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Objectives: Better understanding of ictogenesis may allow clinical interventions

and potentially reduce the impact of epilepsy on patients’ quality of life. This

study aims to characterize the EEG changes during the preictal period.

Methods: This work retrospectively analyzed long-term scalp EEG recordings

collected at two neurology centers to characterize preictal activity (start point

and duration) for each seizure using EEG features. A channel selection algorithm

was implemented and localized preictal activity.

Results: Out of 19 patients, 17 (89.5%) had a distinct preictal pattern, starting

83 ± 60 min before seizure onset and lasting 56 ± 47 min. Spectral Entropy

and Hjorth mobility were consistently two out of the three features best

distinguished preictal from interictal activity. The third distinguishing feature was

either theta power, delta power, beta power, or gamma power. Preictal activity

before two seizures in the same patient shared common electrodes and features

but differed in duration and timing.

Conclusion: Preictal activity, defined as prolonged intervals of uncommon EEG

activity, varies in time, localization and signal patterns between individuals and

varies in timing and duration between seizures of the same individual.
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1 Introduction

Epilepsy is a neurological disease characterized by pathological synchronized neuronal
activity known as seizures (Lowenstein, 2018). It is estimated that 50 million people
worldwide suffer from epilepsy (WHO, 2019), with 30% of whom being resistant to
medications (Kalilani et al., 2018). Given the abrupt and unpredictable onset of seizures,
epilepsy has a range of cognitive, psychological and social ramifications, which significantly
impact quality of life (Mormann et al., 2006). Patients with epilepsy are also at increased
risk of falls which can lead to severe injuries (Kalilani et al., 2018). A comprehensive
understanding of the pathophysiological mechanisms underlying seizures is crucial
for identification of the preictal phase, i.e., the period before seizure onset. Better
characterization of preictal activity will enable both prediction of imminent seizures

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1526963
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1526963&domain=pdf&date_stamp=2025-05-02
https://doi.org/10.3389/fnins.2025.1526963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1526963/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1526963 May 2, 2025 Time: 12:16 # 2

Segal et al. 10.3389/fnins.2025.1526963

and timely clinical intervention, such as fast-acting anticonvulsant
drugs or vagal nerve stimulation (Mormann et al., 2006), thereby
reducing the impact of epilepsy on patients’ quality of life.

Over the years, various studies have attempted to identify
preictal patterns in electroencephalography (EEG) signals. Early
works used linear measures in the time and frequency domains
of intracranial EEG (iEEG) signals to identify patterns in the
preictal period several seconds before seizures onset (Viglione and
Walsh, 1975). Later works delineated numerous measures for the
preictal state, such as the entropy of the signal, which quantifies
the complexity and irregularity of the signal (Rogowski et al., 1981;
Martinerie et al., 1998). However, the quality of these measures has
been questioned (Mormann et al., 2006), due to poor performance
on larger databases. Additionally, early studies were limited to the
preictal period without considering the interictal period, which
is the seizure-free interval outside the presumed preictal period
(Mormann et al., 2006), resulting in low specificity. Importantly,
many studies were conducted on iEEG data, which require an
invasive procedure which can be both hazardous to patients and
challenging for clinical trials. This underscores the necessity for
studies based on long-term scalp EEG recordings that include
interictal periods for control.

More recent work used iEEG recordings and short (∼1 h long)
scalp EEG recordings to develop and train sophisticated models to
distinguish between preictal and interictal periods (Truong et al.,
2018; Tsiouris et al., 2018; Abdelhameed and Bayoumi, 2019; Duy
Truong et al., 2019; Rasheed et al., 2020; Wang et al., 2020).
Despite advances in model performance, few systems were tested
in clinical trials. This can be explained by the need for physiological
understanding of seizure initiation. In their review of advances in
seizure prediction tools, Kuhlmann et al. (2018) emphasized the
importance of a neurophysiological understanding of the preictal
state and the need for long-term recordings for accurate prediction.

Another explanation for the failure of prediction models is
the prior assumption that preictal period onset and duration are
identical for all patients. Therefore, a personalized approach might
be more suitable.

The present study proposes a novel means of personalized
characterization of the preictal period, and uses it to inspect the
timing, duration, localization and EEG patterns of the preictal
period. Long-term scalp EEG recordings from two neurology
centers were retrospectively analyzed to characterize the preictal
period in each record using features common in the field of
neuroscience. Simple machine learning models were also used to
identify the features that most contribute to personalized preictal
characterization and generate a method for feature importance. In
addition, data regarding the electrodes in which preictal activity was
most prominent in each patient were leveraged to develop a channel
selection method.

2 Materials and methods

2.1 Data

The initial database included 120 scalp EEG recordings from
47 patients acquired at the Department of Neurology at Rambam
Health Care Campus in Israel (ethics number: 0833-20-RMB),

or the Neurology Department of Siena University Hospital in
Italy (Detti et al., 2020; Detti Paolo, 2020). The recordings from
the latter site were accessed from the Siena Scalp EEG Database.
Seizure onset zone and time onset were determined by a neurologist
specializing in epilepsy after a careful review of the clinical and
electrophysiological data of each patient for both Rambam and
Siena datasets.

Some patients had a single seizure recorded, while others had
multiple seizures recorded. To avoid interference from post-ictal
effects and focus on the transition from stable preictal state to
seizure onset (Liang et al., 2020; Kudlacek et al., 2021; Sumsky
and Greenfield, 2022; Bower, 2024; Pedersen et al., 2024), in case
a cluster of seizures was recorded, only the first seizure in the
cluster was analyzed. However, seizures recorded at least 12 h apart
from each other were not considered from the same cluster. And
therefore, were analyzed as separate seizures.

Recordings with more than 10% of their time had values
exceeding the transducer’s maximum value were classified as noisy
and removed from the dataset. Consequently, five recordings were
excluded due to low signal quality and high noise levels. The final
analysis was performed on 25 records from 21 patients (Figure 1),
representing 644 h of EEG and 54 seizures. Gender, age and epilepsy
type of each patient in the inclusion criteria and information
regarding intracranial monitoring or resection surgery are shown
in Table 1.

The electrodes were arranged according to the international
10–20 system. Signal sampling frequency was 256 Hz for the
Rambam database and 512 Hz for the Siena database.

Each recorded seizure was annotated for start time and end
time by neurologists specializing in epilepsy.

2.2 Verification by a specialist physician

All recordings from the Rambam dataset in which the preictal
interval was detected by the algorithm described in the following
section were manually reviewed by a neurologist specializing in
epilepsy. Both EEG signals and video recording were examined to
confirm that preictal activity detected was not explained by artifacts
or any other clinical activity such as sleeping, eating, talking, etc.

2.3 Preprocessing

The raw EEG signal contained constant trend and high-
frequency noise due to patient movement and acquisition noise.
Therefore, frequencies below 0.5 Hz and above 75 Hz were filtered
with a digital finite impulse response bandpass filter. Preprocessing,
feature extraction and data analysis described in the methods
were implemented using Python (Guido and Drake, 1995), NumPy
(Harris et al., 2020), scikit-learn (Buitinck et al., 2013), Matplotlib
(Hunter, 2007), eeglib (Cabañero-Gomez et al., 2021), EntropyHub
(Flood and Grimm, 2021), and PyEEG (Bao et al., 2011).

2.4 Feature extraction

Ten features were extracted from each channel using a moving
window analysis to achieve an efficient representation of the
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FIGURE 1

A flowchart of the retrospective study design. Scalp EEG recordings from 47 patients with epilepsy were collected from the Rambam Health Care
Campus in Israel and the Sienna University Hospital in Italy. Only records containing at least one epileptic seizure and at least 8 h of signal prior to
seizure onset were included. Then, five recordings were removed due to low signal quality and high noise levels. After exclusion, 25 records from 21
patients were included.

signal (Mormann et al., 2006). All features (see below) are widely
used in neuroscience and have been proven to be important
in the field of seizure prediction and detection (Mormann
et al., 2006; Truong et al., 2018; Segal et al., 2023). Based on
previous research, the optimal window size ranges from 4 to
10 s (Hjorth, 1970; Mormann et al., 2005; Hoyos-Osorio et al.,
2016). Larger windows, for example above 1 min, summarize
a long period of time and are insensitive to frequent changes
in the EEG; it may even summarize the begging, duration and
ending of an entire seizure. Too small window captures frequent
changes in the EEG but may result in poor representations
of measurements that require a sufficient number of samples
such as Detrended Fluctuation Analysis (Hardstone et al., 2012)
or band frequencies. Therefore, an intermediate-size window of
6 s was chosen. Each feature was calculated over 6 s windows,
with an overlapping window of 3 s. The following section
provides a detailed description of each feature (Equations 1–
13).

2.5 Features

2.5.1 Spectral entropy
The spectral entropy is a measure of the spectral power

distribution that quantifies the irregularity or complexity of a signal
in the frequency domain (Shannon, 1948; Inouye et al., 1991;
Kannathal et al., 2005).

Let x(t) be a signal in time, and x(n) be the discrete sampled
signal. The power spectrum of the signal is S (m) = |X (m) |2

where X (m) is the discrete Fourier Transform of x (n) , M is the
length of the discrete Fourier Transform, and m = 0, 1, ...M − 1.
The probability distribution of S(m) is described as:

P (m) =
S (m)∑M−1
i = 0 S(i)

(1)

The spectral entropy H is described as the Shannon entropy of
the spectral power distribution:

H = −
∑M

m = 1
P(m)log2P(m) (2)

Entropy (Shannon, 1948) can be interpreted as the average level
of information or uncertainty in a random variable.

2.5.2 Hjorth parameters
Hjorth parameters are characteristics of EEG in the time

domain (Hjorth, 1970). The Hjorth mobility is the square root of
the ratio between variances of the first derivate of the signal x(n)
and the amplitude:

Mobility =

√√√√var
(

dx(n)
dn

)
var(x (n))

(3)

It measures the standard deviation of the slope of the signal
with reference to the standard deviation of the amplitude. It can
also be conceived also as the mean frequency of the signal.

The Hjorth complexity is the ratio between the mobility of the
first derivative of the signal and the mobility of the signal itself:

Complexity =
Mobility

(
dx(n)

dn

)
Mobility (x(n))

(4)

A signal is said to have minimal complexity if it has a discrete
frequency in the spectrum, meaning it is a pure sine function in
the time domain.

2.5.3 Higuchi fractal dimension
A fractal is a shape that retains its structural detail in

different scales. Complex objects can thus be described by fractal
dimensions. The Higuchi fractal dimension (HFD) (Higuchi,
1988) originates from chaos theory and has been applied as
a complexity measure of physiological signals such as EEG
(Kesić and Spasić, 2016).

For a discrete-time signal x (n) consisting of N data points,
a free parameter kmax ≥ 2, and m ∈

{
1, 2, ..., kmax

}
, the length

Lm(k) is defined by:

Lm
(
k
)
=

N − 1⌊N−m
k
⌋

k2

∑⌊ N−m
k
⌋

i = 1
|x
(
m+ ik

)
− x

(
m+ (i− 1) k

)
|

(5)
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TABLE 1 Patient data.

Patient
ID

Gender Age Epilepsy Seizure
onset zone

Duration of
recordings (h:min:s)

Number of
seizures

Intracranial monitoring
or resections

Sienna University Hospital

4 M 37 Left temporal Unknown 13:29:16 2 Unknown

Rambam Health Care Campus

1 F 24 Right and left
temporal

F8
T4
T6

23:59:47 2 No

3 M 57 Left parietal-
operculum

F8
F7
T4
T3

23:59:43 1 No

4 F 40 Right temporal F8 11:26:41 1 No

5 F 36 Right temporal F8 47:59:28 3 Yes

7 M 52 Right temporal Fp2 49:26:13 2 No

8 F 35 Left frontal Fp1 08:48:47 1 Yes

11 F 28 Right temporal F8 10:03:59 1 No

12 M 18 Right temporal F4
C4

14:56:53 1 No

13 M 32 Left temporal Fp1
F3

23:59:51 1 Yes

14 F 22 Left insular F7 11:58:03 1 No

17 F 18 Left anterior
temporal

F7 36:33:32 3 Yes

18 F 18 Right Parieto-
occipital

P4
O2

96:35:53 6 Yes

19 F 41 Left temporal Fp1
F3

21:25:10 2 No

23 F 23 Left temporal F7 23:59:45 4 No

25 F 35 Right parietal Fp1
F3

Fp2
F4

40:04:58 3 Yes

26 F 28 Left temporal F7 44:55:14 3 No

28 F 34 Left temporal F7 71:59:46 8 No

29 F 19 Right frontal Fp2
F4

23:54:04 3 No

31 M 23 Left
hemisphere

P3
T3
T5

47:59:45 4 Yes

32 M 24 Left occipito-
temporal

T3
T5

45:36:34 2 Yes

Gender, age, epilepsy type, total duration of records and number of seizures included in the records are shown for each patient in the inclusion criteria. Patient 5 had a right frontotemporal
lobectomy due to a type 2 dysplasia. Patient 8 had a resection. Patient 13 had a left frontal tumor. Patient 17 had a resection of a lesion in her left temporal lobe, at the uncus, which was
found to be a ganglioglioma. Patient 18 had a right occipitoparietal cortical dysplasia. She had a resection surgery and currently she has hemianopsia and is also seizure-free. Patient 25 had an
intracranial monitoring and her epileptic focus was found to originate from her inferior parietal lobe. Patient 31 had hemispherectomy, and is currently seizure free. Patient 32 had intracranial
monitoring with and his epileptic focus was found to originate from a left tempo-occipital location.

The length L(k) is defined by the average value of the k lengths
L1(k), L2(k), ....Lk(k) as follows:

L
(
k
)
=

1
k

∑k

m = 1
Lm
(
k
)

(6)

When fitting a linear function through the data points{(
log 1

k , logL(k)
)}

, the slope of the least square best fit is defined to
be the HFD of x (n).

2.5.4 Frequency band power
The band power is a fraction of the spectral energy of the signal

in a given frequency interval. Given a signal x (n) with a discrete
Fourier transform X(m) and power spectrum S(m), the band power
between two frequencies f1, f2 where f1 < f2 is:

Band Power =
∑f2

f = f1
S(m) (7)

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1526963
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1526963 May 2, 2025 Time: 12:16 # 5

Segal et al. 10.3389/fnins.2025.1526963

The Delta power is the fraction of spectral energy in the delta
band, which is the interval between 0.4 and 4 Hz. Mormann et al.
(2005) showed a decrease in the delta power before seizure onset.
The Theta power is the fraction of spectral energy between 4 and
8 Hz, the Alpha power is between 8 and 13 Hz, the Beta power is
between 13 and 30 Hz and the Gamma power is between 30 and
48 Hz.

2.5.5 Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) (Peng et al., 1994)

enables measurement of the self-similarity of an non-stationary
signal. Self-similarity means that the statistical properties of a small
part of the signal are scaled versions of the whole signal in the time
dimension (Hardstone et al., 2012).

First, the signal x (n) is converted to a mean-centered
cumulative sum:

zt =
∑t

i = 1
(x(i)− xavg) (8)

where xavg =
1
N
∑N

i = 1 x (i) is the average of x (n). This version
of the signal presents longer trends in the signal. Then, a set
T = {n1, n2, ..., nk} of integers is selected such that n1 <

n2 < ... < nk ≤ N, and such that the sequence is distributed
approximately evenly in log-scale. This set defines a log-spaced
scale. For each nεT, the cumulative sum zt is divided into
consecutive segments S1, S2, ....Sm each of length n, where m is
the number of segments for a given n. For each segment Si, a
straight line is fitted and the least square error ei is calculated. In
other words, the root mean square deviation from the local trend
is calculated for each segment. The root mean square of all ei for a
given n is calculated:

F (n) =
√

1
m

∑m

i = 1
ei2 (9)

Repeating this process for all nεT gives a root mean square value
F (n) for each scale n. Then, a linear line is fitted between the log-n
and log- F (n). The slope of this linear line is the DFA of the signal
x (n).

2.6 Distance in feature-space

The interictal interval was defined as the time interval of 2–4 h,
ending 6 h before seizure onset, and was taken as a representative of
the interictal state. This time interval included N time points, each
characterized by 10 features. The N time points enabled estimation
of the distribution of the interictal (non-epileptic) state for each
patient in a 10-dimension feature space.

The preictal period was located somewhere in the time interval
between the end of the interictal interval and seizure onset. The
distance between each time-point in that interval and the interictal
distribution was measured using the Mahalanobis Distance:

d
(−→p ,D

)
=

√(−→p −−→µ ) S−1
(−→p −−→µ ) (10)

which is a measure of the distance from a point
−→p = (p1, p2, ..., pM)

T and a sample distribution D on RM

with mean −→µ = (µ1, µ2, ..., µM)
T and positive-definite

covariance matrix S; M is the dimension of each time point. In the
present use case, −→p in a 10 × 1 vector as each point in time is
represented by 10 features, and D is a 10 × N matrix representing
the interictal distribution of N time points using 10 features
(Mahalanobis, 1936). This distance represents how far a time point
is from interictal behavior. Our hypothesis is that preictal activity
can be distinguished from interictal activity in feature space, with
high distances from seizure onset suggesting preictal activity.

Let us define the following: t1, tL are start and end times of
the preictal interval, respectively, dt is the Mahalanobis distance
corresponding to a specific time t in that interval, so that d50 is the
median of the Mahalanobis distances that interval and L99 is the
99th percentile of the Mahalanobis distance of each interictal point
from the sample distribution D.

The preictal interval was defined as follows:

d50 > L99 (11)

tL − t1 ≥ 15min (12)

Namely, the preictal interval is defined as a time interval that
meets two requirements: first, most of the values in that interval
exceed the 99th percentile of the Mahalanobis distance of the
interictal interval. Therefore, it is statistically distinct from the
interictal distribution in feature space. Second, the duration of the
preictal interval must be at least 15 min, so it is sufficiently long
enough to differ from noise or artifacts.

Based on the definition above, preictal period was located and
labeled in each record in the inclusion criteria.

2.7 Channel selection

For each seizure, all data points in the preictal interval and
interictal interval preceding the seizure were randomly split into a
train set and a test set, when the test set was 20% of the data. Then,
a logistic regression model was trained on the test set and tested on
the train set. The model was evaluated by the F1 score, which is the
harmonic mean of precision and recall, was calculated:

F1 = 2
precision·recall

precision+recall
(13)

The F1 score consists of both precision and recall. Therefore, it
is a good measure of the ability of the model to distinguish between
the two populations and allows a simple and unambiguous ranking
of the channels. This process was repeated for all channels, and each
channel was rated by the F1 score of the regression model fitted
to that channel.

The F1 score quantifies how well the preictal interval separates
from the non-preictal interval in the 10-features space. Therefore,
high F1 score indicates that the channel is indicative of prominent
preictal activity. The F1 scores were arranged by ascending order,
and those above the 75th quantile were selected. The corresponding
channels were selected as most indicative of preictal activity.

2.8 Feature importance

The 10 features represent different aspects of scalp EEG signals
and contribute differently to the differentiation between preictal
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FIGURE 2

Schematic representation of the methods. (1) EEG recordings from patients with epilepsy were collected from two medical centers. (2) The
recordings were filtered using a band-pass filter of 0.5–75 Hz. Then, 10 features were extracted from the filtered signals in a moving-window
fashion. (3) The inter-ictal interval (marked in blue) was defined as a period of 2 h ending 6 h before seizure onset, representing the inter-ictal,
non-epileptic distribution in a 10-feature space. (4) The distance between a time point to the inter-ictal distribution was calculated via the
Mahalanobis distance. (5) This distance was calculated for each time point during the time interval of 6 h before seizure onset (marked in red). This
was calculated for each recording, and prolonged intervals of high distance measures defined the preictal interval. (6) A Localization Algorithm
selected the EEG electrodes showing maximal separation between pre ictal and inter-ictal intervals. (7) A Feature-Importance Algorithm selected the
features contributing most to such selection.

and non-preictal intervals. After the channel selection algorithm
was applied, EEG channels were ranked based on the F1 scores of
the logistic regression models fitted to each channel. The maximal
F1 score was attributed to the channel most indicative of preictal
activity. The weight coefficients of the logistic regression model
fitted to that channel were then used to identify the features most
important for this separation. The absolute value of the weight
coefficient determined their order of importance.

After the preictal interval was determined, the Channel
Selection algorithm was applied and channels showing best
separation between preictal to interictal intervals were selected.
Based on the selected channels, the Feature-Importance algorithm
was applied and the top three features identified by this algorithm
were selected for each seizure (Figure 2).

3 Results

3.1 Preictal interval definition

Table 2 summarizes the start time and duration of the preictal
interval detected for each recording of each patient in the inclusion
criteria. It also shows the EEG electrode channel selected for each
record, and the three features selected by the Feature-Importance
algorithm. For example, the first row represents results of seizure
number one of patient four from the Sienna University Hospital.

The preictal interval detected started 30 min before seizure onset
and its duration was 30 min, ending at seizure onset. The EEG
electrode showing the best inter-ictal to preictal separation chosen
by the Channel-Selection algorithm was O2. The three features
selected by the Feature-Importance algorithm are Spectral Entropy,
Hjorth Mobility and Delta Power. An example of preictal intervals
detected for two patients is shown in Figure 3. This example also
emphasizes the variability in Mahalanobis distance among patients.
The algorithm failed to detect a preictal interval for two seizures of
two different patients. The minimal duration measured was 15 min
(as constrained by the algorithm), and the longest was 156 min. In
16 out of 23, the preictal interval ended at seizure onset. In the
other seven recordings, the preictal interval ended minutes and
even hours before seizure onset. On average the preictal period
began 83± 60 min before seizure onset, its duration was on average
56± 47 min.

3.2 Separation features

A summary of the three most important features selected
for each seizure is shown in Table 2. Out of the 10 features,
spectral entropy and Hjorth mobility, theta power, delta power, beta
power and gamma power were selected among the top three most
important features identified by the feature importance algorithm.
Spectral entropy and Hjorth mobility were among the top three
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TABLE 2 Preictal interval detected for each recording of each patient in the inclusion criteria, the channels selected by the channel selection algorithm,
and features selected by the feature importance algorithm.

Patient information Preictal interval Channel selected Features selected

Patient ID Seizure ID Start time before seizure
onset

Duration

Sienna University Hospital

4 1 30 min 30 min O2, O1, Pz Spectral entropy
Hjorth mobility

Delta power

Rambam Health Care Campus

1 1 1 h 20 min 35 min Pz Spectral entropy
Hjorth mobility
Gamma power

3 1 4 h 6 min 24 min Fpz, F8, F4 Spectral entropy
Hjorth mobility
Gamma power

4 1 2 h 10 min 100 min Pz, P4, C4, F4, T4, F8, Cz, Fz, P3,
C3, F3, O1, T5, Fp1

Spectral entropy
Hjorth mobility

Delta power

5∗∗ 1 20 min 20 min Fpz Spectral entropy
Hjorth mobility

Delta power

2 15 min 15 min Fpz Spectral entropy
Hjorth mobility

Delta power

8 1 3 h 42 min 60 min O2, O1, T6, F4, T3, C4, Pz, P4,
P3, C3, F7, Fz

Spectral entropy
Hjorth mobility

Theta power

11 1 3 h 30 min C4, F4, P3, F3, Cz, P4 Spectral entropy
Hjorth mobility

Delta power

12 1 24 min 24 min F7, P3, Fz, T3, T5 Spectral entropy
Hjorth mobility

Theta power

13 1 1 h 18 min 18 min F3, C4 Spectral entropy
Hjorth mobility

Delta power

14 1 15 min 15 min Cz, Fpz, P4, Pz, Fz, T5, F4, F3 Spectral entropy
Hjorth mobility

Delta power

17∗ 1 45 min 45 min P3, Cz, O2, O1, Pz, C4, P4, T5,
Fpz, F8, F3

Spectral entropy
Hjorth mobility

Delta power

2 1 h 30 min 20 min P3, Cz, O1, O2, Fpz Spectral entropy
Hjorth mobility

Delta power

18 1 40 min 40 min O1, T6, P4, C3, P3 Spectral entropy
Hjorth mobility

Theta power

25∗∗∗ 1 2 h 2 h F3, Fz, Fp1 Spectral entropy
Beta power

Hjorth mobility

2 2 h 36 min 2 h 36 min F3, Fpz, T3, Pz, Fz Spectral entropy
Theta power

Hjorth mobility

(Continued)
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TABLE 2 (Continued)

Patient information Preictal interval Channel selected Features selected

Patient ID Seizure ID Start time before seizure
onset

Duration

26∗∗∗∗ 1 85 min 85 min Fpz, Fp2, Fz, Cz Spectral entropy
Hjorth mobility

Theta power

2 45 min 45 min Fpz, Fp2, O1, O2 Spectral entropy
Hjorth mobility

Theta power

28 1 80 min 80 min C3, O1, O2, P4, T4, Fp2 Spectral entropy
Hjorth mobility

Theta power

29 1 180 min 180 min T5, T6, T4, O1, O2, P3, F4 Hjorth mobility
Gamma power

Spectral entropy

31 1 180 min 180 min T5, C3, Fp2, F4, C4, Pz Spectral entropy
Hjorth mobility

Theta power

32 1 80 min 80 min Cz, O1 Hjorth mobility
Beta power

Spectral entropy

*The time difference between the two seizures of patient 17 is 41 h and 9 min. **The time difference between the two seizures of patient 5 is 15 h and 52 min. ***The time difference between
the two seizures of patient 25 is above 48 h. ****The time difference between the two seizures of patient 26 is 15 h and 51 min.

in all patients. Figure 4 shows an example of preictal to interictal
separation by the three most indicative features for patient 14.

3.3 Channel selection

In Table 2, which shows the channels selected for each seizure,
it can be seen that are the number of channels selected varied
among patients. For example, in patient eight most channels were
indicative of preictal activity, while in patient 13 only a few were
indicative. This is also illustrated in Figure 5 which shows how
multiple channels were indicative of preictal activity in patient 14
and the variability in the Mahalanobis distance between channels
of the same patient. A comparison between the selected channels to
the seizure onset zone of each seizure is illustrated in Figure 6.

3.4 Repeated seizures

Four patients met the criteria for including two seizures in the
analysis. The time difference between the two seizures of patient 17
is 41 h and 9 min; the time difference between the two seizures of
patient 5 is 15 h and 52 min, the time difference between the two
seizures of patient 25 is above 48 h, the time difference between
the two seizures of patient 26 is 15 h and 51 min. In all four, the
localization of preictal activity was consistent for both seizures,
but the start time and duration of preictal period differed between
the seizures. The per-patient difference between start times of the
intervals was, on average, 32 ± 16 min. The difference between the
duration of preictal intervals of the same patient was, on average,
27 ± 14 min. In three out of four patients, both preictal intervals
ended at seizure onset

4 Discussion

This work presented a novel quantitative definition of the
preictal interval as prolonged intervals of highly uncommon
values of features extracted from scalp EEG. Using this definition,
analysis on long-term EEG recordings from 21 patients enabled
investigating the duration and start time of the preictal periods
and demonstrated variation between patients and between different
seizures of the same patient. Feature importance analysis of the
detected intervals allowed characterization of the three features
best distinguishing from interictal activity, with two out of three
prominent features common to all patients. Channel selection
analysis enabled localization of preictal activity and which was not
consistent with epileptic foci.

Previous studies set a fixed start and end time prior to seizure
onset assumed to include preictal activity in all patients (Tsiouris
et al., 2018; Abdelhameed and Bayoumi, 2019; Duy Truong et al.,
2019; Wang et al., 2020). The unique approach presented in the
current work suggests that preictal activity differs in time and
duration between patients and also in the same patient.

On exploratory inspection of EEG signal features, we observed
distinct intervals of uncommon brain activity preceding epileptic
seizures that varied on timing and location. Based on this
observation, we chose to use anomaly detection methods to find the
preictal activity intervals. Detecting and analyzing those intervals,
we demonstrated that preictal activity differs in its time, duration
and location between patients.

In some seizures, preictal activity ends at seizure onset while,
in others, it ends before seizure onset. Previous research showed
that preictal activity can be detected up to hours before seizure
onset (Litt et al., 2001; Bandarabadi et al., 2015). Since each
individual has its own epileptic network, and the response of
this network to seizure initiation varies among patients- the time
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FIGURE 3

Preictal interval in EEG signals of two patients. The Mahalanobis distance as a function of time visualized over 6 h, with the plot ending at seizure
onset. Red dots are included in the preictal interval. (A) The distance calculated for patient 14 in the EEG electrode of channel O1. The preictal
interval starts 15 min before seizure onset. (B) The distance calculated for patient four in the EEG electrode of channel O2. The preictal interval starts
30 min before seizure onset.

until network organization leading to a seizure differs from one
patient to another. Based on this knowledge, we did not define
preictal activity by a fixed onset time and duration- but rather,
referred to them as variables. In some patients, preictal activity
ended at seizure onset, while in others it ended minutes and
even hours before seizure onset. Those findings correspond with
previous work regarding seizure initiation. Engel (1996) suggested
that sufficient hypersynchronous activity in extensive areas in the
epileptic network eventually results in the bursting of a seizure.
This corresponds to the cases where preictal activity ends at seizure
onset. Another theory (Engel, 1996; Trevelyan and Schevon, 2012)
proposes that inhibitory neurons prevent epileptiform activity, and
when they fail, a seizure bursts. This likely explains the seizures in
which preictal activity ends before seizure onset, then inhibitory

activity takes place, and when it fails- ictal activity is initiated.
This theory is also supported by the concept of dynamic attractors
presented by Khona and Fiete (2022). In such case, the preictal
activity can be thought of as a shift of attractors to a chaotic state
of ictal activity.

To exclude the possibility that specific patient behaviors- such
as eating or sleeping- contributed to the distinct EEG patterns
attributed to preictal activity, video recordings corresponding to
the identified preictal intervals were reviewed by an experienced
epileptologist. No consistent behavioral activity was observed that
could account for the unique EEG features. As for potential
confounding effects of medication, these would be expected to
manifest as significantly longer time constants, whereas cognitive
influences would likely result in markedly shorter time constants.
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FIGURE 4

A 3-D scatter plot of three features showing preictal to interictal separation. The spectral entropy, delta power and Hjorth mobility of 6 s time
windows within the 6 h preceding seizure onset for patient 14. Red dots are time points included in the preictal interval, and blue dots are time
points during the rest of the time.

As mentioned previously, this work demonstrated that preictal
activity is patient-specific and even seizure-specific. Therefore,
seizure prediction models should not focus on a specific time but
rather on the unique characteristics of preictal activity. A 10-feature
representation of the scalp EEG signal allowed for a clear separation
between preictal and interictal intervals. By using the Feature-
Importance algorithm and choosing the three most important
features, this separation can even be visualized in a 3D space
(Figure 4). Analysis of the entire dataset found that Spectral entropy
and Hjorth mobility were among the top three features of preictal
activity in all patients. This suggests that preictal activity shares
some common features in all patients.

Results of the channel selection algorithm demonstrated that
some EEG electrodes showed better separation between preictal
and interictal activity than others. This suggests that preictal
activity can be localized for each seizure. Also, the localization of
preictal activity does not always correlate with the seizure onset
zone and can even occur on the contralateral hemisphere, as shown
in Figure 6. In addition, in most seizures preictal activity was
located in multiple areas on the scalp and was not limited to
a single lobe. Another important finding is that localization of
preictal activity varies among patients in multiple ways. First, the
EEG channels chosen by the channel selection algorithm differ

among patients. Second, in some patients the electrodes are near
the epileptic foci while in others they are on the contralateral
hemisphere. Also, while numerous channels show distinct preictal
activity in some patient, in others only a few. This significant
variability can be attributed to the unique epileptic network of each
individual. It also emphasizes the need for a personalized channel
selection algorithm in a seizure prediction system. Examination of
two different seizures of the same patient revealed that localization
of preictal activity was similar; this finding was evident in
four different patients. This insight might be applicative in the
development of patient-specific seizure prediction systems that are
adapted to the prominent locations of preictal activity of a patient.

As mentioned previously, channels selected by the channel
selection algorithm do not always correspond with seizure onset
zone. This can be explained by the key concept of the spatial
distribution of preictal deviations. It is well established that the
epileptic network exerts remote effects on structurally normal brain
regions. Englot et al. (2008) demonstrated in mouse models of
epilepsy that during temporal lobe seizures, dysfunction in the
frontal lobe can be observed. This phenomenon is not due to direct
seizure involvement of the frontal cortex but rather results from
remote inhibitory network effects, ultimately leading to frontal
lobe dysfunction. In other words, during a seizure characterized
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FIGURE 5

The Mahalanobis distance as a function of time in three different electrodes of patient 14, seizure number 1. The Mahalanobis distance was
calculated over six the hours preceding seizure onset, from 02:19 a.m. to 08:19 a.m. The plots end at seizure onset. Red represents the preictal
interval, which started 30 min before seizure onset. (A) The distance calculated for the EEG electrode of channel O1, (B) the distance calculated for
the EEG electrode of channel P3, and (C) the distance calculated for the EEG electrode of channel T5.
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FIGURE 6

Seizure onset zone vs. preictal activity areas. EEG electrodes chosen by the channel selection algorithm as indicative of preictal activity are colored
in red; electrodes not selected by the algorithm are colored in blue. Vertical lines: seizure onset zone identified by specialized epileptologists.

by rapid dynamic activity, functionally uninvolved areas can
exhibit significant secondary impairments. Similarly, Wong et al.
(2022) investigated the impact of interictal activity, which can
persist for up to 200 ms, on cognitive function. Using stereo-
electroencephalography (SEEG), he demonstrated that interictal
discharges disrupt synchronization within the anterior cingulate
cortex (ACC), impairing attention and concentration in children.
Notably, these effects were observed regardless of the spatial origin
of the interictal activity. Even when the epileptic network did not
anatomically involve the ACC, functional impairment was evident,
indicating that the influence of interictal discharges extends
beyond the primary seizure focus. Beyond these findings, interictal
dysfunction can be detected using neuroimaging and cognitive
assessments. Positron emission tomography (PET) studies have
revealed areas of metabolic impairment during the interictal
phase. In many cases- particularly in temporal lobe epilepsy-
these functionality deficient zones correspond to the scalp-defined
seizure onset zone (Ponisio et al., 2021). In our study, we focus the
dynamic evolution of brain activity in the preictal state. Given the
widespread and remote effects of epileptic activity, it is reasonable
to hypothesize that dynamic changes may be detectable in brain
regions beyond the core epileptic network. While chronically
dysfunctional areas tend to remain persistently impaired, it is
the functionally intact regions that are more likely to exhibit
progressive changes in response to the initiation of a seizure
process.

This hypothesis is consistent with the Attractor Theory (Khona
and Fiete, 2022), which proposes that seizure evolution follows
specific dynamical trajectories that engage brain networks beyond
the ictal onset zone (Lopes Da Silva et al., 2003). Figure 7 illustrates
these concepts, providing a visual representation of the key findings
and the underlying hypothesis.

Results of the feature importance algorithm demonstrated
that spectral entropy and Hjorth mobility are consistent across
patients, while there is variation in which frequency band is
most important among patients. This variation can be attributed
to the unique epileptic network of each patient, as there are
many configurations of seizure initiation. For example, seizures
originating from cortical dysplasia are initiated by interictal
activity that becomes synchronized, rhythmic and shows delta

brushes. There are numerous configurations of epileptic network
organization and seizure initiation- Frauscher et al. (2024), for
example, discovered seven different network organization of
seizure initiation, depending on epileptic foci and the underlying
pathology. Therefore, patients vary from each other depending on
those fundamental characteristics.

The algorithm failed to detect preictal activity for two seizures
in two different patients. The failure of preictal detection is thought
to be attributed to the epileptic foci in both patients. The first
patient had brain surgery and her epileptic foci was discovered to
be in the left supplementary frontal area. This results in a small
epileptic network that is challenging to detect using scalp EEG. The
second patient had anoxic brain damage since infancy with bilateral
thalamocortical damage. Although her epileptic focus is in her left
temporal lobe, the thalamocortical insult damages the ability to
detect preictal activity in distant locations since it reduces network
connectivity. The failure to detect the seizures can be also attributed
to the features used- in this work we chose to investigate 10 features
which are widely used in the field of neuroscience and seizure
prediction, but those may not be sufficient for detection of preictal
activity in some patients. Also, we used the standard scalp EEG
recordings measuring 21 electrodes, which was sufficient for most
patients and allowed preictal interval detection. However, using
more channels could reveal changes in the epileptic network that
were not detectable in the basic EEG electrodes for certain patients.

The analysis was performed on scalp EEG recordings,
which represent local summations of electrical activity and
large areas of the brain network. Combined with the fact that
localization did not always correlate with the epileptic foci,
this suggests that epileptogenesis involves a large network in
areas not involved in ictal or interictal activity. It also allows
examination of how normal brain areas are affected by epileptic
activity. Compared to intracranial EEG, which has been widely
used in recent studies, scalp EEG signals suffer from low
resolution but enables implementation of non-invasive measures
for seizure prediction.

It is important to emphasize that this study introduces a novel
conceptual framework for analyzing the preictal period, aiming
to distinguish between the stable interictal state and the preictal
phase, by considering the entire brain network and recognizing
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FIGURE 7

Suggested dynamic evolution of brain networks from the interictal through preictal to ictal phases. Green: Regions with normal function. Gray:
Areas with chronic functional deficits. Red with solid lines: Seizure focus. Red with oscillating lines: Primary propagation zone, corresponding to the
scalp-recorded interictal zone/seizure onset zone. Blue: Regions influenced by the seizure-related attractor network. Green-to-Blue Gradient:
Progressive functional changes reflecting pre-seizure network reorganization. Illustrated by Sari Eran Herskovitz.

that the epileptic process can have effects extending beyond the
primary epileptic focus. The key innovation of this work lies in
leveraging existing features rather than employing a black-box
modeling approach. While further investigation is warranted, our
methodology allows for reproducibility by other researchers, in
contrast to many studies in this domain. Based on these findings, it
may be possible to develop a simple wearable device configured to
closely match the optimal electrode placement identified. However,
this constitutes a separate line of research.

5 Conclusion

This study demonstrates that the features analyzed can uncover
network dynamics that are distinct from both the interictal baseline
and the ictal period. Notably, these preictal activities frequently
emerged from brain regions outside the epileptogenic zone—
areas not directly implicated in seizure generation but seemingly
involved in broader network reorganization.

The spatial manifestation of this activity was individualized,
yet recurrent across seizures within the same patient, indicating
a stable patient-specific pattern. In contrast, the timing of this
activity exhibited considerable variability both between patients
and across different seizures in the same individual, reflecting
dynamic preictal processes.

These findings provide preliminary support for the delineation
of a preictal state, characterized by distinct network behavior,
and suggest that seizure-related activity may extend beyond
traditionally defined epileptogenic regions. Moreover, this
work raises the possibility that such network dynamics could
contribute to the cognitive and functional consequences often
observed in epilepsy.

6 Limitations

This study was limited by its retrospective nature. While
providing insight into the processes preceding seizure onset,
further prospective research should be performed to test it in
real-time. It was also limited due to its small dataset, and
should be extended to larger cohort study. Furthermore, only
patients evaluated by video EEG were included, which introduced
a selection-bias, limiting generalizability of the conclusions to
populations other than those that are drug-resistant, difficult to
treat and evaluated by video EEG monitoring. In addition, results
regarding multiple seizures of the same patient were derived from
four patients only and are therefore highly limited. Due to the way
the video-EEG monitoring was conducted, we did not examine the
interictal period over 24 h but rather a fraction of the day (8–10 h).
Therefore, it could be argued that the changes we observe result
from diurnal variation. However, it is important to note that upon
clinical review of the recordings at the identified time points, we
did not find any clinical changes in the EEG. Additionally, in a
significant number of patients, the period ends with a seizure. Thus,
we believe our findings reflects network reorganization leading
up to a seizure, but further validation is needed with additional
studies and cases.

Finally, analysis was limited to seizures preceded by at least 8 h
of interictal activity prior to seizure onset. Therefore, the results are
limited to the first seizure among a cluster of seizures, and cannot
be applied to the following seizures in a cluster.
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