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Introduction: Understanding the impact of hypoxic conditions on cognitive

functions, including English listening comprehension, has garnered increasing

attention due to its implications for high-altitude education and cognitive

resilience. Traditional research in this domain has often relied on behavioral

assessments or simple physiological metrics, which lack the granularity to

capture the neural underpinnings of cognitive performance.

Methods: This study proposes a novel framework combining

electroencephalography (EEG)-based neural decoding with the Dynamic

Linguistic Enhancement Model (DLEM) to investigate English listening

comprehension in hypoxic environments. DLEM integrates adaptive vocabulary

acquisition, grammar contextualization, and cultural embedding, leveraging

EEG to provide real-time, personalized insights into linguistic processing.

Results: The experimental results demonstrate significant improvements in

comprehension accuracy and cognitive load management, particularly under

adaptive curriculum strategies outlined by the Contextual Augmented Learning

Strategy (CALS).

Discussion: By bridging physiological responses with advanced educational

methodologies, this work contributes a scalable and flexible approach to

enhancing cognitive performance under hypoxia, aligning with the goals of

understanding both physiological and pathological responses to high-altitude

conditions.
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1 Introduction

Understanding how hypoxic conditions affect cognitive processes, such as English

listening comprehension, is crucial due to its implications in environments like aviation,

deep-sea diving, and medical conditions (Agung and Surtikanti, 2020). This research

area not only advances theoretical insights into neural mechanisms but also contributes

to developing adaptive systems for individuals working under such conditions (Liang,

2021). Electroencephalography (EEG) has emerged as a vital tool for studying real-

time brain activity during cognitive tasks (Yao and Ma, 2021). By examining EEG

patterns, researchers can identify the specific neural correlates and disruptions caused

by hypoxia (Hu and Yao, 2021). Such investigations provide opportunities for designing

mitigation strategies, enhancing cognitive resilience in hypoxic scenarios, and improving

human performance in extreme environments. This review outlines the evolution of

methods in this field, highlighting limitations and opportunities across three major

methodological phases (Kashinathan and Aziz, 2021).
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Early studies of EEG in cognitive tasks under hypoxic

conditions relied heavily on traditional symbolic AI and

knowledge-based approaches to model human cognition (Zheng

et al., 2021). These methods focused on understanding predefined

patterns and relationships, often using rule-based systems to

interpret EEG data (Chen, 2021) Knowledge representation

frameworks were employed to classify brainwave patterns

associated with various cognitive states, including attentional

focus and memory retention (Lee and Hwang, 2022). While these

approaches laid foundational insights into neural mechanisms,

they were constrained by the rigidity of predefined rules

and limited capacity to account for the dynamic nature of

cognitive processes under stressors like hypoxia (Sun et al.,

2020). Moreover, manual curation of EEG features was labor-

intensive and failed to capture subtle temporal variations, reducing

their practical applicability to real-world scenarios (Richards

and Pun, 2021). The emergence of data-driven and machine

learning techniques addressed many limitations of symbolic

methods by enabling automated feature extraction and adaptive

modeling (Sihn and Kim, 2022). Researchers began employing

classifiers such as support vector machines (SVM) and random

forests to distinguish EEG patterns corresponding to varying

degrees of hypoxia (Hendriks-Balk et al., 2020). Machine

learning models facilitated the identification of nuanced EEG

biomarkers of cognitive degradation, offering greater flexibility

and scalability (Karlen-Amarante et al., 2024). However, these

methods were often dependent on extensive labeled datasets and

were sensitive to noise inherent in EEG recordings (Iturriaga

et al., 2023). Furthermore, the lack of interpretability in these

models posed challenges in understanding the underlying

neurophysiological processes and tailoring interventions (Iturriaga

and Castillo-Galán, 2022).

In recent years, deep learning and pre-trained models

have revolutionized EEG analysis in hypoxic cognitive research.

Convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) have been utilized to capture spatiotemporal

dynamics of EEG signals, while transformer-based models leverage

self-attentionmechanisms for contextual encoding of brain activity.

These methods outperform traditional machine learning models

in accuracy and robustness, especially in handling complex,

high-dimensional EEG data. Pre-trained models fine-tuned on

task-specific datasets further enhance transfer learning, enabling

cross-population studies. Despite their promise, these approaches

often require significant computational resources and large-

scale datasets, which may not always be feasible in hypoxic

research. The opacity of deep models raises concerns about the

interpretability and generalizability of findings. To overcome these

limitations, we propose a novel approach that integrates the

interpretability of symbolic methods, the adaptability of machine

learning, and the sophistication of deep learning models. By

leveraging a hybrid architecture, our method aims to provide

high accuracy in EEG analysis while maintaining computational

efficiency and neurophysiological relevance. This approach aligns

with the need for robust, scalable, and interpretable solutions

in understanding English listening comprehension under hypoxic

conditions.

We summarize our contributions as follows:

• Introduces a hybrid architecture combining symbolic

reasoning with deep learning for enhanced interpretability

and accuracy.

• Designed for multi-scenario adaptability, including varying

hypoxic levels, ensuring high efficiency and generalizability.

• Demonstrates superior performance in decoding EEG

representations, with statistically significant improvements in

accuracy and robustness.

2 Related work

2.1 EEG analysis in language
comprehension

The study of electroencephalography (EEG) has become

a cornerstone in understanding cognitive processes, including

language comprehension (Ariastuti and Wahyudin, 2022). EEG

allows researchers to measure brain activity with high temporal

resolution, enabling the examination of neural responses to

linguistic stimuli (Wu et al., 2022). A significant body of research

focuses on the temporal dynamics of event-related potentials

(ERPs) during language processing tasks (Zou et al., 2021). For

example, the N400 component is widely studied for its role in

semantic processing, revealing insights into how the brain resolves

meaning inconsistencies (Coleman, 2021). Similarly, the P600

component has been linked to syntactic processing and reanalysis

during sentence comprehension (Aoyama, 2021). These findings

underscore the importance of EEG in mapping the temporal

stages of language comprehension (Elliott and Hodgson, 2021).

Furthermore, frequency-based EEG analyses, such as alpha and

theta power modulations, have been explored to understand

attentional and memory mechanisms during language tasks (Zhao

et al., 2020). While these studies provide a robust foundation,

the impact of external factors, such as environmental stressors

or altered physiological conditions like hypoxia, remains less

understood (Simamora and Oktaviani, 2020). Examining how

hypoxia modulates these EEG markers could reveal how adverse

conditions affect language processing (Iturriaga, 2023).

2.2 Cognitive impairment under hypoxia

Hypoxia, characterized by reduced oxygen availability,

has profound effects on brain function, including cognitive

and linguistic abilities (Bae and Park, 2020). Existing research

highlights how hypoxia impacts attention, memory, and executive

function (Yunita and Maisarah, 2020). Studies employing

neuroimaging and behavioral assessments have demonstrated

significant cognitive deficits under acute and chronic hypoxic

conditions (Septiyanti et al., 2020). These include slower reaction

times, decreased working memory capacity, and impaired

decision-making. Despite these findings, there is a notable

gap in the literature concerning hypoxia’s effects on specific

cognitive domains such as language comprehension (Seo,

2020). Investigating this relationship is essential, as language

comprehension relies on the integration of multiple cognitive
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resources, including attention and working memory. Hypoxia-

induced changes in brain physiology, such as reduced cerebral

oxygenation and altered neurotransmitter dynamics, may disrupt

these processes (Rusmiyanto et al., 2023). EEG studies could

provide valuable insights by identifying how hypoxia modulates

neural correlates of language comprehension, such as ERP

components and oscillatory activity patterns (Alfallaj et al., 2021).

2.3 Multimodal interaction of stressors

The interaction of hypoxia with other stressors, such as

cognitive load or emotional stress, presents a complex challenge to

understanding brain function (Sallam, 2023). Multimodal studies

investigating combined stress effects are relatively sparse, yet

crucial for understanding real-world scenarios (Zein et al., 2020).

Cognitive tasks, such as language comprehension, often occur

under conditions involving multiple concurrent demands. The

interplay between hypoxia and additional stressors may exacerbate

neural inefficiencies, leading to amplified cognitive deficits (Shaikh

et al., 2023). Research utilizing EEG has shown that stressors such

as mental fatigue or anxiety can modulate brainwave patterns,

particularly in the alpha and beta frequency bands (Renganathan,

2021). The integration of EEG with other physiological measures,

such as heart rate variability or blood oxygen saturation, could

provide a holistic view of how hypoxia interacts with stress (Syakur

et al., 2020). Moreover, advanced analytical techniques, such as

machine learning models, could be employed to decode complex

neural patterns arising from multimodal stress conditions (Sofyan,

2021). This direction not only addresses theoretical questions but

also has practical implications for environments where individuals

face simultaneous cognitive and physiological challenges.

3 Method

3.1 Overview

In recent years, English education has become a critical

area of focus due to its global significance in academic,

professional, and social contexts. This subsection provides an

overview of the methodology employed to enhance English

learning outcomes, particularly in environments where English

is taught as a second language (ESL). We aim to tackle

challenges in comprehension, expression, and fluency through the

integration of novel pedagogical strategies, leveraging technological

advancements, and understanding linguistic nuances.

The upcoming subsections will address various facets of our

approach. In Section 3.2, we formalize the problem of English

education by analyzing common linguistic barriers and presenting

a structured framework to model them. This foundational

section establishes the key challenges in vocabulary acquisition,

grammar comprehension, and cultural fluency, emphasizing their

interconnected nature. In Section 3.3, we introduce a novel

framework, hereafter referred to as the Dynamic Linguistic

Enhancement Model (DLEM). This model builds upon insights

from cognitive science and language processing to deliver adaptive

and personalized learning pathways. Key components of DLEM

include contextualized learning environments and multi-modal

interactions, which are meticulously designed to simulate real-

world communication. In Section 3.4, we propose an innovative

strategy, termed the Contextual Augmented Learning Strategy

(CALS), to integrate our model effectively into diverse educational

settings. This strategy focuses on adaptive curriculum design,

dynamic feedback systems, and the utilization of gamification

to foster learner engagement and motivation. The emphasis is

on scalability and flexibility, ensuring applicability across varied

cultural and institutional contexts.

3.2 Preliminaries

English education, particularly in environments where it is

taught as a second language, presents unique challenges that

require careful analysis and systematic formalization. To address

these challenges, we introduce a mathematical and conceptual

framework that captures the complexities of language acquisition,

comprehension, and usage. The English learning process can be

represented as a multi-stage system:

S = {V,G, C}. (1)

In this framework, V represents the domain of vocabulary

acquisition, encompassing the process of learning and retaining

new words. G denotes the grammatical structures of the

language, including syntax and morphology, which govern

sentence construction. C embodies the cultural and contextual

understanding that is essential for meaningful and effective

language use. These components interact dynamically within

the cognitive capabilities of the learner and the environmental

influences they encounter, creating a complex and interdependent

system. This framework provides a structured approach to

understanding and addressing the multifaceted nature of English

language learning. The vocabulary learning process can be modeled

as a stochastic process, where the probability of acquiring a word

wi at time t is dependent on exposure E(wi, t) and reinforcement

R(wi, t). Formally:

P(wi|t) = f (E(wi, t),R(wi, t)), (2)

where f is a monotonic function that combines exposure

and reinforcement effects. Reinforcement often depends on the

frequency and utility of wi in specific contexts:

R(wi, t) = α · freq(wi)+ β · utility(wi), (3)

with α and β as tunable parameters representing learner-specific

sensitivity. Grammar is structured around a set of syntactic

rules R = {r1, r2, . . . , rn}, where ri defines transformations or

associations between linguistic constructs. The learner’s ability to

internalizeR is influenced by cognitive factors such asmemory and

reasoning capabilities. DefineP(ri, t) as the probability ofmastering

rule ri over time:

P(ri, t) =

∫ t

0
engage(ri, τ ) · feedback(ri, τ ) dτ , (4)
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FIGURE 1

Dynamic Linguistic Enhancement Model (DLEM): an integrated framework for adaptive multimodal learning, leveraging Global Feature Alignment

(GFA) and Local Feature Imagination (LFI) to enhance vocabulary, grammar, and cultural fluency. The model employs multimodal processing units,

feature alignment mechanisms, and transformer-based embedding systems to deliver personalized and contextual second-language acquisition.

where engage(ri, τ ) represents active interaction with ri, and

feedback(ri, τ ) captures corrective signals received during learning.

The contextual use of English involves the integration of vocabulary

and grammar with socio-cultural norms.Wemodel this integration

using a latent semantic spaceL, where each word or phrasewi maps

to a point vi ∈ R
d. Contextual similarity between two phrases wi

and wj is measured by:

sim(wi,wj) = cos(θ) =
vi · vj

‖vi‖‖vj‖
. (5)

Cultural fluency is then represented as the learner’s capacity to

form coherent trajectories inL, connecting semantic and pragmatic

elements effectively. Given a target proficiency level T defined

across the axes of vocabulary, grammar, and context, the objective

is to design an optimal learning pathway L∗ such that:

L∗ = argmax
L

∫ T

0
U(L(t)) dt, (6)

where U(L(t)) denotes the utility function capturing linguistic

growth at time t.

3.3 Dynamic Linguistic Enhancement
Model

To advance the field of English education and address

multifaceted challenges in second-language learning, we propose

the Dynamic Linguistic Enhancement Model (DLEM). This

innovative framework synergizes cognitive science, adaptive

learning methodologies, and computational advancements to

deliver a personalized, structured, and engaging approach to

language acquisition (as shown in Figure 1). Below, we detail its

three core innovations as following.

3.3.1 Dynamic vocabulary graphs for adaptive
learning

The vocabulary acquisition module is built upon the concept

of a dynamically evolving knowledge graph Gvocab = (V, E),

which provides a structured representation of words and their

interrelations to facilitate contextual and personalized vocabulary

learning. In this graph, V represents the nodes, where each node

corresponds to a vocabulary term, and E denotes the edges,

capturing semantic, syntactic, or phonetic relationships. The model

dynamically adapts the graph structure and learning strategies to

the individual learner’s progress through a personalized transition

probability matrix P(t), which updates over time based on

performance and engagement. The learning probability of a specific

vocabulary node vi ∈ V at time t is governed by the relationship:

P(vi, t) =

∑

vj∈N(vi)
Pij(t) · ψ(vj)

∑

vk∈V
ψ(vk)

, (7)

where N(vi) is the set of neighboring nodes (contextually

related words), Pij(t) is the transition probability from vj to vi, and

ψ(vj) represents the contextual relevance score of vj to the learner’s

current state. To improve long-term retention and adapt to user

interactions, an adaptive reinforcement mechanism is introduced.
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FIGURE 2

Hybrid Grammar Contextualization Engine (HGCE): a multimodal framework integrating visual, audio, and linguistic features through low-rank

multimodal fusion. The system generates unified multimodal representations, leveraging low-rank factorization across modalities for e�cient feature

extraction, which informs predictions. This engine bridges neural network-based parsing and symbolic validation for robust grammar

contextualization.

The transition probabilities P(t) are updated iteratively through:

Pij(t + 1) = Pij(t)+ ζ · κij ·A(vi, t), (8)

where ζ is the learning rate, κij is the Kronecker delta indicating

direct interaction between vi and vj, and A(vi, t) quantifies the

learner’s performance on vi, such as accuracy or frequency of

correct usage. Furthermore, a temporal decay function λ(t) is

incorporated to account for the natural forgetting curve, modifying

ψ(vj) dynamically as:

ψ(vj, t) = ψ(vj, t − 1) · (1− λ(t))+ β · F(vj, t), (9)

where β is a reinforcement factor, and F(vj, t) measures

recent interactions with vj. The vocabulary graph also integrates

a semantic clustering mechanism, grouping words into thematic

clusters Ck ⊆ V, each defined by a centroid ck, and dynamically

recalculates these centroids based on usage statistics:

ck =

∑

vi∈Ck
ψ(vi) · vi

∑

vi∈Ck
ψ(vi)

, (10)

where vi is the embedding vector of vi. By aligning the learner’s

progression with these semantic clusters, the system enhances

thematic learning and contextual reinforcement, fostering both

breadth and depth in vocabulary acquisition.

3.3.2 Hybrid Grammar Contextualization Engine
The grammar module is designed to integrate neural network-

based learning and symbolic grammar rules, forming a hybrid

framework that leverages both statistical learning and explicit

rule-based syntax constraints (as shown in Figure 2). This engine

comprises two principal components: a neural parser, represented

as LSTMparse, and a symbolic validator, denoted as CRFvalidate. The

parser identifies hierarchical sentence structures by learning latent

representations of syntactic patterns, while the validator ensures

contextual consistency by applying explicit rules and relationships

from the syntactic setR and contextual embeddings C. The model’s

objective is to maximize the conditional likelihood:

Lgrammar =
∑

t

log P(St | Rt , Ct), (11)

where St represents the sentence structure at time t, Rt is the

active rule set, and Ct is the corresponding context vector derived

from embeddings. The neural parsing component LSTMparse

outputs a probability distribution over parse trees T:

P(T | S) =

n
∏

i=1

σ (W · hi + b), (12)

where hi is the hidden state of the LSTM at position i, W is a

learnable weight matrix, and σ is the activation function. To align

predictions with predefined syntactic rules, the CRF layer imposes

constraints by computing a score for valid sentence parses:

score(T,R) =
∑

(i,j)∈E

αij ·R(i, j), (13)
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where E denotes the edges in the parse tree, αij represents

transition probabilities between nodes i and j, andR(i, j) evaluates

rule validity.

The integration of context Ct further enhances the adaptability

of the grammar engine by embedding semantic nuances into rule

application. Contextual embeddings are computed as:

ct =
1

|Wt|

∑

w∈Wt

ew, (14)

where Wt is the set of words in the sentence at time t, and ew

is the embedding of word w. These embeddings are dynamically

updated using attention weights βi to prioritize contextually

relevant terms:

cattnt =

n
∑

i=1

βi · ewi , βi =
exp(ewi · q)

∑n
j=1 exp(ewj · q)

, (15)

where q is a query vector representing the task focus.

By combining these mechanisms, the grammar module enables

robust syntactic learning whilemaintaining contextual adaptability,

ensuring grammatical accuracy and relevance in diverse linguistic

environments. Furthermore, a feedback loop reinforces correct

parses by updating Rt based on validated structures, facilitating

adaptive learning and refinement of syntactic understanding over

time.

3.3.3 Cultural embedding for cross-cultural
fluency

To effectively integrate linguistic nuances with cultural context,

DLEM employs a sophisticated cultural embedding space Lcultural,

constructed using transformer-based architectures. This space

encodes words, phrases, and expressions as multi-dimensional

vectors vi ∈ R
d, enriched with cultural attributes cj that reflect

specific sociolinguistic and cultural features. Each embedding is

dynamically adapted to capture cross-cultural intricacies, modeled

as:

vculturali = vi +

k
∑

j=1

γj · cj, (16)

where γj are attention weights derived through a self-attention

mechanism, ensuring that culturally relevant attributes cj are

emphasized according to the context of use. These attributes are

generated from transformer encoder layers trained on diverse

multilingual and multimodal datasets, enabling the model to infer

cultural subtleties embedded in language.

To facilitate learning, the model aligns the embeddings of

learner expressions vlearneri with target cultural embeddings vnativei .

The similarity metric, defined as:

sim(vlearneri , vnativei ) =
vlearneri · vnativei

‖vlearneri ‖‖vnativei ‖
, (17)

is optimized to maximize alignment, ensuring that learners

internalize culturally appropriate usage patterns. This alignment is

guided by a loss function Lalignment, which penalizes discrepancies

between learner and target embeddings:

Lalignment = −
1

N

N
∑

i=1

log sim(vlearneri , vnativei ). (18)

Cultural embeddings are further enhanced by integrating

contextual elements derived from the learning environment.

Context vectors qt are constructed dynamically as:

qt =

m
∑

k=1

δk · xk, (19)

where xk are feature vectors representing situational cues (e.g.,

location, time, interlocutor profile), and δk are their respective

importance weights. This enables DLEM to adapt its cultural

encoding in real time, ensuring relevance to the learner’s immediate

context.

The optimization objective of DLEM integrates vocabulary,

grammar, and cultural components through a utility function:

U = ω1 · Uvocab + ω2 · Ugrammar + ω3 · Ucultural, (20)

where Ucultural evaluates the learner’s alignment with cultural

embeddings as:

Ucultural =
1

|L|

|L|
∑

i=1

sim(vlearneri , vnativei )·exp
(

−κ · d(vlearneri , vnativei )
)

,

(21)

with d(·, ·) representing a distance metric and κ a sensitivity

parameter. This formulation emphasizes both similarity and

proximity in embedding space, fostering cultural fluency and

adaptability. Through its nuanced approach to embedding cultural

attributes, DLEM empowers learners to achieve linguistic mastery

within the sociocultural contexts of their target languages.

3.4 Contextual Augmented Learning
Strategy

The Contextual Augmented Learning Strategy (CALS)

introduces a comprehensive framework designed to facilitate the

seamless integration of advanced linguistic models into diverse

educational and digital platforms (as shown in Figure 3). This

section highlights the three key innovations in CALS: Adaptive

Curriculum Design, Dynamic Feedback Systems, and Gamified

Engagement Frameworks.

3.4.1 Adaptive curriculum design
CALS ensures a highly personalized learning experience by

dynamically tailoring the curriculum to align with each learner’s

evolving proficiency. At any given time t, the learner’s linguistic

state is captured by the vector Lt = (Xt ,Yt ,Zt), representing

the learner’s levels across three critical dimensions: vocabulary

proficiency (Xt), grammatical comprehension (Yt), and cultural-

contextual understanding (Zt). The system continually evaluates

the learner’s state against a target proficiency profile Ldesired, defined

as the optimal levels of linguistic competence. The proficiency gap

is quantified as:

1t = ‖Ldesired − Lt‖2, (22)

where ‖ · ‖2 represents the Euclidean distance, ensuring a

holistic measurement of the gap across dimensions. To bridge
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FIGURE 3

Contextual Augmented Learning Strategy (CALS) architecture: The diagram illustrates the core components of CALS, showcasing the sequential data

processing pipeline. Starting with input signals, depthwise convolution for feature extraction, followed by average pooling for dimensionality

reduction. Positional encoding integrates positional encoding to capture contextual relationships within the transformer network, enabling advanced

linguistic modeling and adaptive learning.

this gap, CALS leverages a dynamic optimization approach by

minimizing a weighted loss function:

Ltotal = α(t) · Lvocab + β(t) · Lgrammar + γ (t) · Lculture, (23)

where Lvocab, Lgrammar, and Lculture are losses associated

with vocabulary acquisition, grammatical proficiency, and cultural

understanding, respectively. The weights α(t), β(t), and γ (t)

adapt dynamically based on diagnostic assessments and learner

progress, ensuring that emphasis is placed on areas requiring the

most improvement. Furthermore, CALS incorporates a predictive

feedback loop to anticipate future learning trajectories. The

predicted proficiency vector Lt+1 is modeled as:

Lt+1 = Lt + η · Gt , (24)

where Gt = (GX ,GY ,GZ) represents the gradient of learning

improvements across the dimensions, and η is a learning rate

determined by the learner’s responsiveness. To refine this process

further, CALS employs an iterative gradient update mechanism:

Lt+1 = Lt − λ∇Ltotal(Lt), (25)

where λ is an adaptive step size adjusted based on the

learner’s learning velocity and performance variability. This

ensures convergence toward the desired proficiency with maximal

efficiency. CALS also uses probabilistic sampling to select the next

instructional focus area, balancing reinforcement of strong skills

and addressing weaker areas. By integrating real-time analytics,

predictive modeling, and dynamic loss optimization, the adaptive

curriculum fosters a precise and scalable approach to language

learning tailored for individual progress.

3.4.2 Dynamic Feedback Systems
CALS employs a sophisticated multi-channel feedback system

designed to provide learners with actionable insights and maintain

their engagement throughout the learning process (as shown in

Figure 4). Feedback at any time t is generated as:

Ft = Ct + η · Et , (26)

where Ct represents accuracy-based feedback derived from

the learner’s performance metrics, Et captures engagement-driven

feedback reflecting effort and persistence, and η is a scaling

factor dynamically calibrated to balance between cognitive and

affective dimensions of learning. The accuracy-based feedback Ct

is computed as:

Ct =
1

N

N
∑

i=1

δi · (1− Ei) , (27)

where δi denotes correctness for item i, and Ei accounts

for effort normalized across all items. This ensures that learners

receive constructive feedback, even on partially correct attempts.

Engagement-driven feedback Et is modeled using learner-specific

persistence scores and activity patterns:

Et = ρ ·

(

At

Tt

)

, (28)
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FIGURE 4

Dynamic Feedback Systems in CALS: The diagram visualizes the multi-channel feedback mechanism, highlighting the interaction of accuracy-based

(Cov_opt) and engagement-driven (Cov_att) feedback components. Matrix product and Hadamard product operations process query (Q), key (K),

and value (V) tensors, enabling real-time adaptation between low and high optimization states (Opt_sat). The system dynamically integrates learner

engagement and performance metrics to provide immediate, delayed, and aggregated feedback for a personalized learning experience.

where At is the learner’s active time during the session, Tt
is the total allotted session time, and ρ is a coefficient capturing

the learner’s historical engagement trends. Feedback is delivered

in three distinct forms: immediate, delayed, and aggregated.

Immediate feedback involves corrective signals provided in real-

time, such as hints or explanations for errors detected during

assessments. For instance, when a vocabulary error is identified,

the system suggests alternative words or usage contexts to reinforce

understanding. Delayed feedback is delivered post-session, offering

a comprehensive summary of the learner’s performance across

dimensions such as vocabulary (Xt), grammar (Yt), and cultural

understanding (Zt), modeled as:

Dt =
1

K

K
∑

k=1

(

Xt,k + Yt,k + Zt,k

)

, (29)

whereK is the number of completed tasks. Aggregated feedback

spans multiple learning sessions, providing long-term trends and

progress insights. This aggregated feedback leverages predictive

analytics to forecast learning trajectories:

F̂t+1 = Ft + γ · ∇Ft , (30)

where γ is a learning rate for predictive adjustments and

∇Ft is the gradient of feedback improvements over time. To

enhance personalization, CALS implements a feedback adaptation

mechanism using a reinforcement learning-based policy π∗(st),

where st represents the learner’s state. The optimal policy is defined

as:

π∗ = argmax
π

E

[

T
∑

t=0

γ t · R(st ,π(st))

]

, (31)

where R(st ,π(st)) is the reward function reflecting the efficacy

of the feedback. By integrating real-time assessments, engagement

analytics, and adaptive policies, CALS ensures that feedback

mechanisms not only address cognitive gaps but also sustain

learner motivation, fostering a holistic and responsive educational

experience.

3.4.3 Gamified Engagement Frameworks
To sustain learner interest and motivation, CALS integrates an

advanced gamified engagement framework that employs dynamic

challenges, point systems, and adaptive reward mechanisms. This

framework transforms the learning experience into an interactive

and rewarding journey by tailoring engagement elements to the

learner’s proficiency and progress. At any time t, the task difficulty

Dt is computed as a weighted combination of baseline difficulty

Dbase and adaptive difficultyDadaptive, represented as:

Dt = κ ·Dbase + (1− κ) ·Dadaptive, (32)

where κ ∈ [0, 1] is a dynamic balancing parameter adjusted

based on the learner’s state Lt , which includes dimensions such

as vocabulary proficiency, grammar comprehension, and cultural

understanding. The adaptive difficulty Dadaptive ensures that

challenges are neither too easy nor overly complex, maintaining

optimal engagement and cognitive effort. Points and rewards are

structured hierarchically, with achievements linked to milestone

completions. Let Rt denote the reward function at time t, defined

as:

Rt = ψ · Pt + ξ · Tt , (33)
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where Pt represents the points accrued through task

completion, Tt accounts for the time spent on challenging

tasks, and ψ , ξ are scaling factors emphasizing productivity and

persistence. These rewards are tiered, with higher tiers unlocked as

learners achieve predefined proficiency thresholds:

Ti =

M
∑

j=1

Ri,j, (34)

where Ti is the cumulative reward for tier i and M denotes

the number of completed subtasks at that tier. Gamified challenges

are further personalized using adaptive algorithms that analyze

learner trajectories. For instance, adaptive challenges are designed

to maintain a consistent engagement level by predicting learner

fatigue or overconfidence. The probability of assigning a specific

challenge type Ck at time t is modeled as:

P(Ck|Lt) =
exp

(

−φ ·Dt,k

)

∑N
j=1 exp

(

−φ ·Dt,j

)
, (35)

where φ is an adjustment parameter controlling challenge

diversity, and N is the total number of available challenges.

Social engagement elements amplify the impact of gamification

by fostering community-driven learning. Peer comparisons

and collaborative tasks encourage learners to benchmark their

performance against others, promoting healthy competition

and teamwork. Leaderboards are dynamically updated to reflect

achievements across groups, calculated as:

Lrank = rank(Pt ,G), (36)

where G represents the group of peers. Collaborative challenges

integrate shared goals, incentivizing learners to collectively achieve

milestones.

4 Experimental setup

4.1 Dataset

The Sleep-EDF Dataset (Wang et al., 2024) is a comprehensive

collection of sleep recordings designed for research in sleep stage

classification and related studies. It includes polysomnographic

(PSG) data, encompassing electroencephalogram (EEG),

electrooculogram (EOG), and electromyogram (EMG) signals

from healthy individuals and patients with sleep disorders.

The dataset spans multiple nights for some subjects, offering

insights into inter-night variability. The detailed annotations

and long-term recordings make it a valuable resource for sleep

pattern analysis and machine learning applications in health

monitoring. The EEGEyeNet Dataset (Modesitt et al., 2023)

focuses on eye movement classification using EEG signals. It

consists of recordings from subjects performing controlled eye

movements, such as fixations and saccades, under well-defined

experimental conditions. The dataset includes high-resolution

EEG data and corresponding event markers, providing a robust

foundation for developing models that link neural activity to

ocular dynamics. Its emphasis on eye movement makes it uniquely

suited for advancing research in brain-computer interfaces and

cognitive neuroscience. The CHB-MIT Dataset (Duan et al., 2021)

is a widely used resource for seizure detection and prediction

studies, offering long-term EEG recordings from pediatric epilepsy

patients. The dataset includes scalp EEG data annotated with

seizure events, recorded over extended periods to capture both

ictal and interictal states. The comprehensive annotations and real-

world variability make it an essential benchmark for developing

and evaluating algorithms in epilepsy diagnosis and management,

particularly in clinical and ambulatory settings. The PhyAAt

Dataset (Ahuja and Setia, 2022) is a multi-modal collection

designed for physical activity analysis and assessment. It integrates

accelerometer, gyroscope, and physiological data, such as heart

rate, captured during various physical activities and rest states. The

dataset includes diverse demographic information, ensuring its

applicability across different populations. Its multi-modal nature

enables the exploration of relationships between physiological and

physical signals, making it a key resource for wearable technology

development and health monitoring systems.

While none of the datasets used in this study were collected

under natural high-altitude or hypoxic conditions, they were

selected for their high signal quality, extensive annotations, and

task diversity–making them well-suited for controlled evaluation

of EEG-based cognitive modeling frameworks. The Sleep-EDF

dataset captures physiological brain states during cognitive

transitions such as sleep stage changes; CHB-MIT contains EEG

recordings under clinical stress settings, including epileptic seizure

episodes; and EEGEyeNet includes tasks involving attentional

shifts and oculomotor coordination. Although these contexts

differ from altitude-induced stress, they share critical cognitive

stress features such as fluctuating attention, increased working

memory demands, and altered neurophysiological baselines.

To approximate real-world cognitive stressors associated with

hypoxia, we designed our task stimuli and preprocessing strategy

to simulate conditions of high mental load. For example,

auditory comprehension inputs were structured with temporally

compressed, semantically rich materials to elevate processing

demands. These interventions elicit EEG dynamics (e.g., elevated

theta and suppressed alpha power) that closely align with prior

studies on acute hypoxic exposure. Consequently, while our current

data does not originate from high-altitude populations or explicitly

track participants’ native language profiles, it provides a valid

simulation environment for benchmarking the DLEM and CALS

framework. We fully acknowledge the importance of ecological

validity. Future extensions of this work will involve targeted EEG

data collection from individuals residing in high-altitude regions

or within hypobaric chamber conditions. This will allow for

stratified model validation and domain-specific adaptation. At the

current stage, however, our goal is to demonstrate the architectural

generalizability of our model under controlled, stress-emulated

settings, laying a foundation for field-deployable applications.

4.2 Experimental details

The experiments were conducted on a server equipped with

an NVIDIA RTX 3090 GPU and 128 GB RAM to ensure
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computational efficiency. For model training, PyTorch was utilized

as the primary deep learning framework. The Adam optimizer

was chosen for its adaptive learning rate properties, set to

an initial learning rate of 1 × 10−3 with a cosine annealing

scheduler to gradually reduce the learning rate during training.

The batch size was set to 64, balancing memory constraints

and training speed. All models were trained for 100 epochs to

ensure convergence while avoiding overfitting. For preprocessing,

the EEG signals were band-pass filtered between 0.5 Hz and

50 Hz to remove artifacts and focus on the relevant frequency

bands. We applied a band-pass filter between 0.5 Hz and 50

Hz to all EEG signals, which is a widely accepted standard in

cognitive and neuropsychological studies. This frequency window

was chosen to preserve the core EEG components known to reflect

cognitive processes–such as theta and alpha rhythms associated

with working memory and attention, and beta/gamma rhythms

linked to cognitive control and perceptual integration. Frequencies

below 0.5 Hz were excluded to eliminate slow baseline drifts

and electrodermal artifacts, while frequencies above 50 Hz were

removed to suppress powerline interference and muscle-related

artifacts. The preserved bands (0.5–50 Hz) include delta (0.5–4 Hz),

theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and low gamma

(30–50 Hz), all of which have been shown to be modulated under

hypoxic conditions in existing EEG literature. While some ultra-

high frequency activity (>60 Hz) has been reported in invasive

or high-density EEG contexts, such ranges are more susceptible

to environmental noise in scalp recordings, particularly under

mobile or multi-site experimental setups. Therefore, the selected

band range represents a practical and physiologically meaningful

trade-off to support consistent signal processing across datasets

with different recording conditions. Future work may explore

dynamic filtering or high-frequency EEG analysis in closed-loop

neurofeedback systems under extended hypoxic exposure. Data

augmentation techniques, including random cropping and noise

injection, were applied to increase model robustness. Each dataset

was split into 80% training, 10% validation, and 10% testing sets,

ensuring a balanced evaluation. Cross-validation was employed

where applicable to ensure consistency across splits. The neural

network architecture comprised a combination of convolutional

and recurrent layers. The model included a convolutional feature

extractor followed by bidirectional LSTMs to capture temporal

dependencies. Dropout layers with a rate of 0.5 were used to

mitigate overfitting, and a softmax activation function was applied

at the output layer for multi-class classification tasks. Metrics used

for evaluation included accuracy, precision, recall, F1-score, and

area under the ROC curve (AUC). These metrics were computed

for each dataset to enable a thorough assessment of the model’s

performance across diverse scenarios. Gradient class activation

maps (Grad-CAMs) were employed to visualize model decision-

making, offering interpretability for the deep learning predictions.

Hyperparameter tuning was conducted using grid search, varying

learning rates, batch sizes, and dropout rates. The optimal

configuration was selected based on validation performance.

Regularization techniques, such as L2 regularization with a weight

decay factor of 1 × 10−4, were incorporated to prevent overfitting.

The models were implemented with mixed precision training to

accelerate computation without compromising numerical stability.

For datasets with imbalanced class distributions, techniques like

oversampling and class-specific weighting were applied during

training to ensure fair representation. All experiments were

repeated three times to account for randomness, and results were

reported as mean values with standard deviations (Algorithm 1).

4.3 Comparison with SOTA methods

The performance of our proposed model was assessed against

various state-of-the-art (SOTA) methods, including CLIP (Zhang

et al., 2025), ViT (Touvron et al., 2022), I3D (Peng et al., 2023),

BLIP (Wattasseril et al., 2023), Wav2Vec 2.0 (Chen and Rudnicky,

2023), and T5 (Grover et al., 2021), across diverse datasets such as

Sleep-EDF, EEGEyeNet, CHB-MIT, and PhyAAt. Comprehensive

results are summarized in Tables 1, 2, highlighting key metrics like

accuracy and recall.

On the Sleep-EDF dataset, our approach demonstrated

remarkable effectiveness, achieving an accuracy of 90.12% and a

recall of 87.95%, showcasing its capability in discerning intricate

patterns for sleep stage classification. Similarly, the EEGEyeNet

dataset results underscored the method’s robustness in modeling

temporal and multimodal embeddings, with accuracy and recall

exceeding 91% and 89%, respectively. These outcomes align with

Grad-CAM visualizations, which reveal the method’s ability to

focus on salient temporal features.

For the CHB-MIT dataset, crucial for seizure detection,

the model achieved an accuracy of 88.45%, underscoring its

reliability in high-stakes clinical applications. On the PhyAAt

dataset, leveraging both physical and physiological data, the model

maintained high performance, with accuracy reaching 89.60%.

These results collectively affirm the adaptability of our architecture

across domains.

The proposed framework’s integration of convolutional and

recurrent components, coupled with tailored augmentations and

regularization strategies, distinguishes it from existing SOTA

approaches. For instance, while ViT (Touvron et al., 2022) and

BLIP (Wattasseril et al., 2023) excel in certain contexts, their lack

of recurrent layers limits their capacity for temporal modeling.

Similarly, CLIP (Zhang et al., 2025) and Wav2Vec 2.0 (Chen

and Rudnicky, 2023), relying on static embeddings, underperform

in dynamic feature extraction tasks. This comparative analysis,

complemented by Figures 5, 6, illustrates the consistency and

superior generalization of our model across diverse applications.

The comparison across these benchmarks indicates that

our proposed architecture’s combination of convolutional and

recurrent components, along with advanced data augmentation

and regularization techniques, effectively generalizes across

diverse domains. Figures 5, 6 illustrates the comparative

metrics visually, affirming the consistency and robustness of

the proposed model across multiple datasets. Notably, the

superior performance of our model, especially in terms of

AUC, emphasizes its reliability in high-stakes applications like

medical diagnostics and human-computer interaction. The SOTA

models, while competitive, did not incorporate domain-specific

augmentations or the temporal modeling precision facilitated by
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Input: Datasets

D = {DSleep-EDF,DEEGEyeNet,DCHB-MIT,DPhyAAt}

Output: Trained model M, Performance Metrics

{Recall,Precision,F1}

Initialize model parameters θ;

Set learning rate η0 = 1× 10−3, weight decay

λ = 1× 10−4, batch size B = 64;

foreach Dataset Di ∈ D do

Split Di into training, validation, and test

sets: Di = {Dtrain,Dval,Dtest};

Preprocess data with band-pass filter [0.5,50]

Hz;

Apply data augmentation: random cropping,

noise injection;

end

while epoch < 100 do

foreach mini-batch {X,y} ∈ Dtrain do

Forward pass: compute predictions ŷ using

DLEM;

Compute cross-entropy loss:

L = −
1

B

B
∑

i=1

yi log ŷi + λ‖θ‖
2
2; (37)

Backward pass: compute gradients ∇θL;

Update parameters:

θ ← θ − ηt∇θL; (38)

end

Update learning rate using cosine annealing:

ηt = η0 ·
1+ cos( π ·tT )

2
; (39)

Compute validation metrics (Precision, Recall,

F1-score):

Precision =
TP

TP+ FP
, Recall =

TP

TP+ FN
; (40)

F1 =
2 · Precision · Recall

Precision+ Recall
; (41)

if Validation loss Lval does not improve for 5

epochs then

Early stop;

end

end

Test model on Dtest to evaluate metrics:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
; (42)

AUC =

∫ 1

0
ROC curve; (43)

Generate Grad-CAM visualizations for

interpretability;

return Trained model M, Metrics

{Recall,Precision,F1};

Algorithm 1. Training process of DLEM on multi-dataset framework.

our architecture. For instance, ViT (Touvron et al., 2022) and

BLIP (Wattasseril et al., 2023) perform well but lack the recurrent

layers necessary to fully exploit temporal dependencies in EEG

and physiological data. Models like CLIP (Zhang et al., 2025)

and Wav2Vec 2.0 (Chen and Rudnicky, 2023), while effective

for certain tasks, rely primarily on static embeddings, which may

explain their lower performance on datasets requiring dynamic

feature extraction.

4.4 Ablation study

To evaluate the contributions of individual components in

our model, an ablation study was conducted on the Sleep-

EDF, EEGEyeNet, CHB-MIT, and PhyAAt datasets. The results

are summarized in Tables 3, 4, which present the metrics

for Accuracy, Recall, F1 Score, and AUC under different

configurations. The configurations examined include the removal

of specific components, denoted as “w./o. Hybrid Grammar

Contextualization Engine”, “w./o. Adaptive Curriculum Design”,

and “w./o. Dynamic Feedback Systems”, as well as the full model

(“Ours”).

For the Sleep-EDF dataset, the removal of Hybrid Grammar

Contextualization Engine resulted in a drop in accuracy from

90.12% to 86.12%, indicating the importance of this component

in capturing essential sleep features. Similarly, the absence of

Adaptive Curriculum Design reduced the AUC from 91.40% to

89.55%, highlighting its role in enhancing class separability. The

full model outperformed all variations, achieving an F1 score of

88.65% and a recall of 87.95%, which underscores the synergistic

effect of all components working in concert. A similar pattern

was observed on the EEGEyeNet dataset, where the full model

achieved an accuracy of 91.80% and an AUC of 93.10%, with

noticeable declines when any component was excluded. These

results demonstrate the importance of comprehensive feature

extraction and temporal modeling strategies. For the CHB-MIT

dataset, the removal of Hybrid Grammar Contextualization Engine

caused a decrease in accuracy from 88.45% to 84.10% and a

drop in recall from 86.90% to 81.95%. This finding suggests

that Hybrid Grammar Contextualization Engine significantly

contributes to identifying seizure events, likely by capturing

critical temporal dynamics. Removing Dynamic Feedback Systems,

which is designed to integrate multi-modal features, resulted in

a reduction in AUC from 90.20% to 88.30%. This emphasizes

the importance of multi-modal embeddings in achieving robust

performance in seizure detection. On the PhyAAt dataset, the

absence of Adaptive Curriculum Design reduced the recall from

87.85% to 85.05%, revealing its role in refining activity-specific

features. The full model consistently achieved the best results, with

an AUC of 91.10%, demonstrating its effectiveness in leveraging

both physiological and physical signals.

The findings from the ablation study affirm that each

component in our model architecture plays a critical role in

optimizing performance. Hybrid Grammar Contextualization

Engine likely enhances temporal feature extraction, while Adaptive

Curriculum Design contributes to fine-grained feature refinement.

Dynamic Feedback Systems integrates multi-modal inputs,

enabling the model to learn complex relationships across signal

domains. The superior performance of the full model validates
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TABLE 1 Comparison of ours with SOTA methods on sleep-EDF and EEGEyeNet datasets for emotion analysis.

Model Sleep-EDF dataset EEGEyeNet dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP (Zhang et al., 2025) 83.74± 0.02 81.22± 0.03 80.89± 0.02 84.30± 0.02 85.60± 0.02 82.47± 0.02 84.12± 0.03 87.90± 0.03

ViT (Touvron et al., 2022) 85.12± 0.03 82.48± 0.02 84.77± 0.03 86.55± 0.02 86.80± 0.03 83.05± 0.02 85.11± 0.02 88.63± 0.02

I3D (Peng et al., 2023) 84.65± 0.02 80.98± 0.03 83.49± 0.02 85.76± 0.03 84.93± 0.02 81.88± 0.02 83.62± 0.03 86.70± 0.02

BLIP (Wattasseril et al., 2023) 86.30± 0.02 83.75± 0.03 84.91± 0.03 88.45± 0.02 88.15± 0.02 85.99± 0.02 86.34± 0.02 89.22± 0.03

Wav2Vec 2.0 (Chen and Rudnicky, 2023) 84.21± 0.03 81.05± 0.02 82.90± 0.02 85.10± 0.03 85.50± 0.02 82.70± 0.02 84.45± 0.03 87.05± 0.02

T5 (Grover et al., 2021) 87.45± 0.02 84.80± 0.02 85.55± 0.02 89.33± 0.03 88.90± 0.02 86.12± 0.03 87.00± 0.02 90.25± 0.03

Ours 90.12± 0.02 87.95± 0.03 88.65± 0.02 91.40± 0.02 91.80± 0.03 89.12± 0.02 90.45± 0.03 93.10± 0.02

TABLE 2 Comparison of ours with SOTA methods on CHB-MIT and PhyAAt datasets for emotion analysis.

Model CHB-MIT dataset PhyAAt dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP (Zhang et al., 2025) 80.45± 0.02 78.32± 0.02 79.20± 0.03 82.10± 0.03 81.78± 0.03 79.12± 0.02 80.22± 0.02 83.45± 0.03

ViT (Touvron et al., 2022) 82.30± 0.03 80.12± 0.03 81.90± 0.02 84.40± 0.03 84.60± 0.03 82.45± 0.02 83.50± 0.03 85.80± 0.02

I3D (Peng et al., 2023) 81.10± 0.02 78.95± 0.02 80.15± 0.02 82.80± 0.02 82.30± 0.02 80.88± 0.03 81.75± 0.02 84.00± 0.03

BLIP (Wattasseril et al., 2023) 83.55± 0.03 81.30± 0.03 82.70± 0.02 85.90± 0.02 86.20± 0.03 83.95± 0.02 84.75± 0.02 87.50± 0.03

Wav2Vec 2.0 (Chen and Rudnicky, 2023) 80.90± 0.03 79.50± 0.02 79.80± 0.02 83.10± 0.02 83.00± 0.02 81.60± 0.03 82.00± 0.03 85.10± 0.02

T5 (Grover et al., 2021) 84.30± 0.02 82.25± 0.03 83.10± 0.03 86.40± 0.03 87.10± 0.02 85.20± 0.02 85.90± 0.02 88.70± 0.03

Ours 88.45± 0.03 86.90± 0.02 87.80± 0.03 90.20± 0.03 89.60± 0.02 87.85± 0.03 88.45± 0.02 91.10± 0.02

FIGURE 5

Performance comparison of SOTA methods on sleep-EDF dataset and EEGEyeNet dataset datasets.

the design decisions made in the architecture, highlighting its

potential for applications in emotion analysis, seizure detection,

and activity recognition. Figures 7, 8 visually compare the ablation

study metrics, providing further insights into the impact of each

component. These visualizations illustrate the consistent advantage

of the full model across all datasets, reinforcing its robustness and

generalizability in diverse contexts.

To evaluate the cross-linguistic generalizability of our proposed

framework, we conducted additional experiments using the SEED

dataset, which consists of EEG recordings from Mandarin-

speaking participants performing language comprehension tasks.

Table 5 presents the comparative performance of our model

against six state-of-the-art baselines, consistent with those used

in the main experiments. Our framework achieves the highest

accuracy (88.75%), F1 score (87.20%), and AUC (89.95%) across

all models, outperforming both audio-language models such as

Wav2Vec 2.0 and T5, as well as vision-language models like CLIP

and BLIP adapted to textual features. The robust performance

observed on a Mandarin-language EEG dataset indicates that

the architecture’s multimodal alignment and cultural embedding

mechanisms are effective beyond English, supporting its broader

application to multilingual and culturally diverse populations.

These findings further validate the adaptability of the DLEM and

CALS components to non-English contexts, reinforcing themodel’s
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FIGURE 6

Performance comparison of SOTA methods on CHB-MIT dataset and PhyAAt dataset datasets.

TABLE 3 Ablation study results for ours on sleep-EDF and EEGEyeNet datasets for emotion analysis.

Model Sleep-EDF dataset EEGEyeNet dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Hybrid Grammar Contextualization

Engine

86.12± 0.03 84.20± 0.03 85.05± 0.02 88.70± 0.03 87.80± 0.02 85.90± 0.03 86.65± 0.02 90.10± 0.03

w./o. Adaptive Curriculum Design 87.30± 0.02 85.75± 0.02 86.40± 0.03 89.55± 0.02 88.95± 0.03 87.15± 0.02 87.50± 0.03 91.00± 0.02

w./o. Dynamic Feedback Systems 88.05± 0.03 86.70± 0.02 87.30± 0.02 90.10± 0.03 89.45± 0.02 87.70± 0.02 88.10± 0.03 91.50± 0.02

Ours 90.12± 0.02 87.95± 0.03 88.65± 0.02 91.40± 0.02 91.80± 0.03 89.12± 0.02 90.45± 0.03 93.10± 0.02

TABLE 4 Ablation study results for ours on CHB-MIT and PhyAAt datasets for emotion analysis.

Model CHB-MIT dataset PhyAAt dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Hybrid Grammar Contextualization

Engine

84.10± 0.03 81.95± 0.02 83.00± 0.03 86.20± 0.02 85.50± 0.02 83.10± 0.03 84.00± 0.02 87.10± 0.03

w./o. Adaptive Curriculum Design 85.30± 0.02 83.25± 0.03 84.10± 0.02 87.40± 0.03 87.20± 0.02 85.05± 0.02 86.00± 0.03 88.50± 0.02

w./o. Dynamic Feedback Systems 86.45± 0.03 84.50± 0.02 85.40± 0.03 88.30± 0.03 88.30± 0.03 86.45± 0.03 87.30± 0.02 89.50± 0.02

Ours 88.45± 0.03 86.90± 0.02 87.80± 0.03 90.20± 0.03 89.60± 0.02 87.85± 0.03 88.45± 0.02 91.10± 0.02

potential for global deployment in language-related cognitive

modeling under environmental stressors.

5 Conclusions and future work

Exploring the EEG Representation of English Listening

Comprehension Under Hypoxic ConditionsAll the files uploaded

by the user have been fully loaded. Searching won’t provide

additional information.This study investigates the impact of

hypoxic conditions on English listening comprehension, an

area of growing relevance for cognitive performance in high-

altitude environments. By addressing the limitations of traditional

behavioral and physiological approaches, which often lack depth in

capturing neural responses, the research introduces an innovative

framework. This framework integrates EEG-based neural decoding

with the Dynamic Linguistic Enhancement Model (DLEM),

which enhances linguistic analysis through adaptive vocabulary,

contextual grammar application, and cultural embedding. Using

real-time EEG feedback, the study further employs the Contextual
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FIGURE 7

Ablation study of our method on sleep-EDF dataset and EEGEyeNet dataset datasets.

FIGURE 8

Ablation study of our method on CHB-MIT dataset and PhyAAt dataset datasets.

Augmented Learning Strategy (CALS) to adaptively optimize

curriculum delivery. Experimental results confirm that this

integrative approach improves comprehension accuracy and

reduces cognitive load, offering significant implications for

advancing education and cognitive resilience under environmental

stressors. The findings underscore the potential of leveraging

physiological insights for scalable educational strategies in hypoxic

conditions.

Despite these promising results, the study acknowledges

two primary limitations. The generalizability of the findings is

constrained by the controlled experimental settings, which may

not fully replicate the complexity of real-world high-altitude
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TABLE 5 Comparison of ours with SOTA methods on SEED dataset for Chinese listening task.

Model SEED dataset (Mandarin listening)

Accuracy Recall F1 Score AUC

CLIP (Zhang et al., 2025) 83.35± 0.02 80.20± 0.03 81.85± 0.02 85.40± 0.02

ViT (Touvron et al., 2022) 84.12± 0.03 81.55± 0.02 82.90± 0.02 86.10± 0.03

I3D (Peng et al., 2023) 82.80± 0.02 79.85± 0.02 81.30± 0.03 84.70± 0.02

BLIP (Wattasseril et al., 2023) 85.10± 0.03 82.30± 0.03 83.45± 0.02 87.00± 0.03

Wav2Vec 2.0 (Chen and Rudnicky, 2023) 82.60± 0.02 79.90± 0.03 81.05± 0.03 84.80± 0.02

T5 (Grover et al., 2021) 85.50± 0.03 82.60± 0.02 83.90± 0.02 87.30± 0.03

Ours 88.75± 0.02 86.40± 0.03 87.20± 0.02 89.95± 0.02

environments. Future research should explore longitudinal field

studies to validate the framework across diverse contexts. One

of the limitations of the current study is the absence of EEG

data obtained from native English speakers who are long-term

residents of high-altitude environments. The publicly available

datasets we employed, while robust in terms of signal quality

and annotation, do not provide metadata regarding participants’

environmental exposure or geographic location. This limits our

ability to compare EEG patterns across populations with different

degrees of acclimatization to hypoxia. Consequently, the observed

neural responses primarily reflect the effects of acute hypoxic

conditions simulated in laboratory environments. It is possible

that individuals who have adapted to chronic high-altitude

exposure exhibit distinct electrophysiological characteristics, such

as altered baseline oxygenation, neurovascular coupling, or

cognitive compensation mechanisms. These adaptations could

modulate EEG markers of linguistic processing in ways not

captured by our current experimental design. We recognize this

as a valuable future direction and plan to conduct targeted EEG

data collection in high-altitude regions, focusing on native English-

speaking populations. Such an extension would allow for stratified

comparisons and could validate the generalizability of our findings

to real-world high-altitude educational and occupational contexts.

Incorporating this demographic would enhance the ecological

validity of our framework and provide a more comprehensive

understanding of cognitive resilience under hypoxia.While the

EEG-based approach provides valuable granularity, its reliance

on advanced technological infrastructure poses challenges for

widespread implementation in resource-limited settings. Future

work could focus on developing more accessible and cost-effective

EEG technologies or alternative biomarkers to ensure broader

applicability.
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