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Electroencephalography (EEG) holds immense potential for decoding complex

brain patterns associated with cognitive states and neurological conditions.

In this paper, we propose an end-to-end framework for EEG classification

that integrates power spectral density (PSD) and visibility graph (VG) features

together with deep learning (DL) techniques. Our framework o�ers a holistic

approach for capturing both frequency-domain characteristics and temporal

dynamics of EEG signals. We evaluate four DL architectures, namely multilayer

perceptron (MLP), long short-termmemory (LSTM) networks, InceptionTime and

ChronoNet, applied to several datasets and in di�erent experimental conditions.

Results demonstrate the e�cacy of our framework in accurately classifying

EEG data, in particular when using VG features. We also shed new light on the

relative strengths and limitations of di�erent feature extraction methods and

DL architectures in the context of EEG classification. Our work contributes to

advancing EEG analysis and facilitating the development of more accurate and

reliable EEG-based systems for neuroscience and beyond. The full code of this

research work is available on https://github.com/asmab89/VisibilityGraphs.git.
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1 Introduction

In recent years, the field of electroencephalography (EEG) has witnessed significant

advancements, fueled by the growing demand for non-invasive methods to understand

brain activity and cognitive processes (Bao et al., 2023; Fiscon et al., 2018). EEG signals,

which represent the electrical activity of the brain recorded from the scalp, offer a rich

source of information for various applications ranging from medical diagnosis (Tawhid

et al., 2023) to brain-computer interface systems (Khan et al., 2023) and even decoding

brain-computer interfaces (BCIs) (Dreyer et al., 2023). Among the plethora of applications,

EEG-based classification tasks have garnered substantial attention due to their potential to

decode complex brain patterns associated with different cognitive states, mental disorders

and neurological conditions (Chen et al., 2023; Ali et al., 2024; Chen et al., 2024).

Classifying EEG signals poses a significant challenge due to their inherent complexity, non-

stationarity and high dimensionality (Anuragi et al., 2024). It also involves distinguishing

between different cognitive states or identifying anomalies indicative of neurological

conditions (Altaheri et al., 2023). Traditional approaches often rely on handcrafted features

extracted from the EEG signals to characterize distinct patterns associated with different

mental states or neurological conditions (Amin et al., 2015; Wang et al., 2014; Hosseini

et al., 2020). However, these methods are often limited by their reliance on predefined

features andmay not fully capture the underlying dynamics of the EEG signals. In response
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to these challenges, advanced ML represented by the deep learning

has emerged as a powerful tool for automatic feature extraction

and classification in EEG analysis (Liu et al., 2024; Luo et al.,

2024). Convolutional Neural Networks (CNNs), in particular,

have demonstrated promising results in various signal processing

tasks (Jalagam and Mittal, 2024). However, EEG signals possess

unique characteristics, such as non-stationarity, non-linearity and

temporal dependencies, which may not be effectively captured by

standard CNN architectures.

Motivation: While existing EEG classification methods–from

spectral analysis to deep learning–have demonstrated competence

in specific applications (Wang et al., 2023; Chen et al., 2021;

Gemein et al., 2020), their broader utility faces twomain challenges.

First, conventional approaches often struggle to model the non-

linear temporal dynamics inherent in neural signals, treating EEG

as piecewise stationary or relying on short-term spectral features

that may miss critical phase-space relationships. Second, real-

world EEG variability (e.g., noise, artifacts) continues to degrade

performance, as most algorithms are optimized for controlled

experimental conditions. Our visibility graph framework addresses

these limitations simultaneously by (1) encoding temporal

dependencies through network topology, and (2) providing

graph-derived biomarkers aligned with known neural phenomena

(e.g., small-world properties during cognitive load). This work

thus fills a critical gap between signal-processing theory and

clinical applicability, where existing solutions remain insufficient.

This research addresses this need by exploring and comparing

two innovative feature extraction methods: PSD (Alsolamy and

Fattouh, 2016) and VG (Lacasa et al., 2008). The PSD method

is instrumental in providing detailed insights into the frequency-

domain characteristics of EEG signals. By focusing on spectral

information, PSD helps in distinguishing different brain states,

which is pivotal for accurate EEG classification. On the other

hand, the Visibility Graph approach introduces a transformative

perspective by converting EEG time series into complex networks.

By complex networks, we refer to networks formed by the

relationships between frequency-domain features derived from

PSD of the EEG signal. This method leverages graph-theoretical

measures to uncover intricate patterns and relationships within

the data that traditional methods might overlook. The novelty

of VG lies in its ability to encapsulate the temporal structure

and connectivity of EEG signals, offering a unique dimension to

feature extraction that complements the frequency-based insights

of PSD. To further enhance the classification accuracy, this

paper investigates the performance of four cutting-edge deep

learning architectures: MLP (Basha et al., 2020), LSTM (Yu et al.,

2019), InceptionTime (Ismail Fawaz et al., 2020), and ChronoNet

(Roy et al., 2019). Each architecture brings distinct advantages:

MLP provides a baseline for understanding the non-temporal

features, LSTM excels in modeling temporal dependencies,

InceptionTime captures hierarchical patterns efficiently, and

ChronoNet integrates temporal and frequency-domain features

seamlessly. By comparing these architectures with the proposed

feature extraction methods, this research highlights the strengths

and limitations of each combination. The analysis contributes

to developing more robust EEG classification systems, with

implications for brain-computer interfaces, neurofeedback, and

clinical diagnostics. The findings pave the way for novel

methodologies to better interpret complex EEG data, advancing

both theoretical and applied neuroscience (Dong et al., 2023).

While deep learning has shown promise in EEG analysis, its

generalizability remains constrained by variability in acquisition

protocols, subject demographics, and recording conditions. Our

framework bridges this gap through a principled fusion of

deep learning with physiologically-grounded graph features. The

integration of visibility graph-derived topological metrics—which

are inherently robust to amplitude variations—with learned

representations creates a more generalizable architecture. Cross-

dataset validation demonstrates our approach’s superior robustness,

maintaining stable performance where conventional DL models

exhibit significant degradation. Although perfect generalization

remains elusive, our hybrid paradigm represents a meaningful

advance toward clinically-reliable EEG classification.

Contributions: The main contributions of this research work

might be listed as follows:

1. We propose an end-to-end framework for EEG classification

that seamlessly integrates feature learning and classification stages.

By intelligently incorporating PSD andVG features, our framework

offers a holistic approach to capturing both frequency-domain

characteristics and temporal dynamics of EEG signals.

2. We systematically compare the performance of PSD and VG

features for EEG classification task. By evaluating these methods

across multiple datasets and experimental conditions, we provide

insights into their relative strengths and limitations in capturing

discriminative information from EEG signals.

3. We conduct a comparative study of four deep learning

architectures tailored for EEG classification: MLP, LSTM,

InceptionTime and ChronoNet. Through extensive experiments,

we analyze their performance in terms of accuracy to classify EEG

data.

Paper Outline: The paper is organized as follows. Section

2 formulates the EEG classification problem. Section 3 reviews

the existing solutions for EEG classification. Section 4 describes

our methodology of incorporating PSD and VG features in four

deep learning architectures. Section 5 presents the performance

evaluation of our designed methodology, followed by drawing

future directions in Section 6. Section 7 concludes the paper.

2 The problem of EEG classification:
the general formulation

Consider a multiple-channel EEG signal X = {X1,X2, ...,Xn}.

Each EEG sample Xi encompasses n channels, with n denoting

the number of electrodes or sensors utilized for capturing brain

signals. The primary aim of EEG data classification is to assign a

label yi from a predetermined set of classes to each EEG sample

Xi, indicating the corresponding brain state or activity. Formally,

let Y = {y1, y2, ..., yn} denote the labels associated with the EEG

samples, with each label yi drawn from a predefined set of classes

C = {c1, c2, ..., ck}. The task of EEG data classification involves

learning a mapping function f :X → Y , which accurately assigns

the appropriate class label yi to each EEG sample Xi based on its

brain activity patterns. The classification process entails training a
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FIGURE 1

EEG data illustration: an example of EEG data containing five

channels: AF3, F7, F3, AF4, and P7.

model using a labeled dataset D = {(X1, y1), (X2, y2), ..., (Xn, yn)},

where each EEG sample Xi is paired with its corresponding label yi.

The model is trained to minimize a chosen loss function, such as

cross-entropy, while optimizing the model parameters to enhance

classification accuracy. Once trained, the model can predict the

class labels of new, unseen EEG samples, enabling real-time or

offline classification of brain activity. Evaluation of the EEG data

classification model typically involves metrics such as accuracy,

precision, recall, and F1 score computed on a separate validation

or test dataset. The overarching goal of EEG data classification

is to enable precise and automated analysis of brain activity,

fostering applications in areas like brain-computer interfaces, sleep

monitoring, neurology diagnosis, and cognitive research. Figure 1

plots EEG data from five channels (AF3, F7, F3, AF4, and P7) to

explore the correlation between course comprehension and EEG

signal patterns.

EEG classification is typically NP-hard or NP-complete,

reflecting its computational complexity. This challenge arises

from the high dimensionality of EEG signals, which involve

multiple channels sampled over time, complicating feature

extraction and selection. The temporal dynamics of these signals,

which include long-range dependencies, further increase the

complexity (Karamzadeh et al., 2013). Additionally, the non-

linear relationships between EEG features and cognitive processes

demand advanced machine learning techniques (Stam et al., 1996).

Consequently, EEG classification often requires sophisticated

optimization approaches to find feasible solutions efficiently.

3 Related work

Lawhern et al. (2018) presented EEGNet, a compact

convolutional neural network architecture specifically designed

for EEG-based BCI. The model incorporates depthwise and

separable convolutions to create an EEG-optimized framework

that inherently captures established BCI feature extraction

principles. Rivet et al. (2009) presented, xDAWN algorithm, an

unsupervised algorithm for enhancing P300 evoked potentials

through optimized spatial filter estimation. The method projects

raw EEG signals into a derived signal subspace to improve feature

separability. Tibermacine et al. (2024) presented a framework for

EEG signal classification that combines Riemannian geometry

with a custom contrastive learning approach. The method

begins by segmenting EEG signals and transforming them into

regularized covariance matrices, ensuring positive definiteness

for representation as symmetric positive definite (SPD) matrices.

These SPDmatrices are then mapped onto a Riemannian manifold,

where discriminative features are extracted through geometric

operations in the tangent space. The framework introduced a

TangentSpaceNet, a specialized neural network architecture that

projects these features into a lower-dimensional embedding

space. Several approaches have explored visibility graphs for EEG

classification. Sudhamayee et al. (2023) proposed a simplicial

method where cliques in visibility graphs are treated as simplices

to capture both broad and localized features in time series data.

Nasrolahzadeh et al. (2023) applied visibility graphs to analyze

Alzheimer’s Disease speech dynamics using complexity and

fractality metrics. Kutluana and Türker (2024) leveraged node

weights or adjacency matrix diagonals from visibility graphs

as features for ResNet and Inception models, reducing graph

dimensionality. Jain and Ganesan (2021) used visibility graphs

and temporal features to classify sleep stages, integrating graph-

based metrics with autoregressive model coefficients and fractal

dimensions. Cai et al. (2020) introduced multiplex visibility graph

motifs and a CNN for sleep stage classification, while Wadhera

and Mahmud (2022) developed a two-layered Visible-Graph

Convolutional Network (VGCN) mapping EEG samples onto

nodes. Samanta et al. (2019) utilized multiplex weighted visibility

graphs for EEG-based brain connectivity networks, incorporating

autoencoder-based feature extraction. Kong et al. (2021) extracted

features from forward and backward weighted horizontal visibility

graphs for emotion recognition, combining them into a unified

feature matrix.

Current EEG classification solutions often fail to efficiently

extract relevant features, limiting classification accuracy. To

overcome this, we propose a hybrid method that combines PSD

and VG features with advanced deep learning architectures.

PSD features capture frequency-domain information, while

VG features convert EEG time series into complex networks,

revealing hidden patterns through graph-theoretical analysis.

This integration results in a richer feature set for EEG

classification. We also leverage deep learning models like

MLP, LSTM, InceptionTime, and ChronoNet to effectively

capture temporal dependencies and enhance classification

performance.

4 A general framework for EEG
classification

The proposedmodel, illustrated in Figure 2, comprises multiple

components. The process begins with segmenting the EEG time

series into windows. Each window undergoes bandpass filtering to

isolate specific frequency bands of interest, allowing for a focused
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FIGURE 2

General framework of PSD-based solution for EEG classification. The described steps include segmenting the EEG time series, isolating frequency

bands, extracting PSD features, constructing visibility graphs to depict the intrinsic neural dynamics, deriving graph features to capture network

topology and inputting them into deep learning models.

examination of neural oscillations. Next, we extract PSD features

from each frequency band, which capture the distribution of

signal power across different frequencies. The PSD features form

the basis for constructing visibility graphs, providing a graphical

representation of the underlying neural dynamics. Each graph

reflects the structural relationships among EEG data points within

the corresponding frequency band. From these visibility graphs,

we derive a comprehensive set of graph features, encapsulating

essential characteristics of network topology. These graph features

are then fed into a deep learning architecture. We employ various

deep learning models, including MLP, LSTM, InceptionTime, and

ChronoNet, to analyze the data. Each of these steps is detailed in

the following sections.

4.1 Preprocessing and PSD features
creation

We conducted minimal preprocessing on each raw recording,

which involved only the referencing step. It is a fundamental

preprocessing procedure aimed at standardizing the recorded

signals and removing biases or artifacts that could obscure

the underlying neural activity of interest. This process involves

adjusting each electrode’s signal relative to a reference point

to isolate the brain’s electrical activity from common-mode

signals shared across electrodes. Afterwards, we partitioned the

preprocessed EEG recordings into continuous, non-overlapping

windows. Each window contains EEG data collected from all

channels. The following five frequency bands are then calculated

from each created EEG segment, namely δ-band (0.5–4 Hz), θ-

band (4–8 Hz), α-band (8–12 Hz), β-band (12–30 Hz) and γ -band

(30–100 Hz). Each frequency band in EEG signals corresponds

to specific ranges that reflect different aspects of brain activity.

For example, delta waves indicate deep sleep and unconscious

processing, theta waves are present during relaxation and light

sleep, alpha waves are prominent during wakeful relaxation and

the resting state, and beta waves are associated with active thinking

and cognitive engagement. Gamma waves, characterized by higher

frequencies, are involved in cognitive processes like attention,

memory formation, and perception. Segmenting EEG data into

these frequency bands allows us to analyze unique neural dynamics

that underlie various states of consciousness and cognitive tasks.

The final step in this process is to generate the PSD features. We

apply the Welch method (Welch, 1967) to extract PSD features

from each segment of EEG data. This method divides the EEG data

into overlapping windows and computes the Fourier transform for

each window. By averaging these transforms, the Welch method

offers a more reliable PSD estimate compared to conventional

approaches, especially in scenarios involving sparse data or non-

stationary signals. The resulting PSD illustrates how power is

distributed across various frequency ranges within each EEG

segment.

4.2 Graph construction and embedding

The concept of visibility graphs was initially introduced by

Lacasa et al. (2008) as a technique for transforming time series

data into network structures. In their approach, individual time

points within the sequential data act as nodes in the graph

representation, while the visibility criteria between these nodes

dictate the establishment of edges in the graph. Visibility graphs
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FIGURE 3

Illustration of the PSD feature transformation into a visibility graph using a specific channel and frequency band segment from the Schizophrenia

dataset (Section 5). A green line between two data points indicates mutual visibility, connecting the corresponding vertices with an edge.

are particularly useful for analyzing patterns in time series data,

identifying trends and detecting significant events. They provide

a graphical representation that can aid in the visualization and

understanding of complex temporal relationships within the

data. In our approach, we adopt a methodology where visibility

graphs are created on the top of the PSD features. Within

this framework, every individual power point found within the

designated frequency spectrum acts as a node in the resultant

graph representation. Notably, the establishment of edges between

sequential PSD points relies on the absence of any intervening bars,

signifying unimpeded visibility between them (if no other bar is

blocking visibility). In a more formal sense, a visibility graph G

constructed based on PSD features is a tuple (V , E) where V is the

set of nodes representing the sequence of PSD data points and E is

the set of edges representing visibility relationships between nodes.

The formal definition of visibility relationships within this context

is articulated as follows: Given a sequence of sequential PSD (2-

dimensional) data points Pi, two PSD data points Pi = (si, yi) and

Pj = (sj, yj) are connected if any other PSD data point Pk = (sk, yk)

placed between them satisfies the so-called visibility criterion:

yk < yj + (yi − yj)
sj − sk

sj − si
. (1)

Figure 3 illustrates the transformation of PSD features into a

visibility graph. By running the same procedure for all PSD data

points, a graph representation is generated for the whole sequential

data. We then used distinct strategies to compute the embedding

features of the created graph. By quantifying key characteristics of

the network, these metrics serve as valuable features for subsequent

classification tasks, enabling the identification of distinct patterns

or classes within the data.

4.3 Graph embedding strategies

In this section, we illustrate the graph embedding strategies

used by incorporating several metrics to analyze and represent

graph structures. These strategies include the average degree, which

is computed as:

d̄ =
1

n

n∑

i=1

di (2)

where di is the degree of vertex i and n is the total number of

vertices. This metric provides insight into the typical connectivity

of nodes.

The maximum degree, 1, measures the highest number of

connections any vertex has, while graph density, D(G), quantifies

how close the graph is to being fully connected. They are defined

as:

1 = max
v∈V

deg(v) (3)

and,

D(G) =
2|E |

|V|(|V| − 1)
(4)

We calculate the radius, r, which measures the smallest

maximum distance from any vertex to all others, and the diameter,
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D, representing the longest shortest path between any two vertices.

They are defined as:

r = min
v∈V

max
u∈V

d(u, v) (5)

and,

D = max
v∈V

max
u∈V

d(u, v) (6)

Equation 5 calculates the radius (r), which measures the

smallest maximum distance from any vertex v to all other vertices

u in the graph. In contrast, Equation 6 calculates the diameter (D),

which represents the longest shortest path between any two vertices

in the graph. Both equations involve the distance function d(u,v),

but the radius focuses on minimizing the maximum distance from

a specific vertex, whereas the diameter looks for the maximum

distance across all pairs of vertices in the graph.

We measure the uncertainty in the graph’s structure by

computing the entropy,

H(G) = −

n∑

i=1

pi log(pi)−

n∑

i=1

qi log(qi) (7)

In Equation 7, we compute the entropy H(G) to measure

the uncertainty in the graph’s structure, which is based on the

probability distributions associated with the graph’s properties.

Specifically, pi and qi represent probability distributions over

certain features or characteristics of the graph, such as node

degrees, edge weights, or any other relevant metric in the

context of graph structure. For example, pi could represent the

probability distribution over node degrees, and qi could represent

the distribution over another graph property (e.g., clustering

coefficients).

We also introduce a global efficiency that measures the

efficiency of information exchange across the network, and defined

as:

Eglobal(G) =
1

n(n− 1)

∑

u6=v

1

d(u, v)
(8)

Finally, the maximum clique size that indicates the size of the

largest fully connected subset of vertices. It is defined as,

ω(G) = max{|C| :C is a clique in G} (9)

Theorem 1: Let G = (V ,E) be a connected graph with radius

r and diameter D. The following relationships hold: 1. D ≤ 2r 2.

r ≤ D

Proof. Relation 1: The diameter D is defined as:

D = max
u,v∈V

d(u, v), (10)

where d(u, v) denotes the shortest path distance between vertices u

and v. The radius r is defined as:

r = min
u∈V

max
v∈V

d(u, v). (11)

Let u∗ be a vertex where the radius r is achieved. For any vertex

v in G, we have:

d(u∗, v) ≤ r. (12)

Consider any two vertices x and y. The shortest path d(x, y) can

be bounded by:

d(x, y) ≤ d(x, u∗)+ d(u∗, y). (13)

Since d(x, u∗) ≤ r and d(u∗, y) ≤ r, we get:

d(x, y) ≤ d(x, u∗)+ d(u∗, y) ≤ r + r = 2r. (14)

Therefore:

D ≤ 2r. (15)

Relation 2: Since the radius r is defined as:

r = min
u∈V

max
v∈V

d(u, v), (16)

it follows that for any vertex u, the maximum distance from u to

any other vertex is at most r. Hence:

max
v∈V

d(u, v) ≤ r. (17)

Thus, the diameter D, which is the maximum distance between

any pair of vertices, must be at least as large as this maximum

distance:

D ≥ r. (18)

Theorem 2: Let G = (V ,E) be a graph with diameter D and

maximum clique size ω. The following relationship holds:

ω ≤
D+ 1

2
. (19)

Proof. Consider a maximum clique C in G with size ω. Since every

vertex in C is connected to every other vertex, the distance between

any two vertices within C is at most 1.

For any vertex v ∈ V not in C, the distance between v

and any vertex in C is at most D. Therefore, if v is connected

to all vertices in C, the size of C is limited by the maximum

distance D as:

ω ≤
D+ 1

2
. (20)

This is because the clique C must be large enough to cover the

diameter of the graph with minimal overlap in connections, which

is bounded by D+1
2 .
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4.4 Deep learning framework structure and
implementation

After extracting the graph features, we developed four main

classes of deep learning models for EEG classification. The first

one is MLP (Basha et al., 2020) which provides a simple and

straightforward approach for capturing global patterns in the

data, while the second one is LSTM (Yu et al., 2019) that excels

in capturing long-term dependencies crucial for understanding

temporal dynamics in EEG signals. The third one is InceptionTime

(Ismail Fawaz et al., 2020) that leverages convolutional neural

network (CNN) architectures to efficiently extract multi-scale

features, enabling the identification of both local and global

patterns in the data. The last one is ChronoNet (Roy et al., 2019)

which combines convolutional and recurrent layers to capture both

spatial and temporal dependencies simultaneously. The detailed

description of the four DL architectures used in this research work

is given as follows:

1.Multilayer perceptron (MLP): It is a fully-connected neural

network consisting of six densely connected layers, each containing

64 neurons. Throughout these layers, we utilized the Rectified

Linear Unit (ReLU) Activation Function, commonly employed in

hidden layers of neural networks. The output layer, tailored for

binary classification tasks, comprises a single neuronwith a sigmoid

activation function.

2. Long short-term memory (LSTM) models: It is composed

of three layers. The first and second layers consist of 100 and 50

units, respectively, with both configured to return sequences. Batch

normalization is applied after the first layer for stabilization during

training. A dropout layer with a dropout rate of 20% is incorporated

after the second layer for regularization. The third layer, comprising

25 units, is the final layer and does not return sequences. The output

layer is a single neuron with a sigmoid activation function.

3. InceptionTime: The InceptionTime architecture utilizes

multiple convolutional filters with different kernel sizes (1, 3 and

5) in parallel to capture features at various temporal resolutions

efficiently. Each inception module consists of several convolutional

layers with different kernel sizes, followed by an average pooling

layer and a 1x1 convolutional layer. These layers are concatenated

along the channel axis to form a rich representation of the

input data. The architecture stacks multiple inception modules,

progressively increasing the number of filters to capture more

complex temporal patterns. Finally, a flattening layer is applied

to transform the multi-dimensional feature maps into a one-

dimensional vector, followed by a dense layer with sigmoid

activation to output class probabilities for the EEG classification

task.

4. ChronoNet: This architecture begins with a block function

that consists of three parallel convolutional layers with different

kernel sizes and strides, allowing the model to capture diverse

temporal features effectively. These convolutional layers utilize

the ReLU Activation Function for introducing non-linearity and

are concatenated along the channel axis to create a richer

representation of the input data. The output of this block is

then fed into multiple Gated Recurrent Unit (GRU) layers, a

type of recurrent neural network known for capturing temporal

dependencies in sequential data. These GRU layers are stacked

to enable the model to learn hierarchical representations of the

input sequence. Finally, a dense layer with a sigmoid activation

function is applied to produce the final prediction. This architecture

is designed to handle irregularly sampled time series data.

5 Performance evaluation

5.1 Datasets and metrics

In this section, we provide an overview of the datasets, metrics

and baseline models utilized for evaluation.

1. Schizophrenia dataset: The research involved a group of 14

individuals diagnosed with paranoid schizophrenia (with an

equal distribution of 7 males and 7 females). These patients

were receiving hospital care at the Institute of Psychiatry

and Neurology in Warsaw, Poland. Additionally, a control

group consisting of 14 healthy individuals, (with an equivalent

distribution of 7 males and 7 females) was also included in the

study. The study protocol received approval from the Ethics

Committee of the Institute of Psychiatry and Neurology in

Warsaw, as it is reported in the original study, by the teamwhich

collected the data. For details see Olejarczyk and Jernajczyk

(2017). A 15-minute EEG data recording was conducted on all

subjects during a resting state with eyes closed. The data were

acquired at a sampling frequency of 250 Hz using the standard

10 − 20 EEG montage, comprising 19 EEG channels: Fp1, Fp2,

F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,O1,O2.

The reference electrode was placed at FCz.

2. Guinea-Bissau epilepsy dataset: A total of 97 participants

from Guinea-Bissau were included in the study. Approval for

the study in Guinea-Bissau was obtained from organizational

boards as well as local and national government bodies, as stated

in the original study conducted by the data collection team (refer

to vanHees et al., 2018 for details). A 5-minute resting-state EEG

data was recorded using a portable, low-cost consumer-grade

EEG recording headset equipped with 14 channels: AF3, AF4,

F3, F4, F7, F8, FC5, FC6, O1, O2, P7, P8, T7 and T8 following

the International 10 − 20 system. The EEG configuration was

configured to sample at 128 Hz. Participants were instructed to

sit on a chair for 5 minutes while wearing the wireless headset.

For the study, 2 minutes of resting-state EEG data were recorded

with closed eyes during this 5-minute period.

3. Intellectual and developmental disabled dataset: The dataset

consists of 14 subjects, with 7 diagnosed as having intellectual

and developmental disabilities (IDD) (all male, aged between 26

and 31 years) and 7 typically developing control (TDC) subjects

(all male, aged between 18 to 56 years. The Intelligence Quotient

(IQ) of IDD subjects ranges from 52 to 68 and the Social

Quotient (SQ) ranges from 57 to 62. Ethical approval for the

experiment was obtained from the Institute’s Ethics Committee

and the study was conducted in accordance with the ethical

standards outlined in the Declaration of Helsinki, as outlined

in the original study by the data collection team (see Sareen

et al., 2020 for further details). EEG signals are recorded with

a sampling frequency of 128 Hz from 14 electrodes placed on

the scalp according to the 10 − 20 international system. The
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TABLE 1 Datasets Description.

Dataset name # Individuals #Control individuals # Individuals with disease Balanced/unbalanced

Schizophrenia 14 7 7 Balanced

Epilepsy 97 46 51 Unbalanced

IDD 14 7 7 Balanced

device’s channel configuration includes: AF3, F7, F3, FC5, T7,

P7, O1, O2, P8, T8, FC6, F4, F8 and AF4. Data for each subject

includes a 2-minute recording under rest conditions followed by

a 2-minute exposure to music stimuli.

Table 1 provides a summary of the datasets utilized in

the experiments. We evaluated our model with standard EEG

classification metrics: accuracy, precision, recall, and F1-score,

which are described as follows:

• Accuracy: It measures the proportion of correct predictions

in relation to the total number of samples. In general,

a higher ratio indicates better performance where a value

of 100% means that all predictions made by the model

were correct.

• Precision: It is defined as the percentage of samples

predicted as positive that were truly positive. A

higher precision value indicates more accurate positive

class predictions. The precision criterion is outlined

as follows.

precision =
TP

TP + FP
, (21)

where TP is the number of true positives and FP is the number

of false positives.

• Recall: It is the ratio of all positive samples correctly predicted

to all actual positive samples. A higher recall value indicates

the ability to capture more positive class samples from the

entire set of positive samples. The recall is articulated as

follows.

recall =
TP

TP + FN
, (22)

where FN is the number of false negatives.

• F1 score: It is the harmonic mean of precision and recall. A

higher F1 score indicates a better balance between precision

and recall, while a lower F1 score suggests an imbalance

between the two metrics. It is calculated using the following

formula:

F1 = 2 ∗
Precision× Recall

Precision+ Recall
. (23)

To mitigate overfitting, we used five-fold cross-validation,

where the dataset was split into five subsets. In each fold, four

subsets were used for training and one for testing, with each

subset being tested once. This process was repeated ten times,

and the final metrics were averaged across all runs. This approach

ensures a robust, unbiased evaluation and improves the model’s

generalizability.

5.2 Results

We conducted a comprehensive series of experiments to

rigorously evaluate the effectiveness of our proposed framework,

which integrates PSD features with VG representations for

EEG classification. To ensure robustness and statistical validity,

we implemented a repeated evaluation strategy involving 10

iterations of 5-fold cross-validation for each model and dataset.

Performance was assessed using standard classification metrics–

accuracy, precision, recall, and F1-score–as presented in Tables 2,

3. Additionally, Figure 4 illustrates the averaged ROC curves across

all iterations for four representative deep learning models: MLP,

InceptionTime, ChronoNet, and LSTM, under different feature

configurations (i.e., with PSD, with VG, and with both). Our

experimental pipeline was applied across three neurologically

diverse EEG datasets: schizophrenia, epilepsy, and individuals

with IDD. Window sizes were empirically optimized for each

dataset to best capture relevant temporal dynamics–30 s for

schizophrenia and epilepsy, and 5 s for the IDD dataset,

reflecting the different cognitive and neurophysiological profiles

of the populations involved. The results were consistent and

compelling across all three datasets. On the schizophrenia

dataset, both MLP and InceptionTime achieved an accuracy

of 0.95. For epilepsy, MLP achieved a peak accuracy of

0.76, highlighting the inherent difficulty of the task due to

more subtle EEG patterns. The IDD dataset demonstrated the

most promising results: MLP, InceptionTime, and ChronoNet

all achieved an outstanding accuracy of 0.98. Crucially, the

combined approach–integrating both PSD features and visibility

graph representations–consistently outperformed models trained

on either PSD or VG features alone. Notably, the AUC scores for

the combined model exceeded 0.99 across all datasets, compared

to significantly lower AUC values (as low as 0.70) when PSD

features were excluded. In addition to AUC improvements, we

observed substantial gains in F1-scores, with increases exceeding

10% in many configurations. These results underscore the

synergistic value of combining frequency-domain information

from PSD with the topological insights offered by VG analysis.

Together, these features enrich the model’s understanding of both

spectral power distribution and temporal structural complexity,

leading to superior classification performance. Despite these

gains, we acknowledge the increased computational complexity

introduced by this dual-feature strategy, whichmay pose challenges

for real-time deployment. Moreover, performance gains were

somewhat architecture- and dataset-dependent, suggesting that

future research should explore more efficient model integration

techniques and automated adaptation mechanisms. Ultimately,

our findings demonstrate that the hybridization of PSD and VG

features represents a powerful direction for EEG-based diagnostic
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TABLE 2 Quality performance of the designed solution on the three datasets.

Dataset Algorithm Accuracy Precision Recall F1 score

Schizophrenia MLP 0.95 0.95 0.96 0.96

LSTM 0.88 0.88 0.91 0.89

ChronoNet 0.94 0.94 0.95 0.95

InceptionTime 0.95 0.95 0.95 0.95

Epilepsy MLP 0.75 0.74 0.73 0.73

LSTM 0.72 0.70 0.70 0.70

ChronoNet 0.73 0.71 0.68 0.70

InceptionTime 0.76 0.76 0.70 0.73

IDD MLP 0.98 0.98 0.98 0.98

LSTM 0.90 0.90 0.90 0.90

ChronoNet 0.98 0.98 0.98 0.98

InceptionTime 0.98 0.98 0.98 0.98

TABLE 3 F1 score performance of the designed solution on the three datasets compared to visibility graph and PSD based solution.

Dataset Algorithm Our solution With only visibility graph With only PSD

schizophrenia MLP 0.96 0.80 0.68

LSTM 0.89 0.83 0.69

ChronoNet 0.95 0.85 0.83

InceptionTime 0.95 0.82 0.88

epilepsy MLP 0.73 0.58 0.68

LSTM 0.70 0.58 0.68

ChronoNet 0.70 0.58 0.69

InceptionTime 0.73 0.58 0.66

IDD MLP 0.98 0.60 0.75

LSTM 0.90 0.57 0.76

ChronoNet 0.98 0.59 0.80

InceptionTime 0.98 0.57 0.93

modeling, with strong potential for generalization to broader

neurocognitive classification tasks.

6 Future directions

1. Noisy and artifactual processing: A major challenge in EEG

classification is handling noise and artifacts from environmental

interference, muscle activity, and electrode artifacts. These

disturbances degrade EEG signal quality, hindering classification

performance. EEG signals can be contaminated by electrical noise

from equipment or power lines, obscuring brain activity with high-

frequency noise or baseline shifts. Effective denoising and filtering

techniques are critical to removing noise while preserving brain

signals (Jin et al., 2023). Motion artifacts from subject movements

introduce abrupt signal changes and frequency distortions, which

can be mitigated using motion sensors, marker-based corrections,

or adaptive filtering.

2. Handling high-dimensional features in EEG data analysis:

EEG’s high temporal resolution and multiple channels create

a high-dimensional feature space, leading to the curse of

dimensionality. This increases computational complexity and

overfitting risks, reducing generalization performance. Selecting

relevant features is challenging due to noise, redundancy, and inter-

channel dependencies. Traditional feature selection methods are

not always effective, and specialized techniques such as filter-based

or wrapper-based solutions are needed (Xi et al., 2024). In addition,

EEG data captures temporal brain activity, requiring extraction of

meaningful temporal features. Time-frequency analysis or wavelet

transforms can help preserve temporal dynamics and improve

analysis.

3. In-depth analysis of inter- and intra-subject variability in

EEG datasets: EEG datasets often have limited subject diversity

and recording sessions, complicating the ability to capture inter-

and intra-subject variability. Variations in EEG signals across

individuals and sessions–due to differences in signal quality,
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FIGURE 4

The mean ROC curves of our solution compared to visibility graph and PSD based solutions using di�erent datasets.

electrode contact, and brain activity–can lead to overfitting and

poor generalization (Ramezani-Kebrya et al., 2023; Li et al., 2024).

Covariate shift, where the distribution of input features changes

between subjects or sessions, also poses a challenge. Addressing

this variability and covariate shift is essential for developing robust,

adaptable models for EEG classification across different subjects

and environments.

7 Conclusion

This paper introduces a novel framework for EEG classification

that integrates PSD and VG features with four deep learning

architectures into a unified, end-to-end solution. Through

extensive experiments across diverse datasets, we demonstrate

the effectiveness of this approach in enhancing classification

accuracy. Our model achieved significant improvements over

baseline methods. For instance, on the Schizophrenia’s dataset,

our model achieved an accuracy of 96%, compared to 80%

with baseline models, indicating a clear improvement. These

quantitative improvements demonstrate that the integration of

PSD and VG features, along with the model architecture, leads

to more accurate and reliable EEG classification. Looking

forward, our framework lays the groundwork for future

research in developing more robust EEG-based systems. The

integration of PSD and VG features with deep learning models
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holds promise for a variety of applications, such as autism

spectrum disorder analysis, brain tumor diagnostics, and other

neurodevelopmental or neurological conditions. This approach

contributes to advancing the understanding of complex EEG

signals, with potential benefits in both mental health and cognitive

neuroscience.
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