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Automated machine-learning algorithms that analyze biomedical signals have 
been used to identify sleep patterns and health issues. However, their performance 
is often suboptimal, especially when dealing with imbalanced datasets. In this 
paper, we  present a robust sleep state (SlS) classification algorithm utilizing 
electroencephalogram (EEG) signals. To this aim, we pre-processed EEG recordings 
from 33 healthy subjects. Then, functional connectivity features and recurrence 
quantification analysis were extracted from sub-bands. The graphical representation 
was calculated from phase locking value, coherence, and phase-amplitude coupling. 
Statistical analysis was used to select features with p-values of less than 0.05. 
These features were compared between four states: wakefulness, non-rapid eye 
movement (NREM) sleep, rapid eye movement (REM) sleep during presenting 
auditory stimuli, and REM sleep without stimuli. Eighteen types of different stimuli 
including instrumental and natural sounds were presented to participants during 
REM. The selected significant features were used to train a novel deep-learning 
classifiers. We designed a graph-informed convolutional autoencoder called GICA 
to extract high-level features from the functional connectivity features. Furthermore, 
an attention layer based on recurrence rate features extracted from EEGs was 
incorporated into the GICA classifier to enhance the dynamic ability of the model. 
The proposed model was assessed by comparing it to baseline systems in the 
literature. The accuracy of the SlS-GICA classifier is 99.92% on the significant 
feature set. This achievement could be considered in real-time and automatic 
applications to develop new therapeutic strategies for sleep-related disorders.
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1 Introduction

Sleep has an important role in maintaining physical and mental health (Lange et al., 2010; 
Xie et  al., 2013; Stein et  al., 2008; Kaneita et  al., 2009). Getting a good night’s sleep has 
numerous benefits, including improved memory, creativity, concentration, and reduced stress 
and fatigue. However, sleep disorders are becoming increasingly common, particularly among 
the aging population (Ohayon et al., 2004) and suffering from psychiatric disorders (Melo 
et al., 2016; Yao et al., 2024). Approximately 50–70 million adults in the United States alone 
struggle with sleep difficulties (Medicom MTD, 1997). While pharmaceutical sleep aids help 
alleviate poor sleep (Yue et al., 2023), they often come with a range of negative side effects, the 
risk of addiction over time, and the high cost associated with prescriptions (Ford et al., 2014). 
To address these issues, researchers need to explore non-pharmacological tools that are cost-
effective and support healthy sleep.
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Music therapy is broadly utilized as a non-pharmacological 
method for enhancing sleep quality (Su et al., 2013; Lai and Good, 
2006; Chen et al., 2021). In recent years, several studies have been 
conducted to examine the beneficial effects of music on human sleep 
quality (Truong et al., 2020; Huang et al., 2018; Gao et al., 2020; Cordi 
et al., 2019; Trahan et al., 2018). For example, Jespersen et al. (2015) 
conducted six studies involving 314 patients with insomnia, which 
demonstrated that music improved subjective sleep quality. Similarly, 
sedative music was found to subjectively improve sleep quality in 
patients with sleep complaints (De Niet et al., 2009). Researchers have 
extensively examined the function of the human brain during sleep 
and have found that it remains active homologous to its activities 
during wakefulness.

Electroencephalography (EEG) as a technique in cognitive 
neuroscience research, allows for real-time measurements of changes 
in cortical activity associated with music listening, even during 
different stages of sleep (Truong et al., 2020). Over the past decade, 
several methods have been developed to investigate brain activity 
during different sleep phases (Rechichi et al., 2021; Wen, 2021; Lin 
et al., 2017). Researchers (D'Atri et al., 2021; Gorgoni et al., 2016; De 
Gennaro et al., 2007) have reported a remarkable decrease in sleep 
spindles and K-complexes during non-rapid eye movement (NREM) 
sleep in patients with Alzheimer’s disease. Furthermore, initial 
observations during rapid eye movement (REM) sleep indicate an 
increase in low-frequency rhythms accompanied by a decrease in 
high-frequency rhythms, similar to those observed in wakefulness 
EEG patterns (Brayet et al., 2016). Other studies have demonstrated 
that analyzing the characteristics of both music and EEG reveals the 
potential of brain-wave music in certain clinical enhancement 
symptoms, such as pain (Hunt et  al., 2021; Dileo, 1999; Hauck 
et al., 2013).

Phase-amplitude coupling (PAC) has been demonstrated to play 
a role in various cognitive processes, such as attention, working 
memory, language, and intelligence (Sacks et  al., 2021). Recent 
evidence has shown that PAC is linked to mental health and cognition, 
both during periods of rest and before and after interventions (Sacks 
et al., 2021). This indicates that PAC possesses enduring and consistent 
aspects making it suitable for longitudinal studies. The emerging 
research suggesting that PAC could be a significant biomarker for 
mental health underscores the need for longitudinal research that 
examines PAC throughout the rapid and varying structural changes 
during adolescence (Dong et  al., 2022). In this work, dynamic 
recurrence analysis (RQA) is performed to derive useful dynamic 
attributes from the various states of the EEG signal (Baghdadi et al., 
2021). Several studies have employed RQA to quantify cortical 
function at different sleep stages (Rolink et  al., 2015), epileptic 
disorder (Acharya et  al., 2011), tactile roughness discrimination 
(Baghdadi et al., 2021), and sleep apnea syndrome (Heunis et al., 
2018). It has the capability to extract complex characteristics of the 
signal and deterministic behavior of EEGs.

Machine learning (ML) and deep learning (DL) algorithms are 
highly profitable in constructing automated pipelines for detecting 
neurological conditions and cognitive behavior, particularly in scenarios 
with large volumes of data (Vu et al., 2018; Badrulhisham et al., 2024). 
Automatic sleep stages classification methods include support vector 
machine (SVM) (Wen, 2021; Gurrala et al., 2021; Lajnef et al., 2015), 
random forest (RF) classifier (Fraiwan et al., 2012), artificial neural 
networks (ANN) (Aydoğan et al., 2015), recurrent neural networks 

(RNNs) (Michielli et al., 2019), convolutional neural networks (CNNs) 
(Khalili and Asl, 2021; Hu et al., 2024; Mostafaei et al., 2024; Ma et al., 
2023), and gated recurrent unit (GRU) (Moctezuma et al., 2024). Some 
studies utilize feature-based approaches (Basha et al., 2021; Kim et al., 
2020), while more recent ones have concentrated on DL approaches 
(Jadhav et al., 2020; Zhu et al., 2020) employing data from one or two 
EEG channels. Nevertheless, the use of handcrafted features offers 
advantages such as interpretability and domain-specific insights, which 
can improve model performance, especially in situations with limited 
data or where domain knowledge is crucial. However, a key challenge is 
that handcrafted features may not generalize well across diverse tasks, 
unlike deep learning techniques that can automatically learn relevant 
features from raw data. For example, in EEG analysis, handcrafted 
features like phase locking value (PLV) and coherence provide 
physiologically meaningful insights, but their effectiveness may vary 
across different classification tasks or datasets.

In this study, EEG signals of healthy subjects were recorded during 
four different states: wakefulness, NREM sleep, REM sleep with the 
representation of 18 different stimuli, and REM sleep without any 
stimuli. After preprocessing and feature extraction, significant features 
were converted into graph representations to extract deep spatial 
features. Simultaneously, RQA was employed to clean EEG signals and 
capture the dynamic changes in brain activity. Then, graphical 
representations of the selected features were fed to an attention-based 
convolutional autoencoder neural network. This model incorporates 
dynamic neural connectivity topologies such as PLV, PAC, which were 
converted to graph signals and modified by applying the RQA on the 
attention layer of the CNN. This approach aids in capturing spatial and 
temporal features for high-resolution dynamic functional connectivity 
discovery that advances accurate sleep phase detection. We propose a 
cutting-edge deep learning model, known as graph-informed 
convolutional autoencoder (GICA), to classify four sleep stages, called 
“SlS” and 18 states of brain responses to stimuli during the REM sleep 
phases, called “BRSl.” Precisely classifying sleep states is crucial for 
diagnosing and monitoring sleep disorders, providing valuable insights 
into individuals’ sleep patterns and overall wellbeing. In other words, 
detecting brain responses to various types of music can be used as 
non-pharmacological therapy for sleep disorders to introduce individual 
music therapy methods and reduce invasive protocols.

The organization of this paper is outlined as follows: Section 2 
provides an overview of the dataset employed in this research followed 
by statistical analyzer methods and a novel feature extraction process. 
Section 3 presents the simulation results and visualization of the brain 
function during sleep and various types of music stimuli. Finally, 
we  conclude our study and outline avenues for future research in 
Section 4.

2 Materials and methods

This paper is intended to improve machine learning-based sleep 
stage detection by implementing six main steps: preprocessing, feature 
extraction, feature selection, graph representation, dynamic analysis, 
and classification. The focus of this study is to investigate functional 
connectivity, graph generation, and RQA to determine a robust feature 
set that provides insights into information from multiple domains. 
Significant features were combined to illustrate the changes in 
wakefulness, NREM, REM sleep with stimuli, and REM sleep without 
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stimuli over the brain regions. To achieve satisfactory classification 
performance, this research conducts a comparative study to evaluate 
the effect of individual PLV, coherence, PAC, and RR features on 
various EEG sub-bands, as well as the combined significant graph-
based feature set. Consequently, the GICA framework is identified 
according to the graph representation of selected features and RQA to 
enhance the classification performance of the convolutional 
autoencoder. The proposed GICA framework is validated using a 
multi-channel EEG dataset in two categories: first, to classify four 
different stages including wakefulness, NREM sleep, REM sleep with 
stimuli, and REM sleep without stimuli, called SlS; second, to classify 
brain responses to 18 different stimuli during REM sleep, called BRSl. 
Figure 1 shows the schematic block diagram of the proposed GICA 
algorithm. The goal is to determine whether distinct neural responses 
to these stimuli could be differentiated using machine learning.

2.1 Participants

The present study was conducted at the Biomedical Engineering 
Laboratory of the University of Tabriz in Iran. To examine the impact 
of sound stimuli on sleep, a group of healthy participants with a 
consistent habit of staying up late were selected for the experiment. A 
total of 36 subjects (33 right-handed and 3 left-handed) were recruited 
who had no history of psychological disorders or medication use. Three 
participants woke up during the experiment and were subsequently 
excluded from further analysis. The data from the remaining 33 

subjects (19 females; mean age = 31.06 ± 13.75 years) were included in 
the final analysis. Before their participation, all subjects provided 
informed consent and completed a health questionnaire.

2.2 Data recording protocol

According to the guidelines of the American Academy of Sleep 
Medicine (AASM) (Khalighi et al., 2016), sleep is categorized into five 
stages: wakefulness (Wake), non-rapid eye movement (NREM) sleep, 
which consists of three substages (N1, N2, and N3), and rapid-eye 
movement (REM) sleep. In this study, EEG recordings were collected 
during four main states:

 • State 1 (wakefulness—EO): 5-min recording while subjects were 
lying down with eyes open (EO),

 • State 2 (NREM sleep—EC): 5-min recording during lying down 
with eyes closed (EC) and transition into NREM sleep,

 • State 3 (REM sleep with stimuli—SlpWiSt): 20-min recording 
during REM sleep with auditory stimuli presentation,

 • State 4 (REM sleep without stimuli—SlpWoSt): 5-min recording 
during REM sleep without auditory stimuli.

To distinguish wakefulness, NREM, and REM stages, we utilized 
EEG frequency band characteristics according to the AASM guidelines. 
The wakefulness stage exhibits dominant alpha band activity in the 
occipital region. Alpha rhythm (8–13 Hz) predominantly in the occipital 

FIGURE 1

Schematic representation of the proposed GICA framework.
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region and/or low-amplitude, mixed-frequency activity are cues of this 
stage. The NREM stage is characterized by low alpha activity, theta 
activity, sleep spindles (12–16 Hz), and delta waves (0.5–4 Hz), which 
indicate the transition from shallow to deep sleep (Garcia-Molina et al., 
2018). The REM stage is distinguished by low-voltage, mixed-frequency 
EEG activity, rapid eye movement, and low muscle tone with dominant 
theta waves and desynchronized EEG patterns.

Participants were instructed to lie down comfortably on a bed in a 
sound attenuated, temperature-controlled (~25°C), and dimly lit room 
(<50 Lux). No pharmacological agents were administered to induce 
sleep, ensuring natural sleep cycles. EEG recordings were controlled 
approximately 6 h per session, with each participant undergoing two 
separate sessions, either in the morning or afternoon, to maintain 
consistency. To facilitate sleep, mindfulness meditation techniques were 
utilized, which included minimizing distractions, lying in a comfortable 
position, and focusing on breathing (inhale for a count of 10, hold, exhale 
for a count of 10, and repeat this cycle 10 times).

Sleep stages were annotated offline by a trained sleep expert following 
AASM criteria. EEG signals from frontal central, and occipital electrodes 
were used for sleep staging. Annotations were performed after data 
collection, not in real-time, to ensure accurate labeling of REM sleep 
epochs. Electrooculogram (EOG) signal was used in the eye movement 
staging process.

Eighteen types of auditory stimuli were selected to present for 
participants during their sleep. These sounds include various types of 
instrumental and natural sounds such as piano, hang drum, guitar, 
saxophone, storm, rain in the forest, birds singing, ocean waves, fire 
crackling, whale, santoor, kamancheh, tar, and violon. Each auditory 
stimulus was presented only during the REM sleep to prevent habituation. 
Auditory stimulation was delivered using in-ear earbuds (Apple, 3.5 mm 
headphone plug) to ensure optimal auditory delivery during sleep. These 

earbuds were selected for their comfortable fit and high-fidelity sound 
quality, minimizing external noise interference and ensuring consistent 
auditory stimulation. The order of presentation was fixed across 
participants, with a 60-s silence before the first stimulus, followed by 5-s 
silence intervals between trails. Each sound was played for 60-s, leading 
to a total presentation duration of 1,080-s. The stimuli were presented 
binaurally at 45 dB SPL, a level chosen to minimize the risk of sleep 
disturbances while still producing measurable effects on sleep patterns. 
Sleep disturbance was defined as significant interruptions in sleep 
continuity or architecture, including arousals (transient shifts in EEG 
frequency lasting more than 3-s), abrupt changes in sleep stages, or 
prolonged wakefulness. The 45 dB SPL intensity was selected based on 
prior literature demonstrating that sound levels below 50 dB SPL are 
unlikely to cause significant sleep disruptions (Feige et al., 2021; Rudzik 
et al., 2018), as well as pilot data confirming that this intensity produced 
detectable changes in sleep patterns without increasing arousal frequency 
or wakefulness. Wave Pad Sound Editor1 was used to control the loudness 
and presentation order of the stimuli. The experimental paradigm is 
illustrated in Figure 2.

Auditory stimuli were exclusively presented during REM sleep due 
to its strong association with vivid dreaming and heightened brain 
activity in sensory processing regions. Research indicates that REM sleep 
is crucial for memory consolidation, particularly for emotional and 
procedural learning (Payne and Nadel, 2004; Genzel et al., 2015). By 
presenting auditory stimuli during REM, we  aimed to explore how 
external sensory inputs are integrated into brain activity, possibly 
influencing dream content. Furthermore, the brain’s responsiveness to 

1 https://www.nch.com.au/wavepad/index.html

FIGURE 2

Illustration of the experimental procedure with EEG electrode layout.
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external stimuli during REM sleep is high, allowing us to investigate 
neural processing without fully walking the subject.

The auditory sounds used in this study consisted of a variety of 
sounds, which were chosen for their calming rhythmic qualities to 
promote relaxation during REM sleep. Regarding frequencies, the 
sounds generally fell within the range conducive to relaxation. The 
typical frequency ranges for the sounds and instruments include piano: 
27.5–4,186 Hz, hang drum: 110–880 Hz, guitar: 82–880 Hz, saxophone: 
55–1,200 Hz, storm: 20–120 Hz, rain in the forest: 500–5,000 Hz, birds 
singing: 2,000–8,000 Hz, ocean waves: 30–300 Hz, fire crackling: 
500–1,000 Hz, whale songs: 10–40 Hz, santoor: 261–1,500 Hz, 
kamancheh: 150–1,000 Hz, Tar: 80–900 Hz, violin: 196–2,000 Hz. Each 
type of sound was played for the same duration in a consistent order 
across subjects. Although randomization was not implemented, 
we ensured uniform stimulus conditions to control for variability.

In this work, auditory stimuli were presented only during the REM 
sleep. REM Sleep is characterized by vivid dreaming and heightened 
brain activity, particularly in regions associated with sensory processing, 
such as the visual and auditory cortices. This makes REM sleep a critical 
phase for investigating neural responses to sensory stimuli and their 
integration into dream content. Presenting stimuli during this phase 
allows us to explore how external auditory inputs may be integrated into 
the dream content or processed by the brain during heightened sensory 
processing. Research suggests that REM sleep plays a crucial role in 
memory consolidation, particularly for emotional and procedural 
memories (Wagner et al., 2001; Rasch and Born, 2013; Siegel, 2001). The 
brain during REM may be more receptive to external auditory stimuli 
without fully walking the subject, allowing us to examine the brain’s 
responsiveness without disrupting sleep continuity (Navarrete et al., 
2024; Sallinen et al., 1996; Dang-Vu et al., 2010).

2.3 EEG data acquisition

EEG signals were recorded using 19 Ag/AgCl scalp electrodes 
placed according to the international 10–20 system (Homan et al., 
1987) by the EEGA-21/26 “Encephalan-131-03” system (Medicom 
MTD, 1997). The reference electrodes were positioned at the left (A1) 
and right (A2) mastoids, and the ground electrode was placed at the 
forehead (Fpz). EEG signals were sampled at 250 Hz, and electrode 
impedance was kept below 10 KΩ to ensure signal quality (see 
Figure 2). Subjects were comfortably lying down on a bed in a quiet, 
temperature-controlled room. No medications or external aids were 
used to facilitate sleep. Sleep progression was monitored by an 
experienced sleep technician who visually tracked EEG waveforms to 
ensure the detection of different sleep stages. EEG signals were 
recorded for two separate sessions for each participant.

2.4 Pre-processing

The EEG data were analyzed using MATLAB (version 2022b) and 
the Brainstorm toolbox (Tadel et al., 2011). The pre-processed steps 
included the following:

 1) Montage application: EEG signals were initially re-referenced 
to average mastoid reference (A1/A2) to reduce common-
mode noise.

 2) Artifact removal: Fast independent component analysis 
(FastICA) (Van et al., 2016) was applied to remove eye-blinking 
and artifacts detecting during wakefulness and sleep. EEG 
signals were visually inspected to reject segments with excessive 
muscle artifacts and non-physiological noise.

 3) Filtering: A 50 Hz notch filter was applied to eliminate power 
line noise. A 0.5–70 Hz Butterworth band-pass filter (Ferdous 
et al., 2016) was applied to remove low-frequency drifts and 
high-frequency artifacts.

 4) Segmentation data for analysis: EEG data were segmented into 
2-s non-overlapping windows to capture rapid fluctuations in 
brain activity, ensuring high temporal resolution. This 
segmentation approach is particularly effective for monitoring 
transitions between different sleep stages.

 5) Feature extraction: after pre-processing, brain network 
connectivity features were computed from the clean EEG 
signals, including PLV, Coherence, PAC, and RQA.

To illustrate the impact of preprocessing, Figure 3 presents sample 
EEG time series before and after artifact removal for a representative 
subject. These figures demonstrate the effectiveness of ICA-based 
artifact rejection and band-pass filtering in improving signal quality.

To illustrate the nature of EEG data across different sleep stages, 
sample EEG waveforms for wakefulness, NREM, and REM sleep are 
presented in Figure  4. These EEG traces represent clean epochs 
recorded from 21 electrodes and showcase distinct patterns 
characteristic each stage. Additionally, we provide visualizations of 
extracted features, including PAC in the alpha and gamma bands, 
which utilized in our deep learning model. These insights elucidate 
the complexity of sleep classification and the distinct signal 
characteristics employed for feature learning.

2.5 Feature extraction

To prepare the information for the GICA-based classifier to 
discriminate sleep phases, functional connectivity, and dynamic 
state features are extracted from EEG epochs and then, converted 
into graph representations. Each graph representation is 
composed of three elements: EEG channels referred to as nodes, 
connection among the nodes referred to as edges, and the sets of 
features extracted from EEG signals recorded at the nodes 
referred to as graph signals. We utilize functional connectivity 
and spatial distance between nodes to calculate the edges. 
Functional connectivity captures the functional interactions 
between EEG channels during the synchronized firing of neurons 
from different brain regions that occur during sleep. The  
spatial distance between nodes provides basic information  
about the spatial distribution of the nodes in the 
graph representation.

In this study, we employed PLV, coherence, and PAC measures to 
calculate functional connectivity maps and cross-frequency coupling 
between different frequencies of neural oscillation. These measures 
quantify the strength of phase synchronization between pairs of EEG 
signals recorded at different channels.

 - PLV: The Hilbert transform is applied to the EEG signals to 
measure PLV for a pair of EEG signals (Zakeri and 
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Geravanchizadeh, 2021). Subsequently, the instantaneous 
phase of each signal and the relative phase between the two 
signals are calculated. The phase difference between pairs of 
EEG channels was computed at each time point within the 
2-s window. PLV is defined as follows in Equation 1 (Raeisi 
et al., 2022):

 

( )1

0

1 ,xy

N
i i t

xy
j

PLV e
N

ϕ ∆
−

=

= ∑
 

(1)

where ( )ϕxy t  is the relative phase between the EEG signals from 
channels x and y, 1/ t∆  indicates the sampling frequency of the EEG 
signals. N is the number of samples in one EEG epoch (Wang et al., 
2019). PLV measurements can range between 0 and 1 where 0 

indicates no phase synchronization and 1 indicates complete 
phase synchronization.

 - Coh: The Welch method with a Hanning window was used for 
spectral estimation (Welch, 2003). Coherence quantifies the 
linear time-invariant relationship between two-time series x and 
y at a given frequency λ, and is defined as Equation 2 (Raeisi 
et al., 2022):
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( )
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λ
λ

λ λ
= =

2
2

.
xy

xy xy
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f
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Here, ( )λxyR  represents the complex-valued coherence of x 
and y, ( )λxyf , ( )λxxf , and ( )λyyf  represent the cross-spectrum 
of x and y, the power spectrum of x, and the power spectrum of 

FIGURE 3

Comparison of EEG patterns: (a) before and (b) after preprocessing.

Wakefulness NREM REM Sleep with Stimuli REM Sleep without Stimuli

FIGURE 4

EEG signals for 1 s of wakefulness, NREM, REM sleep with and without stimuli stages.
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y, respectively. Coherence is a positive function that is symmetric 
to x and y ( ) ( )λ λ=xy yxCoh Coh . It can range between 0 
(indicating no coherence between x and y) and 1 (indicating 
strong coherence between x and y) (Zhang et al., 2020).

 - PAC: To calculate PAC, the clean EEG signal is transformed into 
a complex-valued analytic signal. Subsequently, either the phase 
or amplitude is extracted from this complex-valued analytic 
signal. All of these steps can be effectively implemented using the 
Brainstorm toolbox (Tadel et al., 2011). PAC was computed for 
each 2-s EEG segment to measure the interaction between the 
phase of lower frequencies and the amplitude of higher 
frequencies. To ensure statistical significance, we employed a 
bootstrap-based surrogate analysis where the phase time series 
was randomly shuffled 1,000 times while maintaining the 
amplitude time series unchanged. This generated a null 
distribution of PAC values for each 2-s window. Observed PAC 
values were then compared against the 95th percentile of the 
surrogate distribution (p_value < 0.05) to determine statistical 
significance. Only PAC values exceeding this threshold were 
retained for further analysis.

Sample adjacency matrices based on PLV, coherence, and PAC are 
displayed in Figure 5. These features are subsequently analyzed in the 
feature selection step. Significant features are then converted into a 
graph representation and used to train the proposed GICA model.

 - RQA: Recurrence refers to the trajectory returning to its previous 
state in the phase space. The phase space is typically constructed 
from a time-series signal using a time-embedding method. To 
visualize the amount of recurrence in a multi-dimensional 
dynamic system, a recurrent plot (RP) is used. In Equation 3, 
RQA is calculated for each sample, i, j of the time series x, under 
the predefined threshold distance ε  (Kang et al., 2021):

 
( )Θ ε= − − = …, , , 1,2, , ,i j i jRQA x x i j N

 (3)

The RQA method was applied to analyze the recurrence of 
phase in EEG time series. The instantaneous phase was computed 
using Hilbert transform, and recurrence plots were constructed 
by comparing phase values at different time points. Phase errors 
were quantified using a continuous measure of Euclidean 
distance, as described in Equation 3. This approach avoids the 
need for binning and provides a precise quantification of 
recurrence patterns. Figure 6 illustrates the recurrence patterns 
identified in our analysis, with labels z1, z4, and z7 corresponding 
to short-term, intermediate-term, and long-term phase 
dynamics, respectively.

Where ( ).Θ , . , and N are the Heaviside function, the 
maximum norm, and the number of samples in the phase space 
trajectory, respectively. In other words, RP is a two-dimensional 
representation characterizing the dynamic features of nonlinear 
systems and complex time series by which the phase space 
trajectory returns roughly to its previous states (Zheng et al., 
2024). Phase space vectors are reconstructed from a given time 
series (i.e., … =1 2 3, , , ,x x x x n ) using time-delay embedding 

methods, such as the Takens time-delay embedding technique 
(Takens, 2006). Phase space vector is obtained as 

( )( )τ τ= + … + − ×, , , 1i i i iX x x x m  which parameters m and τ 
should be set for phase space reconstruction. Then, the distance 
in the phase space between ix  and jx  falls within the ε, two 
samples are considered to be recurrences, indicated as ,i jRQA . 
Recurrence Rate (RR) can be obtained to quantify the RP which 
measures the percentage of recurrence points in the RP which is 
calculated as Equation 4 (Wallot, 2011):

 =
= ∑ ,2 , 1

1 .N
i ji jRR RQA

N  
(4)

2.6 Feature selection

To assess the normality of feature vectors, the Kolmogorov–
Smirnov (KS) test is employed as an initial data analysis (Weiss, 1984). 
The probability values below 0.05 indicate that the data exhibits 
non-normal distributions. In situations where the data does not follow 
a normal distribution, the Mann–Whitney U (Wilcoxon rank sum) 
test is chosen to compare differences between different states of 
recording EEGs. p-values < 0.05 indicate greater significance in terms 
of significant disparities in medians among the various tasks.

In this research, EEG features were extracted from five 
frequency bands: delta (0.4–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (12–30 Hz), and gamma (30–70 Hz). Four 
functional connectivity features were computed for each band: 
PLV, Coherence, PAC, and RQA. For each 19-channel EEG 
window, the pairwise connectivity metrics (PLV, Coherence, PAC) 
resulted in matrices of dimensions 19 × 19 or 8 × 8, while RQA 
was computed as a 1 × 10 vector, representing recurrence measures 
extracted from specific EEG microstates. PAC was computed 
between eight frequency pairs (i.e., δ–θ, δ–α, δ–β, δ–γ, θ–α, θ–β, 
θ–γ, and α–γ) in predefined cortical regions of interest, forming 
an 8 × 8 connectivity matrix. RR values were extracted from EEG 
RQA applied to 10 predefined EEG microstate features, 
summarizing recurrence properties of the EEG time series. To 
select significant features, statistical analysis (Mann–Whitney U, 
p-values < 0.05) was conducted across groups to identify the most 
discriminative features. For each matrix-based feature (PLV, 
Coherence, PAC), the upper triangular portion (excluding the 
diagonal) was extracted and flattened into a 1D array. This ensured 
that redundant or symmetrical values were not included in the 
analysis. This resulted in 171 unique pairwise values for PLV, 171 
for Coherence, and 28 for PAC per frequency band. The flattened 
1D array features were considered to analyze by statistical test. 
Only significant features were retained for further classification. 
This structure feature extraction approach ensures that only 
informative and statistically relevant connectivity and recurrence 
measures are used for subsequent analysis.

Principle Component Analysis (PCA) was selected to handle 
feature correlations and reduce the dimensionality of the dataset 
(Rahman et  al., 2020). PCA is well-suited for this task as it 
transforms correlated features into a set of orthogonal 
components, thereby retaining the most relevant information 
while addressing multicollinearity. Prior to applying PCA, all 
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features were standardized to have zero mean and unit variance. 
This step is essential because PCA is sensitive to the scale of input 
features and standardization ensures that all features contribute 
equally to the principal components. Then, PCA was applied to 
the standardized data, and components were selected based on 
the cumulative explained variance. We retained the components 

that explained 95% of the total variance. This threshold was 
chosen to balance dimensionality reduction with the preservation 
of sufficient variance for accurate modeling. This reduction 
minimized the risk of overfitting, simplified the model, and 
improved the addressing of potential multicollinearity issues 
among the original features. The transformed principle 
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FIGURE 5

An example of changes in (a) PLV, (b) Coherence, and (c) PAC values depend on each state: wakefulness, NREM, REM sleep with stimuli, and REM sleep 
without stimuli, respectively for 2 s of EEG signals.
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components were then used in the detection model, enhancing 
performance by providing uncorrelated inputs.

In this study, the flattened features underwent statistical testing 
using the Mann–Whitney U test, and only significant feature 
dimensions were retained for further processing. Subsequently, PCA 
was applied to the original shapes of the selected feature matrices to 
reduce dimensionality while preserving 95% of variance. The high-
dimensional feature space (originally 418 features) was transformed 
into a 40-dimensional representation, ensuring that the most relevant 
connectivity patterns were retained while minimizing redundancy.

2.7 Graph generator

To prepare the distinct information for the GICA classifier, the 
significant features must converted into graph representation (Raeisi 

et al., 2022). After extracting the initial feature set (PLV, Coherence, 
and PAC) from the EEG data, we first converted the flattened feature 
matrices into a 1D array, which was used solely for statistical testing 
to identify the most discriminative features. After identifying these 
significant features, we retained their original 2D structure. PCA was 
then applied to the 418-dimensional feature space, reducing it to 40 
principal components that preserved 95% of the variance. The 
following outlines the procedure for extracting graphs from the output 
of the feature selection step.

Each graph is composed of three elements namely, nodes, 
connections among them as edges, and sets of features at nodes as 
graph signals. An undirected weighted graph is symbolized as 

{ }= , ,G V E A  representing the correlations between nodes. Figure 7 
shows an example of an undirected graph, where each vertex has a 
weight iA . Here, { }= …1 2, , , pV v v v  denotes the ensemble of p nodes, 
∈ie E  is represented the set of e edges, and ×∈ p pRA  is the weighted 
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FIGURE 6

Example of recurrence plots (RP) on four different thresholds extracted from EEG signals during the four different sleep states. Here, the visualization of 
RP indicates a recurrence ( ( )R i, j =1 ) at coordinates (i, j) with time on both the x- and y-axes using colored dots. z1 is recurrence pattern 
corresponding to short-term phase synchronization, z4 indicates recurrence pattern representing intermediate-term phase dynamics, z7 represents 
recurrence patterns associated with long-term phase stability, and z10 is characterized by highly dynamic and unstable brain states. Increasing 
recurrence density from z1 to z10 suggests more prolonged sleep stability.
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adjacency matrix and indicates the linkages between any pair of 
nodes. The symmetric normalized graph Laplacian normL  is defined as 
(Xue et al., 2024):

 
− −= − 1/2 1/2,normL I D AD  (5)

where I is the identity matrix and =∑, ,i j i jjD A  is the degree 
matrix of graph G. To illustrate the degree matrix of the graph, 
we  consider the scale of graph weights, regardless of correlation 
direction. Therefore, we  utilize the absolute value of the Pearson 
correlation coefficient (PCC) matrix. The PCC matrix represents each 
node in the graph, and the edge weights are determined by the 
correlations observed among the time-series signals in Equation 6 
(Xue et al., 2024):

 

( )( )
( ) ( )
=

= =

− −
=

− −

∑

∑ ∑

1
,

2 2

1 1
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T t t
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x x

j
i j

i j
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(6)

Here, ix  and jx  are the signal vectors from nodes iv  and jv . The 
parameter T and x  represent the total number of samples and the 
arithmetic mean of signal vector from related node. ∈  , 0,1i jw  can 
quantify the relationship between two channels and evaluate the 
strength of their correlation. A higher ,i jw  value indicates a stronger 
correlation between the channels.

The weighted adjacency matrix, =, ,i j i jA w , is used to construct 
the symmetric graph, normL , as defined in Equation 5. It is important 
to highlight that the graph representation was generated after applying 
PCA (Section 2.6) on the extracted significant features, reducing them 
to a 40-dimensional space. This approach ensures that the graphical 
representation effectively captures both the topological relationships 
between features and the informative feature embeddings over time, 
preserving the most discriminative characteristics for classification. 
However, when one type of functional connectivity was  
considered for classification, PCA was not applied. PCA was only 
applied to the concatenated version of the feature set to 
reduce dimensionality.

The final version of the GICA model employs a graph 
representation of features that have been reduced to 40 dimensions 
through PCA for the classification of sleep states. Prior to finalizing 
the GICA model, we assessed the model’s performance using each 
functional connectivity feature individually. The graph, Lnorm, was 
generated for each functional connectivity feature without 
incorporating PCA, while, Lnorm was also computed from the 
40-dimensional PCA-reduced feature set based on the concatenated 
version of features. The high-dimensional feature space (i.e., 
PLV + Coherence + PAC measures) was reduced to 40 dimensions 
using PCA. Each of these 40 dimensions corresponds to a distinct 
node in the graph, with node attributes reflecting the principal 
components derived from the original feature set. The graph generator 
was applied to these 40D PCA-reduced features instead of the original 
functional matrices of “19×19 + 19×19 + 8×8.” Overall, in assessing 
classifier performance using a single feature type, we employed graph 
representation without PCA. Therefore, the GICA model receives a 
graphical representation of the data in two different input sizes; 
individual functional connectivity feature dimension or a 
40-dimensional PCA-reduced feature set as input.

2.8 Classification

A convolutional neural network is a specific type of neural 
network designed to learn informative features through local receptive 
fields (Li et al., 2021). It consists of various layers stacked together in 
a deep architecture, including the input layer, convolutional and 
pooling layers (which can be  combined in different ways), fully 
connected hidden layers, and an output (loss) layer (Bologna, 2019; 
Zhao et al., 2024). The strength of CNNs lies in their ability to extract 
information or features from a given dataset using kernel filters.

On the other hand, autoencoders (AEs) are neural networks that, 
like many other neural network architectures, utilize the 
backpropagation algorithm for latent feature learning (Pratella et al., 
2021). They are mainly used for unsupervised learning tasks, meaning 
they do not require labeled data during training. In contrast, CNNs 
and RNNs are often used for supervised or semi-supervised tasks that 
rely on labeled data. This makes AEs suitable for situations where 
labeled data is scarce or expensive to obtain. AEs are designed to 
automatically learn latent features in an unsupervised manner, 
typically for tasks such as data compression or dimensionality 
reduction. However, other neural network architectures, like CNNs, 
are also capable of learning features from raw data, particularly in 
supervised contexts like image classification. This encourages the AEs 
to capture the crucial characteristics of the input data in its encoding, 
thereby learning a meaningful representation of the data in the latent 
code (Zhang et al., 2022). AEs also provide various benefits, including 
dimensionality reduction across different machine learning and data 
analysis applications, particularly for complex high-dimensional data. 
They are equally valuable in data compression, encoding information 
efficiently for storage or transmission, making them particularly 
useful in resource-constrained applications.

The deep learning model proposed for classifying sleep states is 
depicted in Figure 8. In this model, the pooling layer is incorporated 
to reduce the output dimension from the convolutional layer, thereby 
mitigating computational burden and preventing overfitting. 
Specifically, the max-pooling operation is used to identify the 

FIGURE 7

An example of a weighted undirected graph with V = 6 nodes (i.e., 
EEG channels), weighted values Ai, and ei edges.
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maximum value within each feature map. SoftMax is used to predict 
which class the extracted feature belongs to. Input data was split to 
70% for training, 15% for validation, and the rest for test set. It also 
utilized 10-fold cross-validation to evaluate and verify the results of 
the model. Additionally, it reduces the risk of model overfitting and 
improves the generalization ability of the model. The input data of the 
first layer is organized in three dimensions: depth, height, and width 
of the image or × ×r m m , where the height ( )= 40m  is equal to the 
width in one channel data (e.g., RGB image). This represents the 
features, in this case, the images, in the dataset. “None” represents the 
batch size, which is None here because it can vary depending on how 
many samples we have in the last batch. In the first Conv2D block, 

there are two 2-D convolutional layers followed by a max-pooling 2-D 
layer. It selects the pixel with the highest value for the output array as 
the filter slides through the input. The RR values are multiplied by 
each column of data at the output of this layer to emphasize the 
importance of the temporal components. Another set of Con2D layers 
outputs a feature map with 16 filters, extracting more abstract patterns 
in the data. This same pattern repeats a few times until we reach the 
flattened layer, which connects the output of the previous layer to the 
Dense layer. 256 neurons in the first dense layer, which processes the 
flattened data. Another Dense layer with 256 units to refine the 
learned features. The reshape layer converts the 1-D vector back into 
a 3-D shape for up-sampling. These layers increase the spatial 

FIGURE 8

The suggested classification architecture in the proposed GICA model.
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dimensions of the feature maps. This is useful for reconstructing high-
resolution outputs in AEs. After up-sampling, there are additional 
Conv2D layers to refine the feature maps after resizing them. This 
helps to generate more accurate reconstruction predictions. 
Additionally, pooling layers down-sample again, refining features for 
the final output. The last Dense layer likely corresponds to the output 
layer, with the number of classes as the output dimension. It connects 
to the number of possible output classes in a classification task. The 
proposed network first encodes the input through a series of Conv2D, 
max-pooling, and Dense layers, compressing the spatial and feature 
information. Then, it expands the features through up-sampling and 
Conv2D layers to generate the output.

The input to the proposed GICA model is a 40 × 40 × 1,200 
tensor, where 40 × 40 represents the graph matrix constructed based 
on the 40D PCA-reduced features. The 1,200 corresponds to the 
number of 2-s EEG segments (since we extract features from each 2-s 
time window). This indicates that the graphical representation is 
computed between the 40 principal components rather than the 
original 19 EEG channels. As shown in Figure 8, the architecture 
consists of an input layer with shape (1, 40, 40) representing grayscale 
EEG images. It includes two blocks of Conv2D layers, each with 8 
filters, a 2 × 2 kernel size, strides = 1, and ReLU activation. After each 
Conv2D block, a MaxPooling2D layer with 2 × 2 pooling size is 
applied for dimensionality reduction. Following two series of these 
blocks, a Flatten layer reshapes the data for Dense layers, including 
one with 256 neurons and ReLU activation. The final output layer has 
4 or 18 neurons with a Soft-max activation for multi-class 
classification. A dropout rate of 25% was applied to the fully connected 
layer to prevent overfitting by reducing neuron co-adaptation. The 
model is trained with the Adam optimizer (learning rate = 0.001) and 
categorical cross-entropy loss function over 50 epochs with batch size 
32. An L2 regularization term (λ = 1 × 10−6) was introduced to 
discourage large weight values and improve generalization. The 
training process was monitored using a validation set, and early 
stopping was implemented with a patience value of 100 epochs to 
terminate training when validation performance plateaued. Ten-fold 
cross-validation was applied to evaluate model performance, with 
early stopping to prevent overfitting.

3 Experiments and evaluations

3.1 Experimental setup

In this work, two experiments are conducted to evaluate the 
performance of the proposed GICA method based on multivariant 
graphical representation and RR features. The evaluation of the 
classification procedure using different features extracted by PLV, 
coherence, PAC, and RR, separately in the first experiment. Here, the 
EEG signals of 33 subjects during the four functional states were 
selected to analyze the efficiency of the GICA classifier. Functional 
connectivity measures and recurrence quantification analysis are 
obtained on the input EEG signals of non-overlap windows along 250 
samples. These features integrate both local and global information 
through the concatenation of two 19-channel connectivity features 
(PLV and Coherence), 8-D PAC values in significant frequency bands, 
and 1-D RR values at the 10th diameter. To produce a square unit with 
equal dimensions for vertical and horizontal axes, zero padding is 

applied. The extracted features are given to the GICA classifier in 
different structures for detecting brain behavior, separately. This is 
performed to find an appropriate classifier structure with high 
performance in sleep classification from EEGs.

In the second experiment, we assess the efficiency of the multivariate 
graph analyzer by emphasizing RR features, such as the attention block in 
the deep model. In this case, we feed the significant functional connectivity 
measures extracted from EEG sub-bands to the GICA classifier in its 
optimal structure. To enhance the reproducibility of our study, we provide 
a structured pseudocode outlining the feature extraction and deep-
learning model training. This pseudocode details the sequence of 
operations, including EEG pre-processing, feature computation (PLV, 
PAC, Coh, and RQA), dimensionality reduction via PCA, and 
construction of the GICA. The complete pseudocode is provided in 
Figure 9. In Step 1, following pre-processing, the functional connectivity 
features (i.e., PLV, Coherence, and PAC) and recurrence quantification 
were extracted across various EEG frequency sub-bands. Statistical test 
were employed to identify distinct features among these. PCA was applied 
to the concatenated version of these features; however, PCA was not 
utilized for assessing classification performance on individual functional 
connectivity features. Therefore, if the solely feature was considered to 
feed the GICA model, the graph representation is generated in the same 
size as the feature. However, if the 40D PCA-reduced features were 
considered to feed the classifier, the graph Lnorm in Equation 5 was 
generated with 40D nodes. The proposed GICA model was evaluated 
using two types of features: individual connectivity feature and a 40D 
PCA-reduced feature set. In the second step, the deep model was trained 
and tested using optimized hyperparameters. Finally, the evaluation 
metrics were computed and reported.

For both experiments, we use 70% of the data (i.e., 24.5 min × 32 
subjects) as the training set, while the remaining data is considered as the 
test set. We employed leave-one-subject-out cross-validation (LOSO) 
(Roth, 2004), wherein each subject’s data is held out as a test set, while the 
model is trained on the remaining subjects’ data. This approach minimizes 
subject-dependent bias by ensuring that no individual data is used for 
both training and testing simultaneously. To evaluate the performance of 
our proposed method, we simulate and use the recently developed sleep 
state detection systems introduced by Mostafaei et al. (2024), Moctezuma 
et al. (2024), Li et al. (2022), Al-Salman et al. (2023), Eldele et al. (2021), 
and EEGNet (Lawhern et al., 2018) as baseline systems from the literature 
to assess the effectiveness of various deep neural architectures. Mostafaei 
et al. (2024) developed a transformer encoder-decoder model that utilizes 
an attention block to classify sleep stages based on effective input data 
patterns. Moctezuma et  al. (2024) employed a GRU architecture to 
capture long-term dependencies in EEG data. Their proposed gating 
mechanism facilitates the updating and retention of information over 
time, allowing the GRU layers to enhance the classifier’s ability to detect 
more complex patterns. However, increase in model capacity can lead to 
overfitting. Li et al. (2022) designed a multi-layer CNN to extract time and 
frequency features from EEG spectrograms. Their model culminated in 
a global average pooling layer followed by two bi-directional long short-
term memory layers, which learn the transitional relationships between 
adjacent sleep stages for classification. In contrast, Al-Salman et al. (2023) 
distinguished their model from other baselines by employing a machine 
learning approach rather than deep learning to identify six sleep stages 
from EEG signals. They utilized discrete wavelet transforms (DWT) to 
decompose the data into wavelet coefficients and classified the probability 
distributions of k-means clustered features into sleep stages using a 
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least-square support vector machine (LS-SVM). Eldele et  al. (2021) 
introduced a multi-resolution CNN (MRCNN) with adaptive feature 
recalibration to extract both low and high-frequency features. They 
developed multi-head attention as a core component of the attention 
temporal context encoder to capture long-term dependencies in the input 
features. EEGNet (Lawhern et al., 2018) is an open-source toolbox based 
on a CNN architecture for EEG-based BCIs, designed to be trainable with 
limited data while producing neurophysiologically interpretable features. 
However, these architectures did not utilize their original feature 
extraction methods; instead, they were provided with the same graphically 
informed features, focusing solely on the classification model’s ability to 

process the structured feature space, rather than the differences in feature 
extraction. The hyperparameters were either adopted from their 
original publications.

3.2 Evaluation criteria

The efficiency of the proposed GICA algorithm is determined 
through accuracy (Acc), sensitivity (Sen), and specificity (Spe) (Zhu 
et al., 2010). Acc indicates the overall correct detection. Sen shows the 
rate of correctly classified states, while Spe measures the rate of 

FIGURE 9

The pseudocode of feature extraction and training phase of the deep learning model.
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correctly rejected states. Based on the values of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN), the 
overall Acc, Sen, and Spe can be defined as follows in Equations 7-9 
(Zhu et al., 2010):

 
+

=
+ + +

,TP TNAcc
TP TN FP FN  

(7)

 
=

+
,TPSen

TP FN  
(8)

 
=

+
.TNSpe

TN FP  
(9)

4 Results and discussion

Two experiments are conducted to determine the optimal 
procedure for identifying sleep states using functional connectivity, 
graph computation, and recurrence quantification analysis of the 
brain. In the first experiment, a statistical analysis is performed on all 
individual features to find the significant differences (p_value < 0.05) 

between the various states. The second experiment utilized a graph-
informed convolutional autoencoder to evaluate the effectiveness of 
each multivariate feature set. Additionally, the impact of the different 
durations of EEG segments is assessed on the performance of the 
proposed method. In the following analysis, classifier performance 
was evaluated using a single feature type without the application of 
PCA for graph representation. However, when a combination of 
significant features is utilized for classification, PCA is applied to 
reduce dimensionality before constructing the graph matrix.

4.1 Statistical analysis

Figure 10 and Table 1 show the significant p_values for extracted 
PLV and coherence from each sub-band of every single electrode of 
EEG signals during the wakefulness, NREM sleep, REM sleep with 
stimuli, and REM sleep without stimuli phases. According to the 
figure, the most significant effects of PLVs are in the alpha band on the 
left frontal lobe, F3 and C3 channels between various states of EEG 
recordings. In addition, F7 has significant differences in the beta band. 
It reveals that playing or not playing with auditory stimuli affects the 
frontal, pre-motor, and auditory areas during sleep. However, other 
EEG sub-bands such as theta, alpha, and beta have no distinguishable 
areas except during the comparison of wakefulness and NREM states. 
The results of Table  1 show that there is a significant coherence 
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FIGURE 10

Green points indicate EEG channels with significant differences (p_value < 0.05) between two groups in each delta, theta, alpha, beta, and gamma 
band, respectively.
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between different sub-bands, particularly in the alpha and beta ranges, 
during sleep with stimuli and other states. Tables 2, 3 depict the 
disparities between PAC and RR features across EEG sub-bands in the 
four sleep states. As observed in these tables, the extracted PAC 
features from the alpha band exhibit significant differences between 
the REM sleep state and the others. On the other hand, the gamma 
band shows the most notable distinctions among the various sleep 
states. It should be noted that the results in Figure 10 demonstrate the 
significant differences among each electrode; however, the results in 
Tables 1–3 indicate significant differences across the whole electrode 
set. The tables present p-values computed for all flattened  
pairwise connections of connectivity measures between various  
states.

According to these findings, the significance of EEG features 
in the alpha and gamma bands aligns with prior sleep research, 
supporting their biological plausibility. Alpha activity is 
associated with wakefulness and drowsiness, typically decreasing 
during REM sleep (Cantero et al., 2002; Cantero and Atienza, 
2000). Some studies suggest that alpha intrusions may indicate 
sleep instability, particularly in individuals with sleep disorders. 
Meanwhile, gamma oscillations are linked to cognitive 
processing, memory consolidation, and neural plasticity during 
REM sleep. Increased gamma activity during REM is thought to 
reflect heightened cortical processing and dream-related activity 
(Mishra and Colgin, 2019; Corsi-Cabrera et  al., 2014). These 
findings further validate the use of EEG-based connectivity 

TABLE 1 p-values and effect size of Mann–Whitney test for extracted coherence feature from EEGs.

State Delta Theta Alpha Beta Gamma

Wakefulness vs. NREM p 0.052 0.300 0.042* <0.001* 0.001*

η2 <0.001 <0.001 0.11 0.08 0.07

NREM vs. REM with stimuli p 0.410 0.658 0.037* 0.322 0.735

η2 <0.001 <0.001 0.11 <0.001 <0.001

NREM vs. REM without 

stimuli

p <0.001* <0.001* 0.665 0.788 0.089

η2 0.16 0.20 <0.001 <0.001 <0.001

REM with stimuli vs. REM 

without stimuli

p <0.001* 0.577 <0.001* 0.003* 0.045*

η2 0.14 <0.001 0.21 0.12 0.09

The symbol * indicates a significant difference (p_value < 0.05). Significant values are in [bold].

TABLE 2 p-values and effect size of Mann–Whitney test for extracted PAC feature from EEGs.

State Delta Theta Alpha Beta Gamma

Wakefulness vs. NREM p <0.001* 0.210 0.512 0.168 0.021*

η2 0.25 <0.001 <0.001 <0.001 0.09

NREM vs. REM with stimuli p 0.085 0.492 0.008* 0.241 0.735

η2 0.002 <0.001 0.14 <0.001 <0.001

NREM vs. REM without 

stimuli

p 0.071 0.566 <0.001* 0.018* 0.191

η2 0.01 <0.001 0.21 0.11 <0.001

REM with stimuli vs. REM 

without stimuli

p 0.051 0.094 <0.001* 0.010* 0.005*

η2 <0.001 <0.001 0.16 0.12 0.11

The symbol * indicates a significant difference (p_value < 0.05). Significant values are in [bold].

TABLE 3 p-values and effect size of Mann–Whitney test for extracted RR feature from EEGs.

State Delta Theta Alpha Beta Gamma

Wakefulness vs. NREM p 0.294 0.981 <0.001* 0.914 <0.001*

η2 <0.001 <0.001 0.22 <0.001 0.18

NREM vs. REM with stimuli p 0.147 0.408 0.068 0.238 0.784

η2 <0.001 <0.001 0.09 <0.001 <0.001

NREM vs. REM without 

stimuli

p 0.306 0.252 0.337 0.058 0.019*

η2 <0.001 <0.001 <0.001 0.02 0.10

REM with stimuli vs. REM 

without stimuli

p <0.001* 0.295 <0.001* 0.544 0.016*

η2 0.24 <0.001 0.12 <0.001 0.10

The symbol * indicates a significant difference (p_value < 0.05). Significant values are in [bold].
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measures in sleep-stage classification and support the robustness 
of our approach.

4.2 SlS classification with GICA model

Classification performance acquired from each functional 
connectivity feature and recurrence quantification analysis are 
presented in Figure 11. These results include the Acc, Spe, and Sen on 
EEG signals on extracted features from each 2 s segments. In the 
sense of classification results for different features, it can be seen that 
these parameters achieve Acc between 61.7% for classification with 
PAC features on the gamma band in minimum and 88.8% with RR 
features on the alpha band in maximum value. To obtain the highest 
performance of SlS, the best features of EEG sub-bands are selected 
from the point of view of classification accuracy. These significant 
features are concatenated, namely, “PLVγ + Cohδ + PACα” to yield a 
57-dimensional feature set. Then, GICA with RRα-attention block is 
trained from the concatenated features to classify four sleep states. 
Figure 12 shows the confusion matrix for SlS classification with the 
GICA model. Overall, accuracy and a true positive ratio (TPR) of 
99.92% are achieved with the proposed GICA model. This indicates 
that it is excellently suited for detecting sleep states in unseen data. 
Hence, larger datasets are acquired so the training process can 
be effective in the initial phase. In conclusion, the analyzed FC and 
GICA model demonstrate satisfactory performance in the multi-class 
classification of EEG datasets with relatively unbalanced 
class proportions.

To ensure the generalizability of the proposed model and 
minimize the risk of overfitting, LOSO cross-validation was utilized, 

which ensures that each test fold comprises entirely unseen subjects. 
This method effectively evaluates the model’s capacity to generalize 
beyond individual subjects. Additionally, regularization techniques, 
including dropout layers and batch normalization, were integrated 
into the model to prevent it from learning spurious correlations in the 
training data. Furthermore, feature selection through PCA was 
performed to reduce dimensionality and retain only the most 
informative components, thereby avoiding overfitting to noise.

4.3 BRSl classification with GICA model

The performance of classifying brain responses to auditory stimuli 
during REM sleep using different functional connectivity features and 
recurrence quantification analysis is illustrated in Figure  13. The 
results of the Acc, Spe, and Sen evaluation metrics on EEG signals are 
extracted from 2 s segments of each feature. It can be observed that 
these parameters achieve an accuracy ranging from 58.8 to 79.8% for 
different features. According to the results presented in this figure, the 
performances of different features close to each other. This shows the 
discriminatory efficiency of functional connectivity features obtained 
by PLV, Coh, PAC, and RR from each EEG sub-band. To obtain the 
highest performance of BRSl, the best features of EEG sub-bands are 
selected from the point of view of classification accuracy. These 
significant features including 19 × (19 − 1)/2 = 171 elements of PLV, 
19 × (19 − 1)/2 = 171 elements of Coh, and 8 × 19/2 = 76 elements for 
PAC are concatenated (total dimension = 418), namely, 
“PLVγ + Cohα + PACγ” to yield a 40-dimensional feature space after 
applying PCA. Then, GICA with RRα-attention block is trained from 
the concatenated features (i.e., (32, 40): 32 subjects and 40-dimensional 

FIGURE 11

The SlS classification with the proposed GICA model only includes (a) PLV, (b) Coherence, (c) PAC, and (d) RR features extracted from EEG signals on 
different sub-bands. The performance of the SlS classifier is presented based on functional connectivity features, without taking PCA into account. The 
connectivity measures were utilized for graph generation and subsequently input into the GICA model.
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FIGURE 12

The sleep states classification using the proposed GICA algorithm which categorizes the states as wakefulness (0), NREM (1), REM with stimuli (2), and 
REM without stimuli (3). The SlS classifier is applied to the graphical representation of a 40-dimensional PCA-reduced significant feature set.

FIGURE 13

The BRSl classification with the proposed GICA model only includes (a) PLV, (b) Coherence, (c) PAC, and (d) RR features extracted from EEG signals on 
different sub-bands. The performance of the BRSl classifier is presented based on functional connectivity features, without taking PCA into account. 
The connectivity measures were utilized for graph generation and subsequently input into the GICA model.
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feature vector) to classify brain responses to 18 auditory stimuli during 
REM sleep. Figure  14 displays the confusion matrix for BRSl 
classification with the GICA model. Overall, accuracy and a TPR of 
86.1% are achieved with the proposed GICA model. This indicates 
that the brain responses in unseen data are within the acceptable range 
for detection.

In the following experiment, the performance of the proposed 
GICA model is examined for different segments of EEG signals in 
sleep state classification. To this aim, first, the functional connectivity 
features of EEG data are extracted from each sub-band for different 
durations of EEG segments from 500 ms to 5,000 ms. The significant 
features are then fed into the GICA classifier. The average of the SlS 
performances is illustrated in Figure  15 for 100 epochs. It can 
be  observed that the classification performance of the proposed 
algorithm decreases significantly as the duration of the EEG segment 
increases for segment durations above 2 s. Additionally, this figure 
shows that the measures of Acc, Spe, and Sen are increased as the data 
length is shortened, specifically, in the length of 1,500–2,500 ms. 
Moreover, the Spe and Sen values lie in acceptable ranges for all EEG 
segments. These achievements could be considered in real-time and 
automatic applications to develop new therapeutic strategies for sleep-
related disorders.

The impact of each feature type on classification performance has 
evaluated in ablation study that involved systematically removing one 

feature type at a time. The results are summarized in Table 4. The 
removal of PAC led to the most significant drop in accuracy, 
highlighting its essential role in differentiating sleep states. The model 
achieved the highest performance when all features were combined, 
understanding the complementary contributions of PLV, Coh 
and PAC.

To assess the impact of different model components, 
we performed an ablation study by evaluating multiple deep learning 
architectures with varying configurations. Table 5 summarizes the 
results, showing that the proposed GICA model achieves the highest 
accuracy while maintaining generalization. Removing dropout and 
regularization led to overfitting whereas reducing network depth 
resulted in decreased accuracy. These findings highlight the 
significance of autoencoder-based extraction and regularization 
techniques in optimizing model performance. The ablation study 
confirms that adding graphical input, autoencoder layers, and 
attention layer improves classification accuracy, likely due to better 
feature extraction. The removal of dropout and regularization 
significantly impacted model generalization, leading to overfitting. 
Similarly, reducing the network depth resulted in lower accuracy, 
indicating the importance of deeper representation for sleep 
EEG classification.

To assess the computational feasibility of our model, we analyzed 
its processing requirements. The proposed model consists of 

FIGURE 14

The brain-behavior classification during REM sleep and presenting 18 stimuli using the proposed GICA algorithm on the features of 
“PLVγ + Cohα + PACγ.” The BRSl classifier is applied to the graphical representation of a 40-dimensional PCA-reduced significant feature set.
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FIGURE 15

The performance of the SlS classifier is presented based on a significant functional connectivity feature set, including “PLVγ + Cohδ + PACα.” Following 
PCA, the 40-dimensional feature set was utilized for graph generation and subsequently input into the GICA model for different EEG processing 
segments.

TABLE 4 The ablation study on the feature set with proposed deep learning model in SlS and BRSl classification on α band.

Model Structure and Input 
Features

SlS classification (%) BRSl classification (%)

Acc Spe Sen Acc Spe Sen

Proposed GICA model with 

PLV + PAC + Coh

96.50 95.56 97.28 86.10 86.55 84.72

Proposed GICA model with PLV + PAC 96.12 95.50 94.22 85.88 85.45 85.30

Proposed GICA model with PLV 92.83 92.46 92.55 85.25 86.60 83.35

Proposed GICA model with PAC + Coh 92.46 91.13 91.22 84.40 85.90 81.23

Proposed GICA model with PAC 93.80 91.73 93.45 84.86 83.21 85.57

Proposed GICA model with Coh + PLV 91.97 89.85 89.51 82.95 81.14 82.10

Proposed GICA model with Coh 91.95 93.33 92.58 82.97 81.59 82.96

The graph input was generated based on functional connectivity measures without the PCA. Maximum value of Acc are in [bold].

TABLE 5 The ablation study and a detailed overview of the different deep learning architecture and their classification results in SlS and BRSl categories 
on the graphical representation of the 40D PCA-reduced feature set extracted from α band.

Model Structure SlS classification (%) BRSl classification (%)

Acc Spe Sen Acc Spe Sen

CNN (4 layers) 89.83 90.25 87.50 77.51 77.20 78.16

CNN (4 layers) + Autoencoder (4 layers) 93.33 91.94 93.82 80.28 80.25 79.56

CNN + Autoencoder + Attention 95.24 96.45 94.10 82.02 81.64 83.05

Proposed GICA 96.50 95.56 97.28 86.10 86.55 84.72

Proposed GICA without dropout and 

regularization

98.50 99.98 98.11 85.09 83.31 85.46

Maximum value of Acc are in [bold].
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67,110,941 trainable parameters and requires 26,831 min for training. 
The inference time per sample is 36 s, making it suitable for offline 
analysis. However, real-time applications may require additional 
optimization techniques, such as model pruning, quantization, or 
deployment on specialized hardware. All computational time 
measurements were conducted on a Windows 11-based system 
equipped with an Intel Core i7 processor and an NVIDIA GTX 
1660 GPU.

Figure 16 compares the performance of the proposed SlS-GICA 
model using significant features (PLV, Coh, and PAC) to the baseline 
systems in terms of accuracy, sensitivity, and specificity measures. The 
introduced SlS algorithm outperforms the baseline systems including 
Mostafaei et  al. (2024), Moctezuma et  al. (2024), Li et  al. (2022), 
Al-Salman et al. (2023), and Eldele et al. (2021) based on the accuracy 
criteria. In this work, the methods from baselines were reimplemented 
based on the descriptions provided in their respective papers. The 
reimplementation followed the original algorithms as closely as possible 
to ensure a fair comparison. Minor adjustments were made only where 
necessary to ensure compatibility with the experimental framework 
used in this study, which was detailed in the material and methods 
section. The results in Table  6 show that the accuracy of the SlS 
classification systems generally increases with the frequency ranges. The 
highest performance (96.50%) is achieved by the functional connectivity 
extracted from the alpha band with the proposed SlS-GICA classifier. 
Mostafaei et al. (2024) achieved accuracies of 74.16, 95.25, 90.25, and 
92.50% for the δ, α, β, and γ frequency bands, respectively.

The SlS detection model of Moctezuma et al. (2024) achieved 
accuracies of 78.75, 89.80, 86.10, and 90.15% for the FC features 
extracted from the δ, α, β, and γ bands, respectively. Li et al. (2022) 
obtained accuracies of 69.97, 86.20, 88.85, and 80.85% for the δ, α, β, 

and γ EEG sub-bands, respectively. Al-Salman et al. (2023) model 
achieved accuracies of 75.75, 77.05, 82.20, and 84.65% for δ, α, β, and 
γ bands, respectively. Eldele et al. (2021) achieved accuracies of 48.00, 
92.61, 80.60, and 75.35% for the FC features extracted from the δ, α, 
β, and γ bands, respectively. However, the proposed SlS-GICA model 
achieved accuracies of 59.11, 96.50, 81.80, and 95.33% for the 
extracted features from the δ, α, β, and γ EEG sub-bands, respectively. 
The highest accuracy is observed for the proposed SlS-GICA model 
in the alpha and gamma bands, with accuracies of 96.50 and 95.33%, 
respectively. Additionally, Mostafaei et al. (2024) achieved an accuracy 
of 90.25% for the extracted FC features from the beta band. By using 
a consistent feature input across models, this comparison isolated the 
influence of network architecture on classification performance, 
ensuring a fair assessment of our proposed approach.

The exploratory analysis yielded significant results for the 
functional connectivity and recurrence analysis of EEG sub-bands. 
Also, the length of EEG processing has a stronger impact on extracting 
differences in brain function during the seconds. In addition, 
extracting RR from EEGs and applying it as an attention layer in the 
GICA model, emphasizes the dynamic behavior of the brain 
performance through the sleep state. The ability of the SlS-GICA 
model to classify sleep states and extract spatiotemporal features and 
real-time analysis is one of the other advantages of the proposed 
model that has not been included in previous works.

Although the results of the current study demonstrate superior 
performance compared to the baseline systems in SlS classification, it 
does have certain limitations. Firstly, the EEG signals were recorded 
from only 21 channels in this study, which might not provide optimal 
spatial resolution. Increasing the number of channels would 
be advisable for better accuracy. However, it is important to consider 

FIGURE 16

Comparison of the proposed SlS-GICA model on the features of “PLVγ + Cohδ + PACα” in sleep classification with other baselines including Mostafaei 
et al. (2024), Moctezuma et al. (2024), Li et al. (2022), Al-Salman et al. (2023), Eldele et al. (2021), and EEGNet (Lawhern et al., 2018). The SlS classifier is 
applied to the graphical representation of a 40-dimensional PCA-reduced significant feature set (i.e., “PLVγ + Cohδ + PACα”).
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that a large number of EEG channels during deep sleep could 
be cumbersome. Secondly, the dataset was recorded from subjects 
during a single session. To obtain more generalized attributes and 
assess the impact of music, it would be  beneficial to repeat the 
experiment over a week. By using a subject-independent classification 
approach, our study aims to capture EEG patterns that are 
generalizable across subjects. This method enhances the robustness of 
the results, as the model’s performance is based on data from a variety 
of individuals, reducing the likelihood of overfitting to subject-specific 
characteristics. This is particularly relevant for applications seeking 
generalizable insights into cognitive load across diverse populations.

5 Conclusion

In this study, we presented a state-of-the-art approach for sleep 
state classification and investigation into the effect of auditory stimuli 
on REM sleep. The proposed method was based on functional 
connectivity and recurrence quantification analysis of pre-processed 
EEG signals. We  recorded EEG signals from participants during 
wakefulness, NREM sleep, REM sleep with sound stimuli, and REM 
sleep without stimuli. The sound stimuli included 18 different types of 
sounds, such as musical instruments and nature sounds. After 
preprocessing the EEG signals, PLV, Coh, PAC, and RR were extracted 
from EEG sub-bands to obtain discriminative features and capture the 
complex behavior of the brain. The functional connectivity features 
(PLV, Coh, and PAC) were then used as inputs to a graph-informed 

convolutional autoencoder classifier. The graph-based approach plays 
a critical role in our method by capturing the underlying relationships 
between EEG channels that cannot be easily captured by standard 
statistical feature selection techniques alone. Instead of directly 
feeding the statistical features into the neural network, we extract 
graph-based features by analyzing the structure of this connectivity 
graph. These features provide a more comprehensive representation 
of the network dynamics, including higher-order interactions that are 
crucial to the complex relationships between brain regions. By using 
graph-based features, we ensure that the classifier is informed not only 
by traditional statistical measures but also by the spatial and functional 
relationships embedded in the graph. The attention layer also received 
the RR features to emphasize the dynamic analysis of the brain for 
each frame. Experimental results demonstrated that combining 
significant FC features with RR features in the attention layer of the 
GICA classifier leads to higher performance in sleep state classification, 
99.92% in terms of accuracy (see Figure 12). Also, classifying the brain 
response to 18 different sound stimuli during REM sleep achieves an 
accuracy of 86.1% (see Figure 14 and Tables 4, 5).

The proposed SlS-GICA model has an important advantage over 
baseline methods. It performs sleep classification by utilizing the 
graphical representation of functional connectivity features and 
incorporates recurrence rate analysis in the attention layer of the deep 
convolutional classifier. Moreover, the classification performance 
indicates that the proposed SlS-GICA model outperforms recently 
published sleep state classification approaches by Mostafaei et  al. 
(2024), Moctezuma et al. (2024), Li et al. (2022), Al-Salman et al. 

TABLE 6 Comparison of the proposed GICA model in sleep classification with other baselines including Mostafaei et al. (2024), Moctezuma et al. (2024), 
Li et al. (2022), Al-Salman et al. (2023), Eldele et al. (2021), and EEGNet (Lawhern et al., 2018).

Models Metrics δ α β γ

Mostafaei et al. (2024)

Acc 74.16 95.24 90.25 92.50

Sen 75.89 95.78 89.44 93.42

Spe 73.14 92.57 89.08 94.56

Moctezuma et al. (2024)

Acc 78.75 89.80 86.10 90.15

Sen 76.52 91.40 87.78 91.25

Spe 74.06 90.71 88.79 92.31

Li et al. (2022)

Acc 69.97 86.20 88.85 80.85

Sen 65.20 88.18 86.60 77.36

Spe 69.10 87.09 88.43 79.90

Al-Salman et al. (2023)

Acc 75.15 77.05 82.20 84.65

Sen 75.11 76.75 82.50 81.98

Spe 76.08 78.89 81.27 83.50

Eldele et al. (2021)

Acc 48.00 92.61 80.60 75.35

Sen 47.10 91.79 81.40 73.30

Spe 46.57 93.50 81.64 72.70

EEGNet (Lawhern et al., 2018)

Acc 39.66 91.52 86.93 88.95

Sen 40.57 92.75 85.68 88.50

Spe 38.05 92.97 87.33 87.24

Proposed SlS-GICA classifier

Acc 59.11 96.50 81.80 95.33

Sen 59.48 95.56 80.02 95.70

Spe 60.75 97.28 81.31 94.37

Maximum value of Acc are in [bold].
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(2023), Eldele et al. (2021), and EEGNet (Lawhern et al., 2018), which 
serve as the baseline systems. Furthermore, the processing time 
window for EEG signals is generally substantial compared to previous 
studies. However, it is worth noting that the use of an attention-based 
convolutional autoencoder classifier has limitations in capturing long-
term time series with high global dependencies.

The primary limitation of this study is that it was conducted 
on a cohort of 33 healthy subjects, without data from individuals 
with sleep disorders. Since sleep disturbances may alter EEG 
dynamics, the generalizability of our findings to clinical 
populations remains uncertain. Future research should extend this 
analysis to individuals with sleep disorders to validate the 
robustness of our approach and its potential clinical applications. 
Although the order of stimulus presentation was not randomized 
across participants, we minimized potential biases by maintaining 
identical conditions for all subjects. This approach ensured 
consistency in experimental exposure and facilitated direct 
comparisons across individuals. However, we acknowledge that a 
counter-balanced, within-subject design would be preferable in 
future studies to further mitigate potential order effects and 
strengthen the generalizability of our findings. A key avenue for 
future research is to validate the proposed model using a dataset 
of individuals with sleep disorders. This would be provided further 
insights into its diagnostic utility and potential for clinical 
application. The findings of this research have the potential to 
inform the development of interventions such as music therapy or 
low-frequency electrical stimulation of brain rhythms, which 
could potentially expedite the onset of sleep and alleviate 
symptoms associated with sleep disorders, such as difficulty falling 
asleep or insomnia.
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