; Andrews-Hanna et al., 2010). In this context, 
one of the central hubs of the vDMN is located in the MTG area 
(Raichle, 2015; Greicius et  al., 2003; Shirer et  al., 2012). Bilateral 
middle temporal functional activations are more strongly associated 
with fully inhibiting a response compared to completing a response in 
the Go-NoGo complex variant (Simmonds et al., 2008; Goghari and 
MacDonald III, 2009; Badre et al., 2005). Specifically, according to 
other studies, the MTG is sensitive to stimulus–response mappings 
(Anderson et al., 2016). Additionally, the MTG plays a crucial role 
depending on the semantic strength of the stimulus that needs to 
be retrieved and updated (Simmonds et al., 2008; Anderson et al., 
2016). Therefore, an initial mapping of the stimulus may be necessary 
to retrieve and update the memory system when a complex stimulus 
is presented, varying across trials. This function, guided by the vDMN, 
could facilitate the adaptive and successful selection of the motor 
response. Consequently, we propose that the vDMN could serve as a 
circuit “breaker” for top-down networks during NoGo processing 
(like the ECN), enabling adaptive goal-contingency disengagement in 
the early stages of response inhibition before the selection of a 
competing response (Anderson et al., 2016). This implies that the 
causal modulation of the vDMN would enable targeting and assessing 
the stimulus in light of current predefined goals; however, once 
selected, its correlated response should subsequently be ignored when 
response-irrelevant stimuli are presented (Anderson et  al., 2016; 
Esterman et al., 2013; Weissman et al., 2006; Krmpotich et al., 2013). 
The finding related to significant inhibition and decoupling between 
the vDMN and the left hemispheric counterpart of the ECN could 
be deemed relevant in the context of the hemispheric specialization 
processes during cognitive control tasks (Habas et al., 2009; Shirer 
et al., 2012; Damoiseaux et al., 2006; Brass and Haggard, 2008). The 
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FIGURE 3

Correlation between DCM parameters and behavioral data during incorrect response conditions. (a) Negative correlation between the modulation of 
EC from the SMN to the SN (decoupling) and the number of incorrect NoGo responses. (b) Negative correlation between the task’s driving effect on 
the excitatory state of the SN and the number of false alarms.
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FIGURE 4

Correlation between the DCM parameter and Barratt Impulsiveness Scale (BIS-11) total score during the correct response condition. (a) Positive 
correlation between the modulation of EC from the rECN to the lECN (coupling) and the total score obtained from the BIS-11. (b) Positive correlation 
between the modulation of EC from the rECN to the vDMN (coupling) and the total score on the BIS-11.
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left ECN is more involved in approach behaviors, described as 
reaching goals through a willingness to pursue a reward. In contrast, 
studies suggest that the right ECN counterpart is more involved in 
avoidance behaviors (Krmpotich et al., 2013). Following our results, 
avoidance behavior is essential for accurately preventing the subject 
from engaging in a motor-reward approach directed toward 
responding to the stimulus.

Another possible interpretation is that individuals with high 
interhemispheric specialization are better at withholding their 
responses during NoGo conditions. This theoretical framework could 
enhance our understanding of not only the inhibition from the vDMN 
to the lECN but also the correlation findings related to the BIS-11 total 
score. In this context, we observed that only during correct NoGo 
conditions, lower impulsivity in responding to the NoGo stimulus 
correlates with decreased coupling between the two contralateral areas 
in the ECN. Conversely, based on our findings, as individuals become 
more impulsive, greater interhemispheric integration between the 
rECN (rITG) and lECN is required. Normally, a surplus of 
interhemispheric connections promotes functional balance by 
ensuring an even distribution of cognitive processes across the two 
hemispheres (Martínez et  al., 2018; Serrien et  al., 2006). This 
mechanism is particularly true when more cognitive resources are 
necessary to perform a specific task (Martínez et al., 2018; Serrien 
et  al., 2006). Nevertheless, during a particular cognitive task, the 
hemisphere with a higher number of interconnected brain hubs 
involved in that task may downregulate activation in the less active 
hemisphere to optimize task performance (Martínez et  al., 2018; 
Serrien et al., 2006). Despite the necessity for hemispheric dominance 
during specific tasks, interhemispheric specialization is evolutionarily 
adaptive to support overall cognitive processes (Martínez et al., 2018; 
Serrien et al., 2006). The right hemisphere (RH) is organized more 
efficiently, exhibiting greater regional interconnectivity than the left 
hemisphere (LH), which tends to incorporate more central hubs 
(Brass and Haggard, 2008; Martínez et al., 2018; Serrien et al., 2006; 
Corbetta et al., 1993; Mesulam, 1999; Wenderoth et al., 2004). In terms 
of cognitive functions supported by the RH, its specialization may 
relate to controlling spatial attention for both the left and right visual 
fields, or it may serve a monitoring function that becomes particularly 
important in conflict situations, such as when there is a mismatch 
between motor intention, proprioception, and/or visual feedback 
(Martínez et  al., 2018; Serrien et  al., 2006; Corbetta et  al., 1993; 
Mesulam, 1999; Wenderoth et  al., 2004; Fink et  al., 1999). Thus, 
adaptive motor behavior may depend on inhibitory processes 
associated with right hemispheric specialization, along with the 
facilitatory processes that promote the integration of information 
across both hemispheres; this integration may depend on individual 
cognitive resources and impulsivity traits (Serrien et al., 2006). Indeed, 
impulsivity is a multidimensional construct that describes a tendency 
to act without forethought in response to internal or external stimuli 
(Wenderoth et al., 2004; Fink et al., 1999). Impulsivity in younger 
individuals appears to be associated with a more widespread, less 
efficient organizational connectivity of brain networks (Fornaro et al., 
2024). Thus, it is plausible that right lateralization during correct 
response inhibition of major ECN activation could favor successful 
inhibition of motor responses in individuals with lower impulsivity 
traits who require less interhemispheric integration. Conversely, 
during correct NoGo conditions, those exhibiting a higher impulsivity 
profile necessitated stronger integration between the right and left 

areas of the ECN to successfully inhibit their motor response (Moeller 
et al., 2001; Dalley and Robbins, 2017). At the same time, the positive 
correlation between successful motor response inhibition and the 
coupling between the rECN and vDMN might be interpreted within 
this theoretical framework. Individuals with less impulsivity traits may 
be able to inhibit competitive responses to NoGo stimuli, with the 
vDMN serving as a modulatory and preliminary step in stimulus 
mapping and monitoring. In contrast, individuals characterized by a 
stronger impulsivity profile favored an excitatory causal modulation 
from the rECN to the vDMN as an additional cognitive control 
process, which might be  needed throughout the entire inhibition 
mechanism (Slaats-Willemse et al., 2003; Wylie et al., 2007; Collantoni 
et al., 2016; Glass et al., 2011; Dalley and Robbins, 2017; Garavan et al., 
1999; Garavan et al., 2002; Bogacz et al., 2010; Mulder et al., 2014; 
Wolpe et al., 2022; Chao et al., 2009; Baranger et al., 2023; Campos 
et al., 2005; Wang et al., 2019; Jenkins et al., 2000; Kwon and Kwon, 
2013; Swann et al., 2012; Rae et al., 2015). We believe that future 
studies are needed to clearly distinguish the role of each part of the 
ECN during cognitive control tasks and to determine if hemispheric 
specialization—similar to that observed in the ECN—exists during 
these types of mechanisms.

4.2 Causal interactions of functional 
networks in incorrect response inhibition

Regarding the incorrect response inhibition condition, we observed 
significant activation in all functional networks involved in this process 
(SN and bilateral ECN), including the SMN network, which 
we discovered only in this specific condition. Specifically, the SMN IC 
map covers distributed premotor and motor areas, along with activations 
in the parietal, temporal, precuneus, thalamic, and cerebellar regions, 
with the global maximum activation located in the lSMA. In contrast, 
dorsolateral prefrontal and parietal activations were primarily found in 
the bilateral IC map of the ECN, along with key regions for temporal, 
cingulate, striatal, and insular-opercular activations. Furthermore, 
we observed a significant decoupling between the SN network (aPFC) 
and the bilateral ECN (lIFG) as well as the SMN network, suggesting that 
inhibition from the SN is implicated in modulating the other networks. 
This finding highlights the SN’s role in attentional control over the ECN 
and SMN during the transition from processing internal to external 
salient information. Recognizing specific salient features of a stimulus—
such as NoGo stimuli—may lead to attempts to inhibit a motor response 
(Garavan et  al., 1999; Garavan et  al., 2002). Nevertheless, another 
consistent finding is the positive driven effect exercised by the task 
condition not only on the ECN and SN state, but also on the SMN. This 
network activation may explain why inhibition from the SN is not always 
effective in restraining a motor response and in influencing decision-
making processes involved in selecting appropriate behaviors. The SMN 
has been shown to regulate voluntary action by modulating decision 
thresholds—whether, when, and which action to perform (Bogacz et al., 
2010). The SMA hub within this network determines the appropriate 
attentional threshold for choosing an action: in the context of stopping a 
motor response, elevating individual attentional thresholds could 
support a more cautious strategy for delaying the motor response. 
Conversely, lower attentional thresholds could result in rapid and 
automatic responses, potentially leading to erroneous actions (Mulder 
et al., 2014; Wolpe et al., 2022; Chao et al., 2009). In cases of incorrect 
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response inhibition, complex NoGo trials may have contributed to 
misleading individual attentional and cognitive thresholds, resulting in 
inappropriate response withholding. These findings could be further 
enhanced by the role of the SMN in the reward anticipation processing 
mechanisms. Central brain hubs of the SMN in the motor cortex (e.g., 
pre-SMA/SMA)—along with other nodes in functional networks (e.g., 
dorsal and ventral attention, SN)—are correlated with reward-driven 
behaviors (Baranger et al., 2023). Notably, while the primary function of 
the SMN is sensory and motor processing, studies indicate that motor 
areas may also be  involved during the reward anticipation and 
expectancy processes, as SMN areas contribute to initiating motor 
responses (Baranger et al., 2023; Campos et al., 2005; Wang et al., 2019). 
Importantly, stimulus–reward associations can influence sensory 
processing, which, in turn, can strongly modulate attention functions to 
optimize goal-directed behavior (Wang et al., 2019). Thus, accelerated 
reward anticipation—guided by the central hubs of the SMN—could 
have led to quicker motor responses favoring immediate rewards, 
potentially at the expense of response inhibition (Baranger et al., 2023; 
Wang et al., 2019). Future studies in healthy individuals should further 
explore the role of SMN, along with other functional networks, in 
supporting response inhibition mechanisms due to its involvement in 
the reward and attentional processes.

Moreover, these results align with the findings from the correlation 
analysis examining the number of false alarms associated with the 
interaction between each causal connectivity. Specifically, the less 
effectively the SN facilitates adaptive switching between internally and 
externally oriented attention, the more impulsively subjects commit 
errors (false alarms) during this condition. Specifically, our findings 
suggest that the SN is not capable of effectively regulating and controlling 
the activation of the SMN during incorrect response inhibition 
conditions. In this context, we  found that an increase in errors 
corresponds to a decreased ability of the SN to actively coordinate 
cognitive and attentional control over the subjects’ motor responses. 
Indeed, we discovered a significant correlation between the number of 
false alarms and the causal inhibition exerted by the SMN on the 
SN. Thus, we propose that the more the SMN exerts causal inhibition on 
the SN, the less capable the individuals are of successfully performing 
motor response inhibition (Chao et  al., 2009; Baranger et  al., 2023; 
Campos et al., 2005; Wang et al., 2019; Jenkins et al., 2000; Kwon and 
Kwon, 2013). Notably, when withholding an ongoing action, the SMN is 
crucial for transmitting information to functional networks—such as the 
SN and ECN—that are necessary for successfully controlling subjects’ 
impulses to respond to a non-salient stimulus (Swann et al., 2012; Rae 
et al., 2015). This can be viewed as a preparatory step for delaying motor 
responses, which is primarily needed to generate active inhibition of 
goal-directed behaviors (Jha et al., 2015; Allen et al., 2018; Mostofsky and 
Simmonds, 2008). In the context of our study, we speculate that the 
causal connectivity from the SMN to the SN is significant in how 
individuals respond to NoGo stimuli: the causal modulation driven by 
the SMN may reduce the SN’s cognitive and attentional control functions 
over motor responses (Mostofsky and Simmonds, 2008).

4.3 Response inhibition during the course 
of the lifespan: future implications

In conclusion, we would like to highlight the relevance of our 
current findings and their link to the dimensional development of 

inhibition functions from healthy to pathological states. Specifically, 
age-related declines in response inhibition are frequently reported in 
the literature, with a higher number of suppression errors due to a 
general decline in attentional and mnemonic functions throughout the 
lifespan (Gibson et al., 2018). During adolescence, the connectivity 
between frontal–parietal and frontal-striatal-thalamic regions 
correlates with the number of false alarms or incorrect response 
inhibition mechanisms. These findings suggest a reduced engagement 
of the brain areas responsible for the top-down regulation of inhibition 
processes, which become more pronounced and specialized in 
adulthood (Stevens et al., 2007). Overall, age-related differences are 
observed in functional connectivity between the frontal–parietal and 
frontal-striatal-thalamic areas, possibly reflecting increased “top-down” 
executive control to compensate for weaker anatomical connections or 
incomplete functional specialization (Stevens et al., 2007). Nevertheless, 
throughout the lifespan, the majority of studies indicate a sharp decline 
in the suppression of motor responses, generally correlating with the 
integrity of frontal areas during aging (Gibson et al., 2018; Mather and 
Carstensen, 2005; Borella et  al., 2008). Specifically, the decline in 
inhibition processes over the lifespan has been proposed as selective 
rather than indicative of general cognitive decline, depending on the 
type of inhibition dimension being investigated (Borella et al., 2008; 
Rey-Mermet and Gade, 2018). In Go-NoGo tasks and suppression 
mechanisms, a recent meta-analysis revealed that, as age increases, 
older adults are less capable of maintaining and coordinating the 
NoGo/stop-signal information compared to young adults due to 
age-related deficits in working memory and attention. These cognitive 
deficits indicate selective inhibition impairments that occur over the 
lifespan rather than an overall decline in suppressing dominant 
responses (Rey-Mermet and Gade, 2018). Decreased engagement of 
frontal and posterior parietal regions in response to increasing working 
memory load is often observed in this context, coupled with failures to 
suppress task-irrelevant activity in regions encompassing midline 
DMN regions and the premotor/motor area (Rieck et al., 2021). Given 
the role of the hierarchical top-down and bottom-up functional 
network causal connectivities revealed in our current study, which 
support the role of the ventral DMN and SMN in regulating 
withholding functions, future research should replicate and investigate 
these connectivity patterns from healthy to pathological states. This 
research would provide cutting-edge insights into potential brain 
biomarkers explaining goal-directed/reward-driven behaviors and 
inhibition mechanisms throughout the lifespan (Rieck et al., 2021).

5 Limitations

Several caveats must be considered in our study. First, the small 
sample size presents a potential limitation for the statistical power of the 
analyses. Second, the model specification in DCM, which significantly 
influences the interpretation of further results, is crucial for accurately 
identifying the model that best fits the data. Future studies should focus 
on different specifications of Bayes-family models, utilizing more nodes/
eigenvariates to represent each functional network. In this context, 
we  chose one eigenvariate to serve as the representative for each 
functional network. This choice is motivated by a similar methodology 
previously implemented in relevant DCM studies in the field, aimed at 
extracting the time series of ICs that can be used as input for DCM 
model specification and estimation (Hidalgo-Lopez et  al., 2021). 
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Nonetheless, given the exploratory nature of this study, we used only one 
node to represent large-scale functional networks resembling the IC 
map. Considering this caveat, future studies should explore more refined 
methods to represent entire functional networks, fitting more complex 
DCM models with a higher number of priors to better illustrate the 
causal interactions of functional networks. Third, future studies should 
place greater emphasis on hemispheric specialization as a potential 
factor in explaining cognitive control processes, such as response 
inhibition. In this context, a more thorough understanding of the 
psychological profile of a healthy population could provide better 
insights into the complex interactions between impulsivity traits and 
cognitive control mechanisms. This purpose could serve as a 
fundamental starting point for future studies involving clinical samples 
as well as aging populations characterized by high levels of 
impulsivity traits.

6 Conclusion

In conclusion, the combination of ICA and DCM analysis 
allowed us to consider the canonical top-down cognitive streams 
and the reciprocal influence of bottom-up pathways originating 
from the vDMN and subcortically from the SMN nodes. These 
non-canonical functional pathways are essential for accounting 
for the primary preparation steps that occur during memory 
retrieval and in updating the competitive signal stimuli, as well 
as mediating the withholding of motor responses. Furthermore, 
the lateralization of correct decision-making processes during the 
inhibition of motor responses—associated with low levels of 
impulsivity traits—may be significant in terms of hemispheric 
specialization. Studying cognitive control processes, such as 
response inhibition in healthy populations, represents merely the 
first step in establishing the theoretical and methodological 
foundations needed to understand how impulsivity and incorrect 
cognitive control mechanisms could serve as vital endophenotypes 
across various disorders (Abramovitch et  al., 2015; Slaats-
Willemse et al., 2003; Wylie et al., 2007; Collantoni et al., 2016; 
Glass et  al., 2011; Kaladjian et  al., 2011; Sneed et  al., 2007). 
We ultimately suggest that future studies explore more complex 
EC patterns characterizing large-scale functional networks in 
relation to brain biomarkers, which could explain the complex 
neuropsychological processes underlying response  
inhibition.
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