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Vascular cognitive impairment (VCI) encompasses a diverse range of syndromes, 
including mild cognitive impairment and vascular dementia (VaD), primarily attributed 
to cerebrovascular lesions and vascular risk factors. Its prevalence ranks second 
only to Alzheimer’s disease (AD) in neuro diseases. The advancement of medical 
imaging technology, particularly magnetic resonance imaging (MRI), has enabled 
the early detection of structural, functional, metabolic, and cerebral connectivity 
alterations in individuals with VCI. This paper examines the utility of multimodal 
MRI in evaluating structural changes in the cerebral cortex, integrity of white 
matter fiber tracts, alterations in the blood–brain barrier (BBB) and glymphatic 
system (GS) activity, alteration of neurovascular coupling function, assessment 
of brain connectivity, and assessment of metabolic changes in patients with VCI.
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Introduction

Vascular cognitive impairment (VCI) primarily arises from vascular risk factors and 
cerebrovascular diseases (van der Flier et al., 2018; Corriveau et al., 2016), encompassing mild 
cognitive impairment, vascular dementia (VaD), and varying levels of cognitive decline 
resulting from mixed pathologies such as comorbid Alzheimer’s disease (AD) (Zhang et al., 
2019). VCI is further classified into four subtypes based on stroke history and clinicopathologic/
imaging features: post-stroke vascular cognitive impairment (PSCI), subcortical ischemic 
vascular cognitive impairment (SVCI), multiple infarct vascular cognitive impairment, and 
mixed dementia with other neurodegenerative pathologies (Iadecola et al., 2019).

VCI may arise from various etiologies related to cerebrovascular diseases, such as cerebral 
small-vessel disease (CSVD), large-artery atherosclerosis, cerebral hemorrhage, cardiogenic 
embolism, and uncommon stroke etiologies (Dichgans and Leys, 2017). Currently, the etiology 
of VCI remains uncertain, with potential pathogenic mechanisms including neuronal injury 
resulting from cerebral hypoperfusion and hypoxia, destruction of myelin sheaths and loss of 
axons (Rosenberg et al., 2016; Du et al., 2019; Bálint et al., 2019), intracerebral homeostatic 
imbalance caused by dysfunction of the neurovascular unit such as disruption of the blood–
brain barrier (BBB) (Lee et al., 2017; Parfenov et al., 2019), oxidative stress-induced damage 
to neurons, and the development of an intracerebral pro-inflammatory microenvironment in 
response to neuroinflammatory cascades (Parfenov et al., 2019; Liu et al., 2018). Moreover, 
patients with VCI exhibit abnormalities in lipid metabolism (Liu et  al., 2020), glucose 
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metabolism (Ma et al., 2018), and amino acid metabolism (Hosoki 
et  al., 2023). Consequently, analyzing alterations in brain 
microstructure, function, metabolism and connectivity in VCI 
patients can inform targeted clinical interventions. Nevertheless, the 
evaluation of cognitive function changes in VCI patients in clinical 
settings predominantly relies on subjective cognitive scales, which are 
highly subjective and cannot reflect the changes in brain structure, 
function, metabolism, and connectivity in the process of cognitive 
dysfunction in VCI patients. The advancement of imaging technology 
has led to the utilization of multimodal magnetic resonance imaging 
(multi-MRI) technology in evaluating cognitive status in patients with 
VCI. Structural MRI (sMRI) sequences offer insights into brain 
morphology and structural alterations in VCI patients, while 
functional MRI (fMRI) can quantitatively analyze changes in cerebral 
perfusion, BBB permeability, cerebral hypoxic microenvironment, 
iron deposition, brain function connections, and glymphatic system 
(GS) activity, etc. in VCI patients. Metabolic MRI can provide accurate 
and quantitative assessments of glucose, lipid, and amino acid 
metabolism, as well as detect changes in tissue osmolality, 
neurotransmitters, mitochondrial function, etc. The integration of 
multimodal MRI for intelligent analysis of brain connectivity offers a 
novel approach to evaluating the brain network of patients with VCI 

in both resting and dynamic states. This review summarizes the 
current research progress in the utilization of multi-MRI techniques 
for the diagnosis and treatment of VCI (as shown in Figure 1).

Evaluation of the integrity of white 
matter fiber bundles in VCI patients

Chronic hypoperfusion and disruption of the neurovascular 
microenvironment have been shown to have detrimental 
consequences on neuronal homeostasis, resulting in neuronal death 
and chronic demyelination (Du et  al., 2019; Liesz, 2019). The 
deficiency of myelin significantly compromises the integrity of white 
matter fiber tracts, ultimately leading to impaired cognitive function 
in the brain (Iadecola, 2013). Therefore, evaluating the integrity of 
white matter fiber bundles in patients with VCI can provide valuable 
insights into the degree of cognitive impairment present, thereby 
informing clinical interventions.

The rapid development of non-invasive neuroimaging technology 
has spawned a series of novel studies exploring the developmental 
patterns of the brain. MRI signals are used to obtain information such 
as image data, index parameters and other information, which can 

FIGURE 1

Pathophysiologic alterations and multimodal MRI assessment system for VCI: individuals diagnosed with VCI may exhibit pathophysiological 
alterations, including neuronal injury, myelin destruction, axonal loss, dysfunction of the neurovascular unit, oxidative stress-induced damage to 
neuronal cells, and activation of a neuroinflammatory cascade resulting in the formation of a pro-inflammatory microenvironment within the brain. 
These changes ultimately contribute to modifications in brain structure, function, metabolism, and connectivity. The advancement of MRI imaging 
technology has enabled the utilization of multimodal MRI and associated post-processing techniques to effectively delineate alterations in brain 
structure, function, metabolism, and connectivity. Images were produced using FigDraw software (www.figdraw.com) (DOI: PPARW86662).
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then discriminate the microstructural properties of different tissues. 
Currently, imaging studies probing tissue microstructure generally 
favor diffusion tensor imaging (DTI) metrics that respond to the 
diffusion properties of water molecules in white matter. DTI is a 
non-invasive neuroimaging technique that allows for the 
quantification of water molecule diffusion tensors and detailed 
evaluation of white matter fiber bundles. In recent years, DTI has been 
extensively utilized for the assessment of white matter microstructure 
(Le Bihan et  al., 2001; Pierpaoli and Basser, 1996). Methods for 
analyzing the integrity of white matter fiber bundles using DTI 
primarily encompass region of interest (ROI)-based analysis, fiber 
bundle-based analysis, and voxel-based analysis. Fiber-based Tracer 
Spatial Statistical (TBSS) analysis is a voxel-based diffusion tensor 
imaging (DTI) data analysis technique employed to derive metrics 
such as fiber length, fiber integrity, and quantitative parameters, 
including fractional anisotropy (FA) and mean diffusivity (MD), of 
white matter fiber bundles through the mapping of brain white matter 
fibers (Smith et al., 2007). In contrast, the voxel-based analysis (VBA) 
analysis allows for statistical analysis of tensor metrics, including FA 
and MD values, computed during data preprocessing, to compare 
between-group differences at the whole-brain voxel level (McWilliam 
et al., 2023). The TBSS analysis method addresses issues related to 
alignment errors and smoothing kernel selection that are present in 
the VBA method, while also mitigating the bias in individual 
measurements and improving the accuracy of lesion localization 
compared to hand-drawn ROIs. However, the method’s skeletonization 
of fiber bundles disrupts the correspondence between diffusion 
parameters and actual anatomical structures, leading to challenges in 
result interpretation. Additionally, TBSS is limited in its ability to 
analyze specific fiber bundles. Furthermore, the TBSS method may 
not ensure precise analysis due to the potential discontinuity of the 
white matter skeleton in regions where fibers intersect (Smith et al., 
2007). To address the aforementioned challenges associated with fiber 
bundle analysis in intersection regions, the implementation of 
automatic fiber quantification (AFQ) offers substantial improvements 
in the examination of white matter fiber intersections. This is achieved 
through the processes of fiber bundle segmentation, intersection 
identification, and the separation and quantification of fiber bundles 
(Yeatman et al., 2012). Concurrently, fiber bundle quantification, also 
known as tractometry, effectively captures the local microstructural 
heterogeneity within intersection regions, thereby facilitating the 
resolution of multifiber intersections with enhanced robustness and 
precision (Rheault et al., 2020). Recent research studies (Kim et al., 
2016; Chen et al., 2018; Mascalchi et al., 2019; Liu et al., 2019b) have 
demonstrated that the TBSS analysis method offers a more objective 
quantitative assessment of white matter fibers, presenting a novel 
functional imaging evaluation approach for diagnosing and predicting 
the effectiveness of VCI. Kim et al. (2011) identified a relationship 
between cognitive and motor impairments and quantitative DTI 
metrics in individuals with SVCI utilizing the VBA technique. 
Specifically, they found that cognitive performance was linked to 
atypical DTI metrics in supratentorial regions, while motor deficits 
were associated with both supratentorial and infratentorial lesions. 
Additionally, Zhou et  al. (2011) reported that patients with VCI 
exhibited decreased FA values across the entire brain, indicating more 
severe white matter damage that correlated with cognitive dysfunction. 
This was demonstrated through histogram analysis of DTI data and 
VBA techniques. Another study (Chenet al., 2020) demonstrated that 

diffusion indices of specific fiber bundles in patients with SVCI were 
correlated with changes in cognitive function, as determined through 
AFQ analysis. The DTI-based analysis demonstrates the ability to 
quantitatively, comprehensively, noninvasively, and objectively assess 
the integrity of white matter fiber bundles, providing valuable 
guidance for clinical treatment. However, DTI also has its limitations, 
its diffusion tensor model cannot effectively measure the white matter 
properties of fibre crossing regions, while in fact most brain regions 
contain complex cross-fibre structures. To solve this problem, scholars 
have proposed methods to improve image acquisition strategies and 
higher-order models, such as diffusion kurtosis imaging (DKI) and 
neuronal orientation dispersion and density imaging (NODDI).

DKI sequence offers a more comprehensive assessment of the 
non-Gaussian diffusion behavior of water molecules compared to DTI 
sequences, enabling the quantitative evaluation of deviations between 
actual non-Gaussian diffusion displacements and ideal Gaussian 
diffusion displacements through kurtosis values. These values serve as 
indicators of the extent of restriction and heterogeneity in water 
molecule diffusion (Jensen and Helpern, 2010; Jensen et al., 2005). Liu 
et  al. (2020) observed decreased kurtosis values in the left 
hippocampus of patient with SVCI, which were inversely associated 
with cognitive performance scores. Additionally, Fan et al. (2022) 
observed a decrease in kurtosis values within ROIs across various 
brain regions in patient with PSCI. These reduced kurtosis values were 
found to be significantly associated with cognitive scores in the patient 
population. DKI, with increased sensitivity to intracellular restricted 
diffusion, enhances the ability to detect subtle microstructural changes 
in tissues. This heightened sensitivity offers a more reliable method for 
assessing the integrity of white matter fiber bundles in patients 
with VCI.

In addition, the NODDI sequence has the advantages of higher 
specificity, better resolution and multi-parameter assessment 
compared with the traditional DTI sequence, which can analyse more 
complex brain tissue microstructures (Zhang et al., 2012). Beck et al. 
(2021) evaluated the age-dependence of diffusion metrics in the adult 
life cycle by six different diffusion models, including DTI, DKI and 
NODDI, and compared the age prediction accuracies of the six 
different diffusion models, and found that the more advanced 
diffusion models (e.g., the DKI and NODDI models) were more 
sensitive to age-related microstructural changes in the brain white 
matter. Complementing and extending the contribution of traditional 
DTI models.

Evaluation of blood–brain barrier 
permeability and changes in glymphatic 
system function in individuals with 
vascular cognitive impairment

The blood–brain barrier (BBB) plays a crucial role in controlling 
the passage of molecules from the bloodstream to the central nervous 
system, thereby maintaining the appropriate supply of essential 
nutrients and oxygen, shielding the brain from potentially harmful 
neurotoxic compounds circulating in the blood, and enhancing the 
removal of waste products across endothelial cells (Abbott et al., 2010); 
dysfunction in the PVS results in inadequate fluid flow within the ISF, 
impairing the elimination of neurotoxins and promoting the 
accumulation of detrimental substances (Tarasoff-Conway et  al., 
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2015). In recent academic discourse, scholars have introduced the 
concept of the GS, a comprehensive brain perivascular fluid transport 
mechanism responsible for eliminating waste products from the ISF 
by enabling ISF-cerebrospinal fluid (CSF) exchange through 
aquaporin-4 (AQP-4) water channels located in the vascular end feet 
of astrocytes (Iliff et al., 2012; Iliff et al., 2013). Consequently, the 
functioning of the GS is essential for preserving brain fluid equilibrium 
across the lifespan. Prior research has demonstrated that reduced CBF 
and oxygen levels in individuals with VCI result in an increase in BBB 
permeability, the infiltration of plasma proteins into the perivascular 
spaces, impaired neurovascular coupling, and dysfunctional GS 
activity (Lee et al., 2017; Parfenov et al., 2019). Numerous studies have 
indicated that compromised GS function is correlated with various 
neurological conditions, such as AD (Rasmussen et al., 2018), diabetes 
(Jiang et al., 2017), traumatic brain injury (Iliff et al., 2014) and stroke 
(Gaberel et al., 2014), etc. GS dysfunction has been linked to sleep 
disorders (Xie et al., 2013) as well as to tau (Harrison et al., 2020) and 
β-amyloid (Aβ) (Eide et al., 2023) deposition, which are pathogenic 
mechanisms for cognitive impairment and dementia. In addition, the 
identification of the GS system has opened up avenues for exploring 
novel therapeutic approaches and targets, as well as for monitoring 
drug concentrations in central nervous system disorders where the 
BBB poses a challenge to effective treatment. Multi-modal MRI offers 

a noninvasive means of quantitatively assessing changes in BBB 
permeability and GS function in individuals with vascular 
cognitive impairment.

Assessment of BBB permeability changes

In the contemporary era, MRI brain perfusion weighted imaging 
(PWI) sequences have garnered significant attention as a focal point 
of research for evaluating alterations in BBB permeability. PWI can 
be categorized into two distinct types, one of which necessitates the 
use of exogenous contrast agent and encompasses dynamic 
susceptibility contrast MRI (DSC-MRI) and dynamic contrast-
enhanced MRI (DCE-MRI). The other category of sequences for PWI 
is arterial spin-labeling (ASL) based MRI without the usage of 
exogenous contrast agents, which utilizes hydrogen protons in labeled 
arterial blood as an endogenous and freely diffusible tracer (Williams 
et  al., 1992; Johnston et  al., 2015). Intravoxel incoherent motion 
imaging (IVIM) can also provide perfusion information without the 
need for exogenous contrast agents (Federau et al., 2012) (As shown 
in Figure 2).

DSC-MRI employs the BBB model to acquire semi-quantitative 
parameters such as cerebral blood flow (CBF), cerebral blood volume 

FIGURE 2

Schematic representation of the blood–brain barrier (BBB) and perivascular space (PVS): when the BBB permeability increases and the PVS widens, the 
rate of passive transport of contrast agent and water molecules from the intravascular to the extravascular space increases; at the same time, 
decreased aquaporin-4 (AQP-4) in astrocyte foot segments, which decreases the active transport of water molecules within the PVS and also makes 
the PVS wider and the GS dysfunction. These pathological changes can be characterized by the quantitative parameters of dynamic contrast-
enhanced MRI (DCE-MRI) requiring exogenous contrast agent and arterial spin-labeled MRI (ASL) and intravoxel incoherent motion MRI (IVIM) without 
exogenous contrast agent, respectively. Images were produced using FigDraw software (www.figdraw.com) (DOI: AYSRP3949a).
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(CBV), mean transit time (MTT), and time to peak (TTP) (Kouwenberg 
et al., 2022; Boxerman et al., 2020); while DCE-MRI is primarily utilized 
for the assessment of vascular permeability, with key parameters 
including semi-quantitative parameters such as area under the curve 
(AUC), TTP, maximal signal intensity, maximal slope, and rate of 
contouring, etc., and quantitative parameters such as the volume transfer 
constant (Ktrans), the rate constant (Kep), and the fractional interstitial 
volume (Ve), etc. (Thrippleton et al., 2019). DCE-MRI is commonly 
utilized in clinical research as the preferred modality for evaluating 
changes in BBB permeability (Elschot et al., 2021). Several previous 
studies (Wang et al., 2023; Kerkhofs et al., 2021a) have confirmed that 
BBB disruption may be associated with the development of VCI and 
may precede the appearance of white matter lesions by quantitative 
parameters of DCE-MRI. A longitudinal study of Kerkhofs et al. (2021b) 
found that CSVD patients with higher baseline BBB permeability had 
more severe cognitive decline, further confirming the critical role of BBB 
disruption in the development of cognitive impairment.

ASL-labeled water molecules cross the BBB and passively diffuse 
into the brain tissue through tightly connected endothelial cell layers 
and active transport proteins (e.g., AQP-4 channels on astrocytes). 
Three modules were commonly used for the water labelling, namely, 
pulsed ASL (pASL), continuous ASL (CASL) and pseudo-continuous 
ASL (pCASL) (Fan et al., 2016; Wintermark et al., 2005). ASL-related 
techniques have the advantages of being non-invasive, contrast-free, 
and reproducible. ASL quantifies BBB permeability by water molecule 
transfer rate (Kw) and cerebral perfusion by CBF. Sun et al. (2016) 
observed a diffuse decrease in CBF in the brain of the SVCI group 
compared with HC group, which is similar to the findings of Schuff 
et al. (2009). A longitudinal study of van Dinther et al. (2024) found 
that lower baseline CBF was associated with cognitive decline in 
patients with VCI, an association that was most pronounced in 
attention/psychomotor speed, and that lower temporal and frontal 
CBF at baseline was associated with more severe memory loss. 
Neumann et al. (2022) also found that CBF decreases and arterial 
transit time (ATT) increases as cognitive severity increases in patients 
with CSVD. However, whether the correlation between CBF and 
cognitive level in patients with VCI, derived from longitudinal 
follow-up studies and clinical prediction modeling, is sufficient to 
indicate a causal relationship remains to be further investigated. In 
addition, the interference of factors such as cardiovascular disease that 
may accompany the increase in age makes the choice of post-labeling 
delay time (PLD) to have some impact on the results of the study. 
Thus, the commonly used PLD time of 1,800 ms may underestimate 
CBF in patients with cerebrovascular disease, and the ability to assess 
the correlation between CBF and the degree of cognitive impairment 
may be less accurate. Therefore, CBF alterations in VCI patients can 
be assessed using ASL sequences with multiple PLD times. The ASL 
sequence uses water molecules as the endogenous contrast agent, 
which has a much lower molecular weight than the contrast agent of 
the DCE-MRI sequence and can diffuse more readily into the BBB 
(Shao et al., 2020). Therefore, theoretically, altered water transport 
across the BBB should be  detected earlier than contrast leakage. 
Finally, IVIM sequences can obtain perfusion coefficient (D*) value 
and perfusion fraction (f) value to reflect the microcirculatory 
perfusion and vascular permeability within the capillaries under low 
b-value conditions, which can also be used to assess the alteration of 
BBB permeability in VCI patients (Le Bihan et al., 1988). It can be seen 
that both types of PWI imaging sequences above can obtain 

information reflecting perfusion and BBB permeability, which 
provides an effective tool for studying cerebral underperfusion, 
cerebrovascular reactivity and BBB permeability in patients with VCI.

Evaluation of alterations in the activity of 
the glymphatic system

With the development of MRI techniques, the assessment of 
changes in GS activity can be objectively presented by quantitative 
MRI techniques, including MRI techniques with or without 
requirement of tracer injection. Intrathecal tracer injection is generally 
used to assess GS activity through animal models, which can reflect 
the GS clearance function over a long period of time, and is not 
affected by the BBB and blood circulation, but this method is invasive 
and prone to tracer deposition in the brain (Provenzano et al., 2019); 
intraventricular tracer injection is susceptible to the BBB and blood 
circulation, but is safer than intrathecal tracer injection and more 
commonly used in human beings (Mortensen et al., 2019; Kaur et al., 
2020). MRI methods requiring tracer injection are based on the 
distribution of tracer in tissues and tissue characteristics to establish 
a pharmacokinetic model to simulate the process of MRI signal 
changes to achieve the assessment of GS activity, however, they are 
susceptible to the influence of magnetic field strength, magnetic field 
uniformity, and scanning parameters. Tracer-less methods, such as the 
dispersion correlation sequences, can be  used for non-invasive 
assessment of GS activity due to their ability to track the movement of 
water molecules (Voorter et al., 2024). Besides, IVIM sequences can 
indirectly reflect fluid mobility within the PVS by changes in D* and 
f values under low b-value conditions; unfortunately, this method is 
susceptible to the influence of intercellular ISF (van der Thiel et al., 
2021; Wong et al., 2020). Diffusion tensor imaging analysis along the 
perivascular space (DTI-ALPS) assesses the movement of water 
molecules in the direction of the PVS as measured by the diffusivity 
of water molecules measured by DTI sequences (Taoka et al., 2017). 
The DTI-ALPS analytical method can be used to express the ability of 
water diffusion along the direction of the PVS by means of the ALPS 
index, reflecting the GS activity of an individual patient: smaller ALPS 
index reflect, to some extent, GS impairment. However, this method 
is only applicable to areas adjacent to the lateral ventricles. Recently, 
several studies (Ke et al., 2022; Liang et al., 2023; Tian et al., 2023) have 
found that ALPS index were significantly lower and significantly 
associated with overall cognitive scores in patients with CSVD by the 
DTI-ALPS method; furthermore, a DTI-ALPS study (Song et  al., 
2022) in patients with SVCI showed that structural network efficiency 
mediated the link between impaired GS function and cognitive 
dysfunction in patients; Xu et al. (2022) analysis found that patients 
with cerebral amyloid angiopathy had reduced ALPS index and were 
associated with lower cognitive scores compared with HC group. In 
conclusion, GS dysfunction may be a potential pathologic mechanism 
for vascular cognitive dysfunction, and the ALPS index is expected to 
be an emerging MRI marker for it. However, the DTI-ALPS method 
needs to be aligned with magnetically sensitive weighted imaging 
(SWI). Zhang et  al. (2021) performed a modification to obtain a 
modified ALPS (mALPS) index to reflect GS activity without SWI 
alignment. These DTI-based analysis methods have the advantages of 
being noninvasive, tracer-free, and requiring only one scan, but they 
can only reflect GS transient activity. There are also studies to quantify 
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GS activity by ASL sequence (Ohene et al., 2019) and phase contrast 
method (Ichikawa et al., 2018). It is believed that with the continuous 
development of MRI imaging technology, more reliable methods to 
quantify GS activity can be provided.

MRI-visible perivascular spaces (PVSs) (Bouvy et al., 2014), free 
water (FW) fraction (Kamagata et al., 2022), and choroid plexus (ChP) 
volume (Zhang et  al., 2021) had also been used to assess the GS 
function. The PVS is a fluid-filled cavity surrounding small blood 
vessels in the brain that aids in the exchange of ISF and CSF for waste 
removal (Brown et al., 2018). Enlarged perivascular spaces (EPVS) are 
characterized by round or oval smooth-edged structures larger than 
2 mm in the perforating artery supply area, exhibiting equal signal 
intensity to CSF on MRI (Wardlaw et al., 2020). The early detection of 
PVS morphology is contingent upon the spatial resolution of imaging 
scans, with ultrahigh-field MRI offering the potential for higher 
resolution and the ability to detect smaller PVS at an early stage 
(Barisano et al., 2021). In the clinical assessment of the number of 
PVS, visual rating scales are usually chosen for this purpose (Rowley, 
2013; Laveskog et al., 2018), and the most widely used one is the 
STRIVE criterion developed by Wardlaw et  al. (2013): the 
quantification of PVS is conducted in the basal ganglia and the 
centrum semiovale, with classification into mild, moderate, and severe 
categories based on PVS count. However, the STRIVE criterion is 
subject to several limitations: (1) challenges in distinguishing between 
PVS and other cerebrovascular disease markers like lacunar infarcts 
or white matter lesions; (2) the time-consuming and subjective nature 
of manual counting, which increases the risk of detection bias; (3) the 
evaluation of PVS necessitates the utilization of high-resolution MRI 
images to ensure accuracy, limiting the feasibility of obtaining 
additional clinically relevant metrics, such as PVS volume; (4) the 
visual scale method is not suitable for longitudinal studies. In light of 
the aforementioned challenges, an increasing number of scholarly 
investigations (Dubost et al., 2019; Moses et al., 2023; Barisano et al., 
2022) have been dedicated to the automated quantification of PVS, 
utilizing techniques such as intensity-based thresholding (Schwartz 
et al., 2019; Boespflug et al., 2018; Niazi et al., 2018), vascular filtering-
based (Ballerini et al., 2018; Sepehrband et al., 2019), and machine 
learning (Dubost et al., 2019; Lian et al., 2018; Boutinaud et al., 2021). 
These methods are characterized by their speed, convenience, 
objectivity, and reproducibility. EPVS, a neuroimaging biomarker 
observed in individuals with CSVD, is closely linked to cognitive 
dysfunction. Zdanovskis et al. (2022) found that individuals in the 
SVCI group exhibited greater expansion of PVS in the centrum 
semiovale, basal ganglia, and midbrain regions compared to the HC 
group using visual rating scales. Future research utilizing automated 
quantification methods is anticipated to further investigate and assess 
early alterations in PVS number and volume in patients with VCI. ChP 
constitutes a critical component of the BBB (Damkier et al., 2013) with 
primary function is the production of cerebrospinal fluid; however, it 
also plays a pivotal role in mediating the brain’s clearance pathway, 
thereby contributing to the maintenance of cerebral homeostasis (Rees 
et  al., 2016) and the functioning of the GS (Jessen et  al., 2015). 
Meanwhile, recently, the FW diffusion MRI model has gained 
particular attention in CSVD (Duering et al., 2018; Li et al., 2024) as 
well as other brain diseases (Kamagata et al., 2022; Nägele et al., 2024). 
This model can be  divided into FW compartment and tissue 
compartment, the FW compartment represents water molecules that 
are not restricted or directed. It is modeled by a tensor that is isotropic 
and has a fixed diffusion coefficient of water at 37°C. The tissue 

compartment represents all remaining water molecules, i.e., water 
molecules within or in close proximity to cellular structures. This 
includes intracellular water as well as extracellular water affected by 
physical barriers, such as axon membranes and myelin. Hence, the 
tissue compartment reflects white matte fiber organization (Duering 
et al., 2018).

Analysis of altered neurovascular 
coupling (NVC) function

The neurovascular unit (NVU), which consists of neurons, 
astrocytes, vascular smooth muscle cells (SMCs), endothelial cells (ECs), 
and pericytes (Abbott et al., 2006; Tam and Watts, 2010), plays a crucial 
role in the coupling of vascular and neuronal activity and is of increasing 
interest in the pathophysiology of VCI. Disruption of any neurovascular 
coupling (NVC) function component affects CBF regulation and 
neuronal function (Kisler et al., 2017). Thus, intact NVC function is 
critical and even minor damage can affect brain function and lead to 
cognitive decline (Toth et al., 2017). Recently, the analysis of NVC based 
on ASL and resting-state functional MRI (rs-fMRI) sequences has 
provided new perspectives for obtaining the functional status of 
NVC. Ruan et al. (2023) analyzed the associations between white matter 
lesion (WML) burden, cognitive function and NVC coefficients using 
mediation methods among the SVCI, PVCI, and HC groups, and found 
that compared with HC, NVC was significantly lower in the SVCI and 
PSCI groups at both whole-brain and brain-region levels, and NVC 
coefficients were also found to be lower in higher-order brain systems 
responsible for cognitive control and emotion regulation. Mediation 
analysis suggest that NVC mediates the relationship between WML 
burden and cognitive impairment. Liu et al. (2021) combined regional 
homogeneity (ReHo) values obtained by rs-fMRI post-processing with 
CBF from ASL sequence, using global ReHo-CBF correlation coefficients 
and ReHo/CBF ratios to detect an intrinsic link between neuronal 
activity and vascular responses in patients with SVCI, and found that 
patients in the SVCI group showed significantly lower overall ReHo-CBF 
coupling, as well as a markedly abnormal ReHo/CBF ratio mainly 
located in cognitively relevant brain regions and the ReHo/CBF ratio in 
the left precentral gyrus was positively correlated with the MMSE score. 
These findings suggest that patients with VCI exhibit abnormal 
neurovascular coupling early in the disease and during disease 
progression, which may be  related to disease severity and 
cognitive impairment.

Assessment of brain connectivity

Connectivity analysis based on 
resting-state functional MRI of the brain

Rs-fMRI sequence is used to detect spontaneous brain activity in 
the resting state to explore brain function, by detecting spontaneous 
neuronal activity in the baseline state of the subject’s brain and 
determining the network connectivity of the relevant brain regions 
(Raimondo et  al., 2021). Currently, the application of rs-fMRI 
sequence in evaluating brain connectivity in VCI patients is mainly 
divided into two categories: The first category is the indicators 
reflecting brain connectivity in the resting state: functional 
connectivity (FC), functional network connectivity (FNC) and graph 
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theory analysis; and the second category is the connectivity analysis 
methods reflecting the dynamic change process of the brain: dynamic 
functional connectivity (dFC), dynamic functional network 
connectivity (dFNC), graph theory analysis, gradient analysis of brain 
networks, Granger causality analysis (GCA), multilayered brain 
networks, and other analysis methods.

Static brain functional connectivity and 
functional network connectivity analysis

Resting-state brain networks are generally analyzed by FC, FNC 
and graph theory analysis, in which FC and FNC are obtained by 
calculating the degree of correlation between two time series, positive 
correlation represents the existence of positive connections and vice 
versa, whereas the graph theory approach is based on FC, FNC for 
topological analysis.

The study of FC can be categorized into the voxel level and the 
ROI level. All of these FC analysis methods are based on linear 
models, while some studies have found that BOLD signals have 
nonlinear characteristics, therefore, FC analysis methods based on 
nonlinear models to obtain parameters such as maximum 
information coefficient (MIC), extended maximum information 
coefficient (EMIC), and so on, may be more suitable for the use of 
rs-fMRI to capture the complex interactions between brain regions. 
Chen et al. (2019) found that patients with SVCI had reduced FC 
between default mode network (DMN)-related brain regions and 
reduced negative connectivity with other network brain regions by 
the seed-based correlation analysis (SCA) method, at the same time, 
patients with SVCI were found to have impaired memory function 
associated with increased FC between DMN-related brain regions 
in the medial frontal lobe, whereas the patients’ impaired 
information processing was associated with reduced FC between 
DMN-related brain regions in the thalamus. Recently, other studies 
(Zuo et al., 2019; Sun et al., 2011) have found different trends of FC 
changes in different brain regions in patients with VCI, possibly due 
to subcortical ischemia disrupting directly and indirectly connected 
fiber bundles, which triggers weakened connectivity in some brain 
regions, whereas enhanced connectivity in some brain regions may 
be caused by compensatory compensation for cognitive impairment 
and neuroplasticity mechanisms in functional brain regions.

FNC analysis employs a strategy that combines model-driven and 
data-driven approaches (Jafri et al., 2008). First, grouped independent 
component analysis (ICA) is performed on rs-fMRI data from multiple 
subjects to derive subject-specific functional networks called resting-
state networks (RSNs), commonly known as DMN, central executive 
network (CEN), salience network (SN), frontoparietal network (FPN), 
sensorimotor network (SMN), visual network (VN) and auditory 
network (AN) etc. (Mueller et  al., 2014). Finally, the connectivity 
between any RSNs can then be obtained by calculating the connectivity 
metric, resulting in a connectivity matrix that includes the strength of 
connectivity between all networks. Wei et al. (2024) found different 
trends of changes in different RSNs interconnection models were found, 
along with different correlations between different RSNs interconnection 
models and MoCA scores, suggesting that there is a correlation between 
FNC changes and cognitive deficits in SVCI patients. Chen H. et al. 
(2023) also found increased FNC change between the VN and cerebellar 
domains in patients with SVCI, however, there was a reduction in FNC 
change between the cognitive control network and the cerebellar 

domains and a significant reduction in FNC within the sensorimotor 
domain. These studies also illustrate that the FNC approach can provide 
a more detailed delineation of brain regions reflecting the temporal 
connectivity between different brain regions by using a higher model 
order. In contrast to ROI-based approaches, FNC analysis employs a 
data-driven approach to generate functionally co-activated brain 
regions, whereas brain regions in ROI-based approaches are typically 
determined through a priori knowledge (Du et al., 2018).

In functional brain network analysis, relevant attributes such as 
local efficiency (Eloc), global efficiency (Eg), clustering coefficient 
(Cp), standardized clustering coefficients (γ), small-world attributes, 
characteristic path length (Lp), etc., can be  obtained from graph 
theory analysis to evaluate the topological properties of brain 
networks (Farahani et  al., 2019). Graph theory analysis helps to 
describe and quantify the topology of the brain, and can identify key 
nodes that are important and functional in the brain network. Several 
studies (Sang et al., 2018; Wang et al., 2019) have found that with the 
increase of cognitive impairment in VCI patients, the pattern of brain 
functional connectivity network is disrupted and the graph theory 
related properties are changed by rs-fMRI graph theory analysis 
method, which also indicates that the graph theory based brain 
functional network analysis method can provide a potential imaging 
biomarker for the early detection of cognitive impairments in VCI 
patients, however, most of the studies are descriptive and focus on 
pairwise interactions of binary compositional graphs, as the 
technology develops, the generative model, dynamic network, and 
algebraic topology will be the several promising directions for the 
future development.

Dynamic functional connectivity and 
functional network connectivity analysis

In recent years, more scholars believe that the brain’s information 
transfer is time-dynamic and condition-dependent (Chang and Glover, 
2010), so purely relying on static analysis methods can not accurately 
describe the dynamic changes in the brain, and dynamic analysis 
methods can provide new perspectives on the dynamic functional 
activities of the brain: including dFC, dFNC, and the dynamic graph 
theory analysis, in addition to the analysis of the gradient analysis of the 
brain network, GCA, multi-layer brain network and other 
analytical methods.

dFC and dFNC are based on FC, ICA (Kiviniemi et al., 2011) and 
independent vector analysis (IVA) (Calhoun et al., 2014), using sliding 
time window (Madhyastha and Grabowski, 2014; Maes et al., 2022), 
joint time-frequency analysis (Yaesoubi et  al., 2015) and other 
methods to transform the RSN into dynamic brain network, and then 
through K-means clustering and Gaussian mixture model clustering 
analysis to obtain multiple states, and finally to calculate the fractional 
occupancy of each state, the mean dwell time, the lifetime switching 
rate, and the transition probability matrix to realize the dynamic 
analysis of brain function. Currently, dFC analysis methods are mainly 
divided into two paths, one is to capture synchronous changes in 
paired regions, such as sliding window analysis and time-frequency 
analysis; the other is to identify synchronous change patterns at the 
multivariate level, such as co-activation (CAP), hidden Markov model 
(HMM), and multilayer brain network. Recently, fractional occupancy 
and mean lifetime of brain states in patients with SVCI have been 
found to be related to cognitive performance, as evidenced by higher 
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fractional occupancy and longer mean lifetime in weakly-connected 
states and greater difficulty in switching from weakly-connected to 
more strongly-connected states (Sang et al., 2023). Xu et al. (2021) 
used dFC analysis method to categorize the brain states into seven 
different states, and observed that cognitive deficits in patients of state 
3 with SVCI predominantly reduced the mean dwell time, with a 
strong overall positive correlation. Yin et  al. (2022) analyzed the 
relationship between the temporal characteristics of dFC and cognitive 
impairment in patients with SVCI, and they classified the dFC status 
into sparse connectivity, strong connectivity, and intermediate 
patterns by K-means clustering analysis, and found that SVCI patients 
showed a higher fractional occupancy and longer mean dwell time in 
sparse connectivity, and a lower fractional occupancy and shorter 
dwell time in strong connectivity, which was similar to the finding of 
Chen F. et al. (2023). Meanwhile, this finding suggests that altered 
temporal properties of dFC in patients with SVCI may be a sensitive 
neuroimaging biomarker for early disease recognition. In addition to 
the above construction of dFC by the sliding window method, 
Schlemm et al. (2022) constructed dFC based on the co-activation 
pattern method, obtained DMN activation state, DMN inhibition 
state, VN activation state, VN inhibition state, and FPN state of the 
patients with SVCI by clustering analysis, and found that cognitive 
impairments were associated with the convergence of the mean dwell 
time of each state and the decrease of gradient between each pattern. 
Consistent sets of brain states and spatial alterations in functional 
connectivity that correlate with different states of consciousness or 
awareness can be identified by dFC, which provides additional options 
for analyzing brain connectivity in patients with VCI.

By integrating the aforementioned methods for analyzing dFC and 
dFNC, it has been observed that while the introduction of windows 
facilitates a dynamic assessment of brain connectivity, the selection of 
window length significantly influences the outcomes. Specifically, shorter 
window lengths tend to stabilize the relationship between the time series 
of two nodes within the window, thereby potentially increasing the 
calculated correlation. This phenomenon explains why dFC often yields 
more significant results, as static FC is analogous to using a window 
length equivalent to the entire scanning duration. However, it is 
important to note that correlations derived from excessively short 
window lengths may not accurately reflect genuine brain activity 
(Leonardi and Van De Ville, 2015). Furthermore, the optimal window 
length for assessing dFC between various nodes may vary. Zhang et al. 
(2018) proposed that a shorter window length is appropriate for 
analyzing intra-network connectivity, while a longer window length is 
preferable for examining inter-network connectivity. This distinction 
may arise from the influence of window length on the frequency of 
functional connectivity that can be detected. Specifically, a shorter 
window length is more conducive to observing connectivity associated 
with high-frequency signals, whereas a longer window length is more 
suitable for detecting connectivity related to low-frequency signals. 
Consequently, it is crucial to develop dynamic brain function analysis 
methods that mitigate the influence of window length. The CAP model 
addresses this by assessing the activation patterns of the entire brain at 
each sampling point, thereby describing the brain’s dynamic function in 
terms of instantaneous network states, which reflect the brain’s dynamic 
function at the smallest time scale (Liu and Duyn, 2013; Liu et al., 2018); 
the HMM model effectively solves the problem of the time window 
configuration by characterizing the brain activity as a sequence of 
different states deduced from the resting data problem (Zhang G. et al., 

2020; Vidaurre et al., 2017); and the multilayer brain network analysis 
method can estimate a neighbourhood matrix for each time window, 
interconnecting all windows into a multilayer network, with each time 
window represented as a layer. This method constructs a hyper-adjacency 
matrix that captures both intra- and inter-layer connections, thereby 
offering a comprehensive perspective on dynamic interactions (Pedersen 
et al., 2018).

Properties analysis of DTI brain networks 
based on graph theory

Graph theory-based DTI brain network property analysis is based 
on brain partition mapping for deterministic or probabilistic fiber 
tracking between multiple brain regions two by two, using specific brain 
regions as nodes and structural connectivity indicators (fiber bundle bar 
count, probability, average FA value, etc.) between nodes as edges, which 
can construct structural brain networks and calculate small-world 
properties, Rich-club coefficients, degree centrality, etc., and utilize the 
graph theory to calculate the corresponding network properties to 
analyze brain structural connectivity (Rubinov and Sporns, 2010; 
Sporns, 2018). Kim et al. (2015) assessed the cognitive status of SVCI 
patients based on DTI graph theory analysis, and observed that an 
increase in white matter high-density volume or number of lumens was 
significantly associated with a decrease in network integration and an 
increase in network separation, and that changes in these network 
attributes were associated with poor performance of attention, language, 
visuospatial, memory, and frontal executive function performance was 
associated with poor performance. Tuladhar et al. (2017) also observed 
reduced structural network density, network strength, and efficiency in 
SVCI patients, and that the reduced connectivity was mainly manifested 
in the connectivity between rich-club nodes, with lower rich-club 
connectivity associated with lower psychomotor speed and executive 
function scores. Graph theory-based analysis of the structural network 
properties of the DTI brain can be used as a complement to the graph 
theory analysis of FC, and has some clinical applications in the 
assessment of patients with VCI.

Assessment of metabolic changes

Traditional proton-based magnetic resonance spectroscopy (1H-
MRS) is capable of identifying metabolites such as choline (Cho), 
N-acetylaspartate (NAA), and creatine (Cr) within brain tissues 
in vivo, and has been extensively utilized for evaluating metabolic 
changes in the brains of individuals with VCI ((Barry Erhardt et al., 
2019; Chen et al., 2016; Ross et al., 2005; Lin et al., 2021). Nonetheless, 
the complexity of the background, overlapping spectra, and the 
presence of pressurized water/lipids inherent to the 1H-MRS technique 
restrict its utility as a molecular imaging tool, hindering the ability to 
capture dynamic molecular metabolic processes. The emergence of 
multinuclear MRI, facilitated by advancements in MRS technology, 
enables the acquisition of diverse metabolite information within the 
human body, thereby augmenting the precision of detecting both 
physiological and pathological processes. This technology maintains 
spatial resolution while offering the unique capability of noninvasive, 
in vivo quantitative analysis of dynamic molecular metabolic processes, 
including the accurate quantification of energy metabolic pathways 
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such as anaerobic glycolysis and the tricarboxylic acid cycle, and at the 
same time, can detect tissue osmotic pressure, neurotransmitters and 
mitochondrial function (Sun et al., 2023). Multinuclear MRI offers a 
distinct advantage in visualizing real-time dynamic metabolic 
processes across various pathological conditions. This technology is 
anticipated to offer novel opportunities for early disease detection, 
treatment efficacy evaluation, therapeutic decision-making, and drug 
development. Furthermore, it has the potential to facilitate the 
exploration of novel pathogenic mechanisms and is poised to become 
a valuable tool for advancing molecular biology, biochemistry, and 
metabolism research in human subjects.

Amide proton transfer weighted imaging (APTw) is an MRI 
technique utilizing chemical exchange saturation transfer (CEST) to 
assess protein properties at the cellular molecular level within tissues. 
The APTw sequence offers non-invasive, safe, and quantitative 
analysis, with changes in APT signal primarily influenced by the 
exchange rate between amide protons and water molecules. This 
exchange rate is closely linked to the concentration of proteins and 
peptides in the body, as well as the pH value (Milot, 2022; Zhou and 
Van, 2006).; APTw imaging has been extensively utilized in various 
areas of neuroscience research, including brain development (Zhang 
Z. et al., 2020; Zhang et al., 2016), cerebral vascular diseases (Sun 
et al., 2011; Yu et al., 2019), brain tumors (Joo et al., 2019; Guo et al., 
2022), and neurodegenerative diseases (Chen X. et al., 2023; Guo 
et al., 2021), etc. Additionally, investigations have been conducted to 
determine if APT values could serve as a potential indicator of 
VCI. Mu et  al. (2023) has demonstrated statistically significant 
differences in APT values of specific brain regions, such as the frontal 
white matter, hippocampus, amygdala, and thalamus, suggesting 
their potential utility as markers for VCI.

Sodium-23 MRS (23Na-MRS) is the sole noninvasive method 
capable of providing precise spatial quantification of sodium 
concentration in living tissue through imaging technology. This 
technique provides direct biochemical insights into cellular integrity 
and tissue viability, with minimal observable macroscopic alterations. 
Consequently, it can be utilized to monitor temporal changes in tissue 
viability during treatment and potentially serve as a biomarker for 
early preventative diagnosis in clinical settings (Madelin et al., 2014; 
Chen et al., 2022). 23Na-MRS has been used in neurological diseases 
such as AD, Huntington’s disease (HD) and multiple sclerosis (MS) 
(Reetz et al., 2012; Mellon et al., 2009). These investigations highlight 
the promise of 23Na-MRS for the timely detection and tracking of 
disease advancement and treatment efficacy in various neurological 
disorders, as indicated by the observation of heightened tissue 
sodium concentration (TSC) in the brain. Phosphorus-31 MRS (31P-
MRS) enables noninvasive monitoring of cell membrane proliferation, 
mitochondrial processes involved in energy metabolism (Rzanny 
et  al., 2003), tissue acid–base balance, tissue magnesium ion 
concentration, and specific nucleotides (Larkin et al., 2021). Zuo et al. 
(2015) identified variances in phosphocreatine (PCr) and phosphoric 
acid (Pi) levels through 31P-MRS assessments between individuals 
diagnosed with depression and a HC group, while Dudley et  al. 
(2015) noted a notable decrease in PCr and adenosine triphosphate 
(ATP) levels in the gray matter of individuals with bipolar disorder 
(BD) using 31P-MRS. These findings underscore the utility of 31P-MRS 
in measuring mitochondrial metabolic irregularities. Meanwhile, 31P-
MRS has shown promise as a valuable tool for assessing treatment 
response by serving as a biomarker for phospholipid metabolism. 

Specifically, the phospholipid monolipid (PME)/phospholipid 
diolipid (PDE) ratio in individuals with AD demonstrated an increase 
following a 4-week course of Souvenaid treatment (Rijpma et al., 
2017). On the other hand, 31P-MRS has been utilized in research 
examining pH fluctuations in individuals post-traumatic brain injury 
(TBI) (Stovell et  al., 2020). Hyperpolarized-13C-MRS enables the 
in  vivo, non-invasive quantitative evaluation of key biochemical 
processes such as the tricarboxylic acid cycle and glucose metabolism 
in the human body (Mandal et  al., 2022). Research utilizing 
hyperpolarized-13C-MRS has shown increased pyruvate-to-lactate 
conversion in longitudinal studies of MS mouse models (Guglielmetti 
et al., 2017b) and in acute and subacute phases of TBI mouse models 
(Guglielmetti et al., 2017a; DeVience et al., 2021). These findings offer 
valuable insights for assessing the effectiveness of anti-inflammatory 
treatments and managing patient care. The investigation into the 
utility of multinuclear MRI for evaluating changes in  localized 
metabolic substances in the brains of patients with VCI is currently 
in its early stages. It is anticipated that advancements in magnetic 
resonance hardware systems, fast sequence methods, and accelerated 
algorithms such as compressed sensing and deep learning will 
contribute to the maturation of multi-nuclear MRI/MRS as a valuable 
tool for assessing metabolic alterations in the entire brain or specific 
regions of interest in patients with VCI, in the meantime, further 
research is needed to investigate the potential benefits of 
incorporating joint analysis with other functional MRI sequences and 
brain network analysis.

Summary and outlook

VCI, as a group of diseases mainly caused by cerebrovascular 
diseases, undergoes a progression from mVCI to VaD throughout the 
course of the disease, with structural, functional, metabolic, and 
cerebral connectivity changes occurring in different brain regions 
throughout the process, and with the development of neuroimaging, 
the comprehensive assessment and understanding of these changes 
has been greatly facilitated. However, we have found that the variation 
in results across studies may be related to a variety of factors such as 
patient selection and sample size, MRI field strength, scanning 
protocols or reproducibility on different scanning devices, and 
feasibility of implementation, in addition to the fact that patients may 
be at different stages of the disease, and a standardised protocol is 
therefore needed to increase the reproducibility of relevant studies, 
as in the case of the HARNESS protocol which standardises the 
effects of vascular factors on dementia and neurodegeneration effects 
on brain imaging protocols, contributing to increased study 
reproducibility. With the development of ultra-high field strength 
MRI equipment, which relies on its high resolution, good contrast 
between tissues and better signal-to-noise ratio to facilitate the 
detection of subtle lesions as well as finer blood vessels, it is becoming 
a new tool for CSVD studies. However, these new techniques still 
need to be validated to define their operational specifications before 
they can be widely disseminated. In addition, the application and 
development of multimodal MRI, neural networks, machine learning, 
and deep learning in image processing can further increase diagnostic 
accuracy, enabling the extraction of more imaging information from 
data that would otherwise not be  easily accessible to provide 
additional support for diagnosis.
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In addition, most of the neuroimaging studies on VCI are cross-
sectional studies, and there is a lack of longitudinal studies to validate 
the results, so the longitudinal development and changes in the 
structure, function, metabolism, and connectivity of patients with VCI 
should be explored more deeply in future studies. Finally, with the 
exploratory development of transcriptional connectome association 
studies, it provides an important opportunity to bridge the gap 
between microscopic transcriptome features and macroscopic brain 
networks. However, the underlying molecular mechanisms of altered 
brain function associated with VCI patients remain unclear and await 
further exploration in future studies.
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