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Introduction: Spiking Neural Networks (SNNs) o�er a biologically inspired

alternative to conventional artificial neural networks, with potential advantages in

power e�ciency due to their event-driven computation. Despite their promise,

SNNs have yet to achieve competitive performance on complex visual tasks, such

as image classification.

Methods: This study introduces a novel SNN architecture called SpikeAtConv,

designed to enhance computational e�cacy and task accuracy. The architecture

features optimized spiking modules that facilitate the processing of spatio-

temporal patterns in visual data, aiming to reconcile the computational demands

of high-level vision tasks with the energy-e�cient processing of SNNs.

Results: Extensive experiments show that the proposed SpikeAtConv

architecture outperforms or is comparable to the state-of-the-art SNNs on the

datasets. Notably, we achieved a top-1 accuracy of 81.23% on ImageNet-1K

using the directly trained Large SpikeAtConv, which is a state-of-the-art result

in the field of SNN.

Discussion: Our evaluations on standard image classification benchmarks

indicate that the proposed architecture narrows the performance gap with

traditional neural networks, providing insights into the design of more e�cient

and capable neuromorphic computing systems.

KEYWORDS

spiking neural network, self-attention, convolutional neural network, deep learning,

computer vision

1 Introduction

Spiking Neural Networks (SNNs) represent the forefront of a paradigm shift toward

more energy-efficient and biologically plausible computational models. As the third

generation of neural network technologies, SNNs offer a promising alternative to

traditional machine intelligence systems by emulating the event-driven characteristics of

biological neural processing (Maass, 1997). The appeal of SNNs is multifaceted, with their

ability not only to operate at lower power consumption, but also to perform computations

in a manner that closely mirrors the spatiotemporal dynamics of the brain (Roy et al.,

2019). The spike-based communication protocol of SNNs is especially well-suited for

sparse and asynchronous computations, making it highly appropriate for deployment on

neuromorphic chips. These chips are designed to emulate the neural architecture of the

brain, leveraging the inherent sparse activation patterns of SNNs to achieve significant

energy efficiency improvements (Li et al., 2024; Frenkel et al., 2023; Merolla et al., 2014;

Davies et al., 2018; Pei et al., 2019).
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Despite their potential, SNNs have historically grappled with

performance limitations, particularly in complex cognitive tasks

that are easily handled by their Artificial Neural Networks

(ANNs) counterparts. This has prompted researchers to explore

the adaptation of successful ANN architectures into the spiking

domain. For instance, SNNs based on Convolutional Neural

Networks (CNNs) have been developed, enabling the transposition

of classic architectures like VGG and ResNet into SNN frameworks

(LeCun et al., 1989; Wu et al., 2021). These adaptations have made

significant strides, yet the quest for architectures that can fully

exploit the unique advantages of SNNs continues.

The emergence of the Transformer architecture, originally

designed for natural language processing, has sparked a new wave

of innovations across various fields of machine learning (Vaswani

et al., 2017). Its success in ANNs has not gone unnoticed in the

SNNs community, leading to the exploration of Transformer-based

designs within spiking networks (Zhang et al., 2022; Zhou et al.,

2023). However, the integration of the self-attention mechanism

into SNNs has been challenging, as it relies on operations that

are at odds with the principles of spike-based processing, such as

the energy-intensive Multiply-and-Accumulate (MAC) operations.

Recent efforts have sought to reconcile this discrepancy by

proposing spike-driven variants of the self-attention mechanism,

aiming to retain the computational efficiency and low power

consumption that are hallmarks of SNNs (Yao et al., 2023). These

innovations represent a significant departure from traditional

Transformer models, yet the challenge remains to demonstrate

their superiority over existing SNN designs in both performance

and energy efficiency.

In this paper, we introduce an innovative spiking neural

network framework called SpikeAtConv, designed to incorporate

the strengths of advanced Transformer models into SNNs.

An overview of the SpikeAtConv network is shown in

Figure 1. Inspired by MaxViT, we propose a novel spike-

driven transformer module named Spike-Driven Grid Attention.

This module facilitates global spatial interactions within a

single block, providing enhanced flexibility and efficiency

compared to traditional spike-driven full self-attention or (shifted)

window/local attention mechanisms. The SpikeAtConv Block,

composed of Spike-Driven Grid Attention and ConvNeXt,

serves as the core component of the SpikeAtConv network.

Additionally, we have designed various Spiking Neuron (SPK)

Blocks to enable a more flexible neuron activation mechanism,

such as the Multi-Branch Parallel LIF SPK (MBPL) Block,

which consists of multiple parallel neurons with different

thresholds.

The main contributions of this paper are as follows:

1. We design a series of SPK Blocks to explore the effects of

multiple neurons with different thresholds and combinations

on network performance. Through extensive experiments, we

identify the optimal configuration of the SPK module, which

significantly enhances the computational performance of the

model.

2. We develop Spike-Driven Grid Attention, enabling global

spatial interactions within a single block. This allows the

SpikeAtConv block to capture both local and global significant

features more effectively.

3. We propose the SpikeAtConv network, which is based on the

developed SPK Block and SpikeAtConv Block. This architecture

successfully adapts advanced transformer models to the SNN

framework, thereby enhancing the computational performance

and efficiency of the model.

4. Extensive eperiments show that the proposed model

outperforms or is comparable to the state-of-the-art (SOTA)

SNNs on the datasets. Notably, we achieved a top-1 accuracy

of 81.23% on ImageNet-1K using the directly trained Large

SpikeAtConv, which is a SOTA result in the field of SNN.

2 Related work

SNNs have emerged as a promising alternative to traditional

ANNs due to their potential for energy-efficient and biologically

plausible computations. This section reviews key advancements

in ANN-to-SNN conversion techniques, direct training of SNNs,

and the integration of Vision Transformer (ViT) within SNN

frameworks.

2.1 ANN-to-SNN conversion

ANN-to-SNN conversion techniques leverage established

training methodologies of ANNs to initialize SNNs. These methods

aim to translate trained ANN weights into their SNN counterparts,

thereby inheriting the performance characteristics of ANNs while

benefiting from the energy efficiency of SNNs. Pioneering work

by Deng and Gu (2021) replaced ReLU activation functions with

Integrate-and-Fire (IF) neurons to facilitate the conversion process.

Subsequent enhancements by Hu et al. (2024) introduced weight

scaling and normalization, effectively narrowing the performance

gap between ANNs and SNNs.

Further advancements by Rueckauer et al. (2017) and Han et al.

(2020) incorporated soft reset mechanisms, preserving temporal

information and minimizing spike count errors associated with

hard reset strategies. Additionally, dynamic threshold adjustment

strategies proposed by Sengupta et al. (2019) and Zhang et al. (2023)

enhanced the adaptability of SNNs to varying activation regimes

during conversion. Bu et al. (2022) demonstrated that initializing

membrane potentials at half the threshold could significantly

reduce conversion inaccuracies.

Despite the success of ANN-to-SNN conversion methods in

replicating ANN performance, they remain inherently limited

by the constraints of the source ANNs, such as dependency

on specific architectures and the inability to fully exploit the

temporal dynamics intrinsic to SNNs. Therefore, while effective

for performance replication, these methods may not fully harness

the unique advantages of SNNs in temporal processing and

energy efficiency.

2.2 Direct training of SNNs

Direct training of SNNs enables end-to-end optimization,

circumventing the limitations of conversion techniques. Various

strategies have been developed to address the non-differentiability
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of spike activations, including quantization and binarization

approaches (Li et al., 2019, 2021a), adder neural networks (Chen

et al., 2020), and probabilistic models (Amir et al., 2017; Bengio

et al., 2013). Rate-encoding networks quantify spike rates for

gradient calculation (Lee et al., 2016; Neftci et al., 2017). Surrogate

gradient tries to find an alternative differentiable surrogate function

to replace the undifferentiable firing activity when doing back-

propagation of the spiking neurons (Guo et al., 2023).

Surrogate gradient methods have proven particularly effective,

withWu et al. (2018) and Neftci et al. (2019) developing techniques

to approximate gradients of spike functions. Enhancements such

as the iterative leaky integrate-and-fire (LIF) model (Wu et al.,

2019) and the tdBN algorithm (Zheng et al., 2021) further improve

training scalability and efficiency.

In our work, we leverage surrogate gradients due

to their robustness in SNN training, which offers

several advantages:

• Temporal precision: enhanced performance on

time-sensitive tasks.

• Architectural flexibility: greater design freedom without the

constraints of ANN architectures.

• Energy efficiency: optimized spike-based communication

suitable for neuromorphic hardware.

While direct training may require more resources and time

compared to conversion methods, its capacity to fully exploit

SNN capabilities makes it a compelling choice for advancing

performance.

2.3 Vision transformer in SNNs

ViT has significantly advanced image classification through

self-attention mechanisms, capturing global dependencies and

complex feature representations (Dosovitskiy et al., 2021).

Typically, they consist of a patch splitting module, transformer

encoder layers, and a classification head, with self-attention as a

core component.

The integration of self-attention in SNNs represents an

emerging area of research. Initial efforts have adapted ANN-

Transformers for spike data; however, challenges remain in fully

aligning these methodologies with the unique characteristics of

SNNs (Yao et al., 2021; Zhang et al., 2022; Mueller et al.,

2021).

Recent works, such as Spikformer and Meta-SpikeFormer

explore the synergies between Transformers and SNNs (Zhou et al.,

2023; Yao et al., 2024). These architectures aim to leverage spike-

based self-attention to enhance energy efficiency and performance

across various vision tasks. Notably, Meta-SpikeFormer has

been evaluated on datasets like ImageNet-1K, demonstrating

competitive accuracy and suggesting potential applications in

neuromorphic computing.

Our research builds on these foundational works by further

investigating self-attention mechanisms within SNNs, developing

SpikeAtConv model to enhance computational efficiency and

performance in image classification tasks.

3 Materials and methods

3.1 Overall architecture

In this study, we propose a spiking neural network architecture

called SpikeAtConv, which is inspired by MaxViT (Tan and Le,

2019; Woo et al., 2023; Tu et al., 2022; Dai et al., 2021). The

overall structure of the SpikeAtConv network is shown in Figure 1.

MaxViT is a vision neural network architecture that effectively

combines the strengths of Transformers and CNNs by integrating

self-attention mechanisms with convolutional operations. Building

on MaxViT, we modified both the Transformer and convolutional

components to handle and generate spike signals, resulting in a

novel spiking neural network model.

Firstly, the Feature Extraction Layer of the model consists

of two convolutional layers and a SPK Block. Further details

regarding the SPK Block will be provided in the following sections.

The primary function of this layer is to downsample the input

image, halving its resolution with a stride setting of 2 in the first

convolutional layer. Additionally, it converts continuous image

data into neural spike signals, i.e., binary discrete data, making it

suitable for subsequent processing.

Next is the Feature Encoding Layer of the model, which forms

the core of the model. It includes four stages, each performing

downsampling at the entrance to halve the resolution of the

feature map, with no further downsampling within the same

stage. Each stage consists of a series of SpikeAtConv Blocks,

varying in number but collectively achieving deep feature encoding.

The SpikeAtConv Blocks represent our novel integration of

CNN, attention mechanisms, and SNN, designed to enhance

the performance of model. Detailed information about these

modules is provided in subsequent sections. The depth of these

four stages follows a spindle-shaped distribution; for instance, in

the base model, the depths of the stages are 2, 6, 12, and 2,

respectively. This design follows empirical rules of classification

visual neural networks to effectively capture features and facilitate

information flow.

Finally, the Decision Layer of the model is responsible for the

classification task. It processes the output feature maps from the

previous stages through global pooling, followed by a linear layer

to predict the categories. This layer is designed to be both simple

and efficient, capable of transforming complex, high-dimensional

features into the final classification decision. The overall structure

of our model leverages traditional methods while incorporating

innovative SNN elements for enhanced performance.

3.2 SPK block

The LIF neuron model (Abbott, 1999; Gerstner et al., 2014) is

a fundamental computational neuroscience model, widely used for

its simplicity and reasonable approximation of biological neuron

behavior. The core of the LIF model lies in simulating the dynamics

of the neuronal membrane potential, which is governed by the

following differential equation:

τ

dV

dt
= −(V − Vrest)+ RI(t) (1)

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1536771
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liao et al. 10.3389/fnins.2025.1536771

FIGURE 1

The overview of SpikeAtConv. The framework is primarily composed of three components: the Feature Extraction Layer, the Feature Encoding Layer,

and the Decision Layer. Initially, the input image is subjected to preliminary processing within the Feature Extraction Layer, where essential

characteristics are identified. Subsequently, the Feature Encoding Layer performs a comprehensive analysis to distill salient features from the

extracted data. Finally, the decision layer synthesizes this information to generate the prediction results.

where V represents the membrane potential, τ is the membrane

time constant, Vrest is the resting membrane potential, R is the

membrane resistance, and I(t) is the input current. The resting

potential Vrest is the membrane potential value of the neuron when

it is in a resting state without any external input. If the neuron

receives input from other neurons, the potential V will be deflected

from its resting value. When the membrane potentialV exceeds the

thresholdVth, the neuron fires a spike, and the membrane potential

is reset to a lower reset potential Vreset. In formal models of spiking

neurons, the negative overshoot (spike-afterpotential) after the

pulse is replaced by a “reset” of the membrane potential to the

value Vreset (Gerstner et al., 2014). Subsequently, the neuron enters

a refractory period during which it is unresponsive to new inputs.

Other important hyperparameters in the LIF model include the

duration of the refractory period, which affects the firing frequency

and the response to consecutive inputs.

Leveraging the dynamic properties of LIF neurons, we

have designed five SPK Blocks, as illustrated in Figure 2, to

emulate various aspects of biological neural network information

processing mechanisms.

3.2.1 Single-layer LIF SPK (SL) Block
This fundamental building block consists of a single LIF

neuron. Despite its simplicity, it effectively simulates the activation

and inhibition dynamics of an individual neuron.

s = LIF1(x) (2)

where x is the input signal, LIFi denotes the LIF neuron.

3.2.2 Residual LIF SPK (RL) Block
In this design, features pass through a LIF neuron and then

split into two branches. The main branch is processed by a second

LIF neuron, while the auxiliary branch retains the original features.

The residual connection mitigates information loss and enhances

the learning capacity of the model. Mathematically, this can be

expressed as:

s = LIF1(x)

s = s+ LIF2(x))
(3)

where Concat represents the concatenation operation.

3.2.3 Multi-branch parallel LIF SPK (MBPL) Block
This block comprises several LIF neurons with distinct

hyperparameters arranged in parallel, allowing features to pass

through several different thresholds simultaneously. The outputs of

these neurons are then combined and fed into a ConvNeXt module

to simulate membrane potential variations before summing the
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FIGURE 2

SPKBlock. Leveraging LIF neurons, we developed multiple SPK blocks to investigate the e�ects of various hyperparameters and di�erent

combinations of neurons on network performance. For instance, the MBPL Block features multiple parallel neurons with distinct thresholds, while

the DCL Block comprises two parallel branches, each containing a convolutional layer followed by a LIF neuron.

results. This approach enables the model to integrate information

across different scales effectively. The formula is given by:

s = Concat(LIF1,Vth1
(x), LIF2,Vth2

(x), . . . , LIFn,Vthn
(x)) (4)

where Vthi is the threshold voltage for the i-th LIF neuron.

3.2.4 Hidden split LIF SPK (HSL) Block
This design splits and concatenates the outputs of two neurons

along the hidden dimension. This method allows the model to

capture features across different representational space dimensions,

enhancing the model’s expressive power. It is represented as:

x1, x2 = Cut_channel(x)

s = Concat(LIF1,τ1 (x1), LIF2,τ2 (x2))
(5)

where Cut_channel splits the input into separate channels, τi is the

membrane time constant for the i-th LIF neuron.

3.2.5 Dual convolutional LIF SPK (DCL) Block
The DCL Block features a bifurcated architecture with two

parallel branches, each comprising a convolutional layer and a LIF

neuron. The first branch harnesses a 3x3 convolutional kernel to

discern fine spatial details, whereas the second branch leverages

a 5x5 kernel to apprehend a wider spatial context. This strategy

of extracting features at varying scales enables the DCL Block to

simultaneously process spatial details with high and low resolution.

Each branch’s convolutional layer halves the channel dimension,

and the outputs from both branches are subsequently concatenated

along the channel axis, maintaining the original dimensionality.

The mathematical representation is:

x1, x2 = Cut_channel(x)

s = Concat(LIF1(Conv3×3(x1)), LIF2(Conv5×5(x2)))
(6)

where Conv3×3 and Conv5×5 are convolutional filters of size 3x3

and 5x5, respectively.

3.3 Attention SpikeMerge Block

ViT was a pioneering effort to apply a pure Transformer

architecture to image recognition, demonstrating the impressive

capabilities of Transformers in image processing. However, ViT

also revealed several challenges, such as optimization difficulties,

convergence issues, and high computational and memory costs.

Additionally, handling long-tail effects, intra-class variations, and

designing effective positional encodings remain areas requiring

further investigation.

MaxViT addresses these issues by incorporating the multi-axis

self-attention (Max-SA) module, which balances local and global

attention. The Max-SA module combines window attention with

grid attention, providing a better inductive bias, and uses CNNs for

positional encoding, thereby mitigating some of ViT’s limitations.

Building on the MaxViT architecture, we propose two distinct

Attention SpikeMerge Blocks that integrate the SPK module to

process spike signals, as shown in Figure 3. Our goal is to optimize

the combination of attention mechanisms with SPKmodules based

on LIF neurons to enhance spike signal processing.

In our implementation, we utilize multi-head self-attention as

show in Figure 1, which is a standard approach in Transformer

models. For clarity, we will primarily discuss self-attention in

this section, as multi-head attention can be understood by simply

adding the head dimension on top of the self-attention mechanism.

This allows us to focus on the core principles while ensuring

comprehensive coverage of our methods.

3.3.1 Spike-integrated self-attention (SISA) block
In this approach, the SPK Block is incorporated during the

computation of the self-attention query (Q), key (K), and value

(V). After calculating the attention scores and applying them to
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FIGURE 3

Attention SpikeMerge Block. This represents two di�erent computational approaches. In the SISA Block, after computing the Q, K, and V, we add the

SPK Blcok separately to obtain the spike form of Q, K, and V. Subsequently, we use Q and K to calculate the attention scores, apply these scores to V,

and then incorporate the SPK Block to convert the attention into spike sequences. In the BDSA Block, we bypass the computation of Q, K, and V,

directly converting the input into spike sequences through the SPK Block, treating Q, K, and V as the same.

V, the SPK Block converts the attention map into spike signals. In

the Feed-Forward Network, each linear layer is followed by an Spk

module to maintain the spike-based processing.

Mathematically, the SISA Block can be represented as:

QS = LIF(Linear(X))

KS = LIF(Linear(X))

VS = LIF(Linear(X))

Attention = Softmax

(

QSK
T
S

√

dk
+ Position Embedding

)

VS

Output = SPKBlock(Attention)

(7)

where X is the input, and dk is the dimension of the key vectors.

3.3.2 Binary direct-spike attention (BDSA) Block
This approach diverges significantly from the previous one.

Given the binary nature of spike signals, we bypass the computation

of Q, K, and V and directly transform the input features into

spike signals, treating Q, K, and V as identical. This method

accelerates the computation of the attention map by using matrix

multiplication with identical binary vectors. During inference,

post-training, the attention-processed features can be directly

obtained without additional computation, simplifying the process.

The BDSA Block can be described as:

QS = KS = VS = LIF(X)

Attention = Softmax

(

QSK
T
S

√

dk
+ Position Embedding

)

VS

Output = SPKBlock(Attention)

(8)

We trained models using these two distinct Attention

SpikeMerge Blocks to evaluate the impact of varying module

complexity on model performance. The experimental results and

their implications will be discussed in the following sections.

4 Results

4.1 CIFAR-100 experiments

In this study, we utilized the CIFAR-100 dataset as a

preliminary benchmark to evaluate and refine the design of

various SPKBlock modules. CIFAR-100 is a well-regarded image

classification dataset comprising 60,000 images across 100 distinct
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categories (Krizhevsky et al., 2009). Its manageable scale and

diversity make it an ideal choice for initial experimentation

aimed at optimizing computational resources and reducing

experimental time.

To highlight the impact of SPKBlock modules, we

deliberately refrained from optimizing the training parameters,

instead opting for a straightforward and commonly used

set of settings. Specifically, training was conducted over 200

epochs, AdamW optimizer with an initial learning rate of

0.02 (Loshchilov and Hutter, 2019). We opted for a batch

size of 256 to ensure efficient use of computational resources

while maintaining reasonable memory consumption. To

mitigate early training instability, a warm-up strategy was

implemented during the first 5 epochs. The weight decay

parameter was set at 0.01 to counteract overfitting. Our

primary goal was not to achieve a highly optimized model

on CIFAR-100, but rather to evaluate the effectiveness of different

SPKBlock modules.

In terms of data augmentation, we applied horizontal

flipping, random rotations within a 30-degree range, and

random shearing to enhance the model’s generalization

capabilities. Our base model architecture was ResNet-18, with

various SPKBlock modules replacing the traditional activation

functions to explore their impact. We systematically adjusted

hyperparameters such as surrogate functions, voltage thresholds,

tau values, and the spatial and temporal configurations of

LIF neurons.

4.2 ImageNet1K experiments

In this study, we utilized the ImageNet-1K dataset as a

benchmark to evaluate and compare the efficacy of different neural

network module designs (Deng et al., 2009). ImageNet-1K is a

widely-used image classification dataset that contains over one

million annotated images across one thousand distinct categories.

Its diversity and scale make it a significant challenge in the field of

computer vision.

Regarding our experimental setup, we employed a series

of meticulously chosen training parameters. Specifically, we set

our training to run for 200 epochs to ensure ample learning

opportunities. The initial learning rate was set at 0.001, a value

aimed at balancing convergence speed and training stability. We

opted for a batch size of 768 to make efficient use of our

computational resources while maintaining reasonable memory

consumption. During the first 10 epochs, we implemented a

warm-up strategy to mitigate early training instability. The weight

decay parameter was set at 0.05 to help counteract overfitting.

The gradient clipping threshold was established at 0.1 to prevent

gradient explosion issues. All images were resized to a uniform

resolution of 224×224 to maintain consistency in input data.

Additionally, we adopted a cosine learning rate decay strategy,

which allows for a smooth reduction of the learning rate in the later

stages of training, aiding themodel in converging to amore optimal

solution. For data augmentation, we utilized the AutoAugment

technique, an approach that optimizes augmentation policies

through automatic searching. We also employed label smoothing

with a value of 0.1 to reduce the model’s sensitivity to label noise.

Techniques such as Random Erase, Mixup, and CutMix were

integrated as well, which have been proven to effectively enhance

the model’s generalization capabilities on images (Zhang and Deng,

2021; Yun et al., 2019).

We designed three different model architectures to explore the

impact of varying network scales on performance: Tiny, Base, and

Large models.

For the Tiny model, the hidden state dimensions were set to

64, 128, 256, and 512 for the four stages, respectively. The module

depths for each stage were set at 1, 3, 6, and 1. This configuration

aims to provide a lightweight model suitable for environments with

limited computational resources.

For the Base model, the hidden state dimensions were set to

128, 256, 512, and 1024 for the four stages, respectively. Themodule

depths for each stage were set at 2, 6, 12, and 2. This design is

intended to progressively extract and process features of the images,

balancing computational efficiency and performance.

For the Large model, the hidden state dimensions were set

to 160, 320, 640, and 1280 for the four stages, respectively. The

module depths for each stage were set at 2, 6, 16, and 2. This

configuration aims to capture more complex features and provide

higher accuracy, suitable for environments where computational

resources are abundant.

4.2.1 Theoretical energy consumption evaluation
In this work, we utilize a theoretical framework to assess the

energy consumption of SNNs with the goal of contrasting them

against conventional ANNs. Our methodology draws upon the

approaches detailed in Li et al. (2021b) and Yao et al. (2024).

Furthermore, we have evaluated the energy consumption of various

models based on experiments performed on the ImageNet1K

dataset. The energy consumption assessment hinges on several

critical parameters and equations.

Initially, we establish two key energy consumption metrics:

Energy cost per multiply-accumulate operation (EMAC): For

the purposes of this study, we estimate EMAC to be 4.6 pJ, which

represents the energy expended for executing one multiplication

followed by one addition.

Energy cost per addition operation (EA): We assume EA to be

0.9 pJ, denoting the energy required for a single addition operation.

Subsequently, we compute the Floating Point Operations per

Second (FLOPs) across various layers, which is a vital factor in

determining the energy consumption of neural networks. For

convolutional layers (Conv), the FLOPs can be calculated using the

formula:

FLOPsConv = (kn)
2
· hn · wn · cin · cout

where kn signifies the size of the convolutional kernel, hn and wn

represent the height and width of the resulting feature map, while

cin and cout denote the number of input and output channels,

respectively. For Multi-Layer Perceptrons (MLPs), the FLOPs

calculation is expressed as:

FLOPsMLP = nin · nout
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where nin and nout are the dimensions of the input and output layers

of the MLP.

Moreover, the Spiking Rate (R) is defined as the ratio of non-

zero elements present in the spike tensor, which reflects the sparsity

of the neural network during its operation. In our calculations, the

average spiking rate is derived from the spiking rates of various

spike tensors.

Finally, the overall energy consumption for the Spiking Neural

Network is computed using the following equation:

Total Energy Consumption = EA × T × R+ EMAC

×(Total Multiply-Accumulate Operations)

where T represents the time step, and R is the spiking rate.

We posit that under specific conditions (i.e., EA × T × R <

EMAC), Spiking Neural Networks demonstrate a favorable energy

consumption profile.

4.3 Main properties

We ablate SpikeAtConv using the default settings from Section

4.1 and observe some interesting phenomena.

4.3.1 Comparative analysis of SPK block variants
To evaluate the performance of different SPK blocks,

we selected SISA as the Attention SpikeMerge Block.

Our experiments on the CIFAR-100 dataset systematically

assessed various SPKBlock configurations, focusing on the

impact of different simulation time windows, surrogate

gradient functions, and the number of branches on

model accuracy. Table 1 presents a detailed comparison of

these configurations.

The analysis of SL Block configurations revealed that increasing

the simulation time window T generally enhances model

performance. For instance, the accuracy improved from 66.0% at

T = 1 to 70.9% at T = 4. However, when T was further increased to

T = 8, there was a slight performance drop to 70.4%. This indicates

an optimal range for T, beyond which the benefits diminish, likely

due to increased complexity and potential overfitting.

Additionally, the choice of surrogate gradient functions

significantly impacted performance. The Atan function

outperformed the Sigmoid function under equivalent settings. For

example, with T = 1 and τ = 2.0, the accuracy with Atan was

67.1%, compared to 66.0% with Sigmoid. This suggests that the

Atan function provides a more effective gradient approximation

for training spiking neurons under these specific conditions.

In the MBPL Block experiments (see Table 2), we observed

that increasing the number of branches markedly enhanced

performance. A configuration with four branches and varied

voltage thresholds achieved a top-1 accuracy of 74.4%, significantly

higher than simpler configurations. However, an excessive number

of branches, such as eight, resulted in a performance drop to

59.0%. This decline was attributed to the insufficient training of

the numerous branches, which introduced noise and hampered the

model’s learning capacity.

In our CIFAR-100 experiments, we only listed representative

examples. For the HSL Block, when using the same number of LIF

branches, its performance was similar to that of the MBPL Block.

However, it is either computationally more complex or less scalable,

so we did not list more detailed results.

Through extensive experimentation, we discovered that the

MBPL module exhibited the best overall performance. For each

module, we identified the optimal hyperparameter settings and

structural configurations specific to CIFAR-100. These preliminary

results allowed us to eliminate numerous suboptimal designs

and provided valuable insights for further experiments on more

complex datasets like ImageNet-1K.

Table 3 provides a detailed performance analysis of various

SPKBlock configurations combined with Attention SpikeMerge

Blocks on the ImageNet-1K dataset. The results indicate that

the MBPL modules consistently outperform other configurations,

demonstrating superior accuracy and scalability. This establishes

MBPL as our default choice due to its ability to effectively integrate

information acrossmultiple LIF neurons, thereby compensating for

potential deficiencies in individual neuron processing capabilities.

Additionally, it is noted that the RL module outperforms the

SL module in terms of performance. This improvement can be

attributed to the use of a residual structure, where features are

split into two branches after passing through the first LIF neuron.

The main branch is further processed by the second LIF neuron,

while the auxiliary branch retains the original features. This design

effectively mitigates information loss and enhances the learning

capacity by preserving and refining feature representations.

However, despite the theoretical advantages, we found that

DCL modules prevented the model from being fully trained. After

40 epochs, the loss of the training set stopped decreasing. Even

lowering the learning rate, adjusting the position of the SPK

module, or adding a normalization layer did not resolve this issue.

This is a common problem encountered when processing spiking

signals, where the neural spike module is prone to crashing in the

existing deep learning training framework.

Following the selection of MBPL, we further examined the

impact of different Attention SpikeMerge Blocks. Notably, the

BDSA structure, characterized by its simplicity, allows for a

significant simplification of the attention computation. By treating

the Q, K, and V matrices as identical binary matrices composed

of 0s and 1s, the matrix multiplication process is streamlined.

Although this simplification led us to anticipate a reduction in

performance compared to the more complex SISA structure, the

results were surprising. The MBPL+BDSA configuration exhibited

only a marginal decrease in performance, suggesting that even with

a simplified attention mechanism, the model maintains a robust

level of effectiveness. This finding underscores the potential of

BDSA to offer computational efficiency without substantial loss in

accuracy, paving the way for further algorithmic optimizations.

4.3.2 Comparison of SpikeAtConv and other
models on ImageNet-1K

We evaluated the performance of our SpikeAtConv

model at different scales (Tiny, Base, and Large) on the

ImageNet-1K dataset. Each model was trained for 200
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TABLE 1 Accuracy for di�erent SPKBlock on CIFAR-100.

Model Top-1 Acc (%) SPKBlock T τ V Threshold Number of
branches

Surrogate

ResNet-18 75.4 — — — — — —

ResNet-18 64.3 SL 1 4.0 1.0 1 Sigmoid

ResNet-18 66.0 SL 1 2.0 1.0 1 Sigmoid

ResNet-18 67.1 SL 1 2.0 1.0 1 ATan

ResNet-18 70.9 SL 4 2.0 1.0 1 Sigmoid

ResNet-18 70.4 SL 8 2.0 1.0 1 Sigmoid

ResNet-18 71.0 RL 1 2.0 1,2 2 ATan

ResNet-18 74.4 MBPL 2 2.0 0.2,1,2,4 4 ATan

ResNet-18 70.6 HSL 2 2.0 1,2 2 ATan

ResNet-18 70.3 DCL 2 2.0 1,1 2 ATan

Surrogate denotes surrogate gradient, a smooth approximation used to train spiking neural networks.

TABLE 2 MBPL Block experiments on CIFAR-100.

Model Top-1 Acc (%) SPKBlock T τ V Threshold Number of
branches

Surrogate

ResNet-18 71.7 MBPL 1 2.0 1,2 2 ATan

ResNet-18 71.9 MBPL 1 2.0 1,2,4 3 ATan

ResNet-18 72.5 MBPL 1 2.0 0.2,1,2,4 4 ATan

ResNet-18 72.2 MBPL 1 2.0 1,2,4,6 4 ATan

ResNet-18 73.8 MBPL 2 2.0 0.2,1,2,4 4 Sigmoid

ResNet-18 74.4 MBPL 2 2.0 0.2,1,2,4 4 ATan

ResNet-18 73.6 MBPL 4 2.0 0.2,1,2,4 4 ATan

ResNet-18 59.0 MBPL 2 2.0 0.2,1,2,3,4,5,6,7 8 ATan

epochs with an image input resolution of 224. Our findings

indicate that while the Large model achieves slightly higher

accuracy than the Base model, further improvements are

anticipated with increased image resolution and additional

training epochs.

Table 4 presents a detailed comparison of the performance

metrics, including top-1 and top-5 accuracy, the number of

parameters, and power consumption for each model. The

SpikeAtConv models are also compared against state-of-the-art

models like Meta-SpikeFormer and SpikFormer.

From the table, it is evident that our Large SpikeAtConv

model achieves a top-1 accuracy of 81.23%, outperforming both

Meta-SpikeFormer (79.1%) and SpikFormer (74.8%). The Base

model also shows competitive performance with a top-1 accuracy

of 80.53%. Despite having fewer parameters, the Tiny model

maintains a respectable top-1 accuracy of 76.58%, demonstrating

the efficiency of our approach.

In terms of power consumption, the Large model consumes

32.0 mJ, which, while higher than the Base model’s 14.2 mJ,

is still competitive when compared to traditional models like

RMP-SNN-VGG-16 (64.9 mJ) and Dspike-VGG-16 (80.3 mJ). The

Tiny model stands out with the lowest power consumption of

TABLE 3 Accuracy for di�erent SPKBlock and attention SpikeMerge Block

on ImageNet1K.

Top1 (%) Top5 (%)

SL+SISA 74.91 91.94

RL+SISA 78.35 93.73

MBPL+SISA 80.53 94.17

HSL+SISA 78.44 93.75

DCL+SISA 77.66 93.83

MBPL+BDSA 77.63 93.63

spike-free 81.13 94.30

3.8mJ, further highlighting the efficiency of smaller models without

a significant sacrifice in accuracy.

The comparison indicates that SpikeAtConv models,

particularly the Large variant, provide superior performance

on ImageNet-1K while maintaining a balance between accuracy,

model complexity, and energy efficiency. This demonstrates the

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2025.1536771
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liao et al. 10.3389/fnins.2025.1536771

TABLE 4 Performance of di�erent models on ImageNet-1K.

Model T Top-1 (%) Top-5 (%) Param (M) Power (mJ)

RMP-SNN-VGG-16 (Han

et al., 2020)

40.96 73.09 — — —

Dspike-VGG-16 (Li et al.,

2021b)

5 71.24 — — —

Spike-driven Transformer

(Yao et al., 2023)

4 77.07 — 66.3 6.1

SpikFormer (Zhou et al.,

2023)

4 74.81 — 66.3 21.5

Meta-SpikeFormer (Yao et al.,

2024)

1 79.1 — 55.4 13.0

Base 1 80.53 94.17 53.4 14.2

Base 2 80.70 94.89 53.4 28.2

Tiny 1 76.58 92.74 14.6 3.8

Large 1 81.23 95.41 116.1 32.0

effectiveness of our approach in leveraging SNNs for large-scale

image classification tasks, making them a promising choice for

applications where both performance and energy consumption are

critical factors.

5 Discussion

In summary, our results highlight two key insights. First,

a well-designed SNN architecture can significantly enhance

the performance of SNNs. Second, integrating SNNs with

advanced deep learning architectures can further improve

their effectiveness.

For the first point, we observed that SNN modules based on

LIF neurons tend to lose a considerable amount of information.

This refers not only to information relevant to classification

tasks but also to high-level semantic information present in

images, such as color, contours, and other detailed features.

While such information might be redundant for specific

classification outcomes, it is crucial for a comprehensive

understanding of the input data. The SNN module functions

similarly to an activation function, filtering out these details.

However, this filtering can inadvertently lead to performance

degradation by omitting potentially valuable contextual

information. To address this, we adopted an approach akin

to early CNNs by setting up parallel LIF neurons with different

parameters. This setup captures varying levels of information,

thereby maximizing the richness of information extracted by

the SNN.

Regarding the second point, our experiments demonstrate

that the reasonable integration of SNN modules can have

minimal impact on the original performance of the neural

network. However, we also noticed that the loss of the

SNN network decreased more slowly in the early stages of

training compared to networks without SNNs (Figure 4). This

suggests that while SNNs have the potential to achieve excellent

results in visual tasks, further research is needed to develop

training methods and network modules that effectively cooperate

with SNNs.

Traditional deep learning architectures like CNNs and

Transformers have been extensively researched, leading to

the development of numerous auxiliary layers, targeted data

augmentation techniques, and pre-training strategies that ensure

these networks are well-trained and stable. Similarly, SNNs require

further in-depth studies to develop analogous methods that can

ensure sufficient training and stability during the training process.

This includes designing specialized layers, data augmentation

techniques, and training protocols tailored specifically for SNNs to

unlock their full potential.

In addition, we designed the BDSA module based on

the hypothesis that the complexity of traditional self-attention

mechanisms might not yield significant benefits when processing

simple spiking signals. Consequently, BDSA simplifies the

attention block considerably. Surprisingly, the results exceeded

our expectations, as the BDSA module did not result in a

substantial performance drop. This suggests that for spiking signals,

simpler and more suitable attention blocks can be explored. Such

exploration could not only reduce training and inference costs

but also deepen our understanding of spiking signals and the

reasoning mechanisms of the human brain. This line of inquiry

opens up new avenues for developing efficient and interpretable

SNN architectures.

6 Conclusion

In this study, we developed a novel spiking neural network

model named SpikeAtConv, which achieved SOTA results among

SNN models on the ImageNet-1K dataset. Our approach involved

designing a series of SPK blocks to convert continuous hidden

states into neural spikes. Through extensive experimentation, we

identified the optimal SPK block configuration and integrated it

with the MaxVit architecture. This combination enabled us to

significantly advance the performance of SNNs.
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FIGURE 4

Comparison of loss between MaxViT and SpikeAtConv. We present the training and validation loss trajectories for our SpikeAtConv and MaxViT

models, with a particular emphasis on the loss variations during the first 10 epochs. Notably, SpikeAtConv exhibits a slower decrease in loss during

the initial five epochs. Additionally, the application of data augmentation techniques, such as auto-augmentation and mixup, results in the training

loss consistently remaining higher than the test loss.

One of our key findings was that even when using a degenerate

self-attention mechanism, the performance of our model did not

degrade significantly. This suggests that our SPK blocks are highly

effective in capturing and processing information, even without the

full complexity of self-attention.

Additionally, our experiments demonstrated that a well-

designed SNN architecture can substantially enhance performance.

By setting up parallel LIF neurons with different parameters,

we were able to capture various levels of information, thereby

enriching the data representation within the SNN.

Looking forward, we aim to further refine the design of SPK

blocks and explore improvements in backpropagation techniques.

These enhancements will help ensure that SPK blocks are fully

trained and can further improve the performance and stability of

SNNs across various tasks. Moreover, we recognize the need for

developing specialized training methods, auxiliary layers, and data

augmentation techniques tailored specifically for SNNs, akin to the

extensive research conducted for CNNs and Transformers.

In conclusion, our work not only introduces a powerful new

SNN model but also lays the groundwork for future research

in optimizing SNN architectures and training methodologies.

We believe that with continued exploration and innovation,

SNNs can achieve even greater performance and applicability in

diverse domains.
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