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Learning dexterous motor sequences is crucial to autonomy and quality of life 
but can be altered in Parkinson’s disease (PD). Learning involves optimizing pre-
movement planning (preplanning) of multiple sequence elements to reduce 
computational overhead during active movement. However, it is unclear which 
brain regions mediate preplanning or how this process evolves with learning. 
Recording cortico-basal ganglia field potentials during a multi-day typing task 
in four individuals with PD, we found evidence for network-wide multi-element 
preplanning that improved with learning, facilitated by functional connectivity. In both 
cortex and basal ganglia, pre-movement gamma (γ, 30–250 Hz) activity, historically 
linked to population spiking, distinguished between future action sequences and 
became increasingly predictive with learning. For motor cortex γ, this increase 
was tied to learning-related cross-frequency coupling led by cortically-driven 
network delta (δ, 0.5–4 Hz) synchrony. More generally, coordinated network δ 
supported a complex pattern of learning-driven cross-frequency couplings within 
and between cortex and basal ganglia, including striatal lead of cortical beta (β, 
12–30 Hz) activity, reflecting the specialized roles of these brain regions in motor 
preparation. In contrast, impaired learning was characterized by practice-driven 
decreases in γ’s predictive value, limited cross-frequency coupling and absent 
network δ synchrony, with network dynamics possibly altered by pathologically 
high inter-basal ganglia δ synchrony. These results suggest that cortically-led δ 
phase coordination optimized cortico-basal ganglia multi-element preplanning 
through enhanced recruitment of higher-frequency neural activity. Neurostimulation 
that enhances cortico-basal ganglia δ synchrony may thus hold potential for 
improving skilled fine motor control in PD.
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Introduction

Fine motor control is a fundamental aspect of human motor 
function. Skilled hand movements often require learning a sequence 
of finger movements, and proficiency is vital to maintaining autonomy. 
In Parkinson’s disease (PD), progressive decline in fine motor 
sequence learning and control, not solely attributable to hallmark 
motor symptoms, detrimentally impacts quality of life, with needs 
unmet by conventional deep brain stimulation (DBS) and dopamine 
replacement therapy (Doyon, 2008; Wu et al., 2015; Marinelli et al., 
2017; Vasu et al., 2024; Rahman et al., 2008; Lee et al., 2010; Foki et al., 
2015; Vanbellingen et al., 2011; Gebhardt et al., 2008; Ramirez-Zamora 
and Ostrem, 2018; Eisinger et al., 2019; Muehlberg et al., 2023; Ingram 
et al., 2021; Teixeira and Alouche, 2007; Park, 2017; Heilman, 2020). 
This decline may be linked to dysfunction in motor preparation, so 
closed-loop DBS targeting pathological variations in preparatory 
neural activity could remediate symptoms (Kumari and Kouzani, 
2021; Simmonds et al., 2008; Ariani and Diedrichsen, 2019; Ariani 
et al., 2021). However, the learning-dependent neural dynamics of fine 
motor sequence initiation are poorly understood.

Before the onset of rapid fine motor sequences like typing, 
humans can plan multiple sequence elements (multi-element 
preplanning), and learning involves the optimization of this process 
(Ariani and Diedrichsen, 2019; Ariani et al., 2021; Verwey et al., 2015; 
Wong et al., 2015; Verwey, 1994). For sequences composed of at least 
one differing element within the first few elements, this predicts 
sequence-specific pre-movement neural activity that is optimized with 
learning. Indeed, neurophysiology studies in rodents and nonhuman 
primates suggest that multi-element preplanning is facilitated by the 
sequence-specific serial activation of neurons in motor cortical and 
basal ganglia (BG) ensembles, with motor improvement partly driven 
by increased consistency of ensemble spiking patterns (Khanna et al., 
2021; Ganguly and Carmena, 2009; Peters et al., 2014; Rostami et al., 
2024; Guo et al., 2021; Ganguly et al., 2022; Carrillo-Reid, 2022; Lu 
and Ashe, 2005; Hatsopoulos et al., 2003). However, in humans, it is 
unknown which brain regions have sequence-specific pre-movement 
neural dynamics or how sequence-specific activity changes 
with learning.

The neural processes that promote consistent ensemble firing 
patterns with learning also remain unclear, but recent investigation 
highlights the potential role of pre-movement oscillatory network 
dynamics. Human studies suggest that network-wide beta (β) 
desynchronization enables an increase in motor cortical excitability—
reflected by a shift to the excitatory phase of motor cortical delta 
(δ)—which facilitates the activation of motor cortical ensembles to 
initiate movement (Khanna et al., 2021; Ganguly et al., 2022; Hahn 
et  al., 2019; Mazzoni et  al., 2010; Schroeder and Lakatos, 2009; 
Lakatos et al., 2008; Muller et al., 2018; Whittingstall and Logothetis, 
2009; Hamel-Thibault et al., 2018; Ferreri et al., 2014; Fasano et al., 
2022; Brown, 2003; Meissner et al., 2019; Singh, 2018; Rockhill et al., 
2023; Mäki and Ilmoniemi, 2010; Schutter and Hortensius, 2011; 
Berger et al., 2014; Bhatt et al., 2016; Kaufman et al., 2014; Churchland 
and Shenoy, 2024). Work in animal models suggests that learning-
driven corticostriatal δ synchrony enhances δ-ensemble spike 
coupling in striatum and motor cortex, resulting in the consistent 
ensemble firing patterns associated with motor improvement 
(Khanna et  al., 2021; Ganguly et  al., 2022; Lemke et  al., 2019). 
Learning-driven changes in β’s influence of cortical excitability could 

also support motor improvement. However, these proposed network 
interactions have not been tested with cortico-basal ganglia 
electrophysiology and directed connectivity analysis in humans or 
animal models.

We postulated that motor cortex and basal ganglia regions all 
support multi-element preplanning in PD, which network activity 
optimizes with successful learning. To test this, we  evaluated the 
learning-dependent preparatory motor control network dynamics in 
four individuals with PD. We  recorded cortico-basal ganglia field 
potentials while subjects performed a multi-day, multi-sequence 
typing task (Figure  1A). We  hypothesized that β → δ → spike 
interactions influence motor cortex regardless of learning stage but 
that, with practice, coordinated cortico-basal ganglia δ activity 
increases the consistency of sequence-specific cortical and basal 
ganglia spiking patterns through δ → spike coupling. Field potential 
gamma (γ) activity correlates with neural population firing (Chang, 
2015). Thus, γ activity could reflect temporal patterns and variability 
in ensemble activity. This anticipates specific β → δ → γ interactions, 
as well as sequence-specific motor cortex and basal ganglia γ activity 
that is increasingly predictive of future action sequences with learning 
(Figure 1B). We tested these predictions using single-trial classification 
of neural activity and directed connectivity analysis.

Methods

Study criteria

Four individuals enrolled in parent clinical trials (NCT03582891 
and NCT04675398) for adaptive deep brain stimulation (DBS) for 
Parkinson’s disease (PD) participated in this study (Figure  2; 
Supplementary Table 1). Subjects had sufficiently severe movement 
disorder symptoms, inadequately treated by oral medication, and 
requested surgical intervention. No subjects exhibited significant 
untreated depression, significant cognitive impairment, previous 
cranial surgery, drug or alcohol abuse, or evidence of a psychogenic 
movement disorder. For an exhaustive list of overarching clinical trial 
inclusion and exclusion criteria, see NCT03582891 and 
NCT04675398. Additional prescreening was performed for the typing 
task. Inclusion criterion: enthusiastic desire to participate in the task. 
Exclusion criteria: hand or wrist pain when typing, dyslexia, 
uncorrected visual impairment, sleep apnea, travel to other time 
zones in the past 3 months. Subjects were also instructed not to 
consume nicotine or alcohol for the duration of the experiment. 
Subjects gave informed consent, and the University of California San 
Francisco Institutional Review Board pre-approved 
experimental design.

Task design

On each day of a multi-day explicit motor learning 
experiment, subjects practiced typing two 5-element sequences in 
interleaved blocks using their dominant (right) hand while neural 
activity was recorded from the contralateral hemisphere 
(Figure 3A). The task design within each day was a variation of 
the common discrete sequence production task (Abrahamse et al., 
2013). At the start of each session, subjects memorized that day’s 
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sequences during an initial Verification Period. In this Verification 
Period, they were briefly shown one sequence to memorize before 
repeatedly typing it from memory until achieving three 
consecutive fully correct repetitions. This was repeated with the 
second sequence. Subjects were then instructed to, in the 
subsequent training blocks, react as quickly as possible and type 
as quickly and accurately as possible. In each training block, they 
practiced only one sequence. They typed one sequence repetition 
from memory in response to each cue. Each practice block started 
with its own Verification Period for the sequence for that block. 
The sequence was not shown again in that block. Green go cues 
appeared after an exponentially jittered delay from the 5th 
keypress of the previous trial (range: 0.85 s–3.75 s, μ = 1.75, 
p = 0.4 for Lilliefors test for h0 = exponential). A 10 s break 
followed each block. Subjects’ hands and the keypad were 
completely visually occluded, and the sequences were never 
displayed during typing. At the end of the task each day, subjects 
were assessed on the upper limb component of the Movement 
Disorder Society Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS). The day before the experiment, subjects were 
familiarized with the task and keypad with a practice run-through 
(Familiarization).

They received two novel sequences on Day 1 and again on Day 4 
(Figure 3B; Supplementary Table 2). No sequences contained repeated 

adjacent elements, rising or falling triplets, or the thumb. All sequences 
paired for comparison within and between days started with the same 
first and last elements.

All subjects performed the experiment within 1 month after DBS 
surgery, before turning on DBS. No DBS was delivered during or 
between experimental sessions. To limit the effect of medication-
related motor fluctuations, all experimental sessions were conducted 
at a consistent time across days within each subject’s medication 
ON period.

Data collection

GP1 received a unilateral (left hemisphere) neural implant; all 
other participants received bilateral implants. In each implanted brain 
hemisphere, a four-contact DBS lead spanned basal ganglia (BG) 
nuclei, and a four-contact electrocorticography (ECoG) paddle 
spanned sensorimotor cortex (Figure  2). Bipolar recording of 
subcortical local field potentials (LFPs) and sensorimotor 
electrocorticography (ECoG) signal granted coverage of the following 
approximate regions in the left (contralateral) brain hemisphere. 
Subjects GP1 and GP2: globus pallidus (GP), putamen (Put), M1 or 
primary sensorimotor cortex (M1/S1), premotor cortex. Subjects 
STN1 and STN2: ventral subthalamic nucleus (vSTN), dorsal 

FIGURE 1

Predicted learning-related cortico-basal ganglia activity during motor sequence initiation. (A) Illustration of lead targeting for subject groups (LFP, local 
field potential; DBS, deep brain stimulation; ECoG, electrocorticography; Put, putamen; GPe, globus pallidus externus; GPi, globus pallidus internus; 
STN, subthalamic nucleus; PM, premotor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; SPL, superior parietal lobule). 
(B) Diagram of predicted learning-related changes in sequence-specific activity and functional connectivity prior to the onset of motor sequences over 
multiple days of practice. (Top) For rapid, sequential finger movements, learning involves the optimization of preplanning for multiple sequence 
elements (multi-element preplanning), potentially implemented by increased reliability of sequence-specific ensemble firing patterns in cortex and 
basal ganglia. As γ activity correlates with population spiking, this could be reflected by sequence-specific γ activity that becomes increasingly 
predictive of future action sequences with practice. (Bottom) Oscillatory network dynamics are thought to drive general motor initiation and may 
display learning-dependent changes that lead to the increased reliability of ensemble activity patterns associated with motor improvement. One 
possibility is that network β desynchronization enables increased motor cortical excitability, reflected as a shift to the excitatory phase of cortical δ. In 
turn, excitability facilitates activation of motor cortical ensembles to produce movement, reflected by increasing γ amplitude. With motor learning, 
increased cortico-basal ganglia δ synchrony facilitates enhanced ensemble recruitment in cortex and basal ganglia, reflected by δ-γ coupling. We thus 
predicted the presence of network β → cortical δ → cortical γ interactions on all days and that, with practice, increased cortico-basal ganglia δ 
synchrony would accompany δ-γ coupling in cortex and basal ganglia.
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subthalamic nucleus (dSTN), M1, parietal cortex (spanning S1 and 
superior parietal lobule).

Leads from each brain hemisphere (Medtronic 3,387 for globus 
pallidus, 3,389 for subthalamic nucleus and 0913025 for cortex) were 
connected to a bidirectional neural interface in the ipsilateral chest 
(Medtronic Summit RC + S B35300R). LFP and ECoG signals were 
recorded at 500 Hz throughout the task. Channels were referenced to 
the metal casing of the implanted pulse generator. On-device hardware 
low and high pass filtered the data at 450 Hz and 0.85 Hz, amplified it, 
then performed another low pass filter at 1700 Hz.

Task events and keystroke data were captured in 4-kHz sweeps 
using a portable custom-made device run by a Teensy 4.1 
microcontroller (Figure 3C), which acted as the master clock and 
motherboard for a custom keypad, visual stimulus detector and 
electrical impulse detector. To ensure accurate detection of finger 
movement onset/offset, even when finger position started above but 
not touching the key, a combination of custom capacitive proximity 
sensors (carved from copper sheet metal, 3DDeluxe), force-sensitive 
resistors (FSRs, Alpha MF01A-N-221-A04) and linear mechanical key 
switches (CHERRY MX1A-LxxA/B) were used for each digit. An FSR 
was fixed atop each custom keycap (3DDeluxe).

A small resin disk with a centered bulge less than a millimeter tall 
was fixed atop each FSR. This ensured even that off-center finger 
contact with the key face would result in force distribution to the FSR’s 
center active zone sufficient to drive detectable FSR activity. The resin 
disks also insulated the FSRs from the proximity sensors, which were 
cut from copper sheet metal and fixed atop each resin disk. To 
maximize proximity sensor read rate, each proximity sensor was 

sampled by its own Teensy 3.2 microcontroller, which each transmitted 
readings to the Teensy 4.1. Proximity sensors were covered with 
insulating tape and calibrated to detect proximity changes of fingers 
hovering up to ~2 cm above the keys. The capacitance sensors also 
detected changes in surface area of finger contact with the key. This 
enabled detection of changes in finger contact slight enough that the 
associated change in force was subthreshold for the force sensors. A 
photodiode (Everlight Electronics Co Ltd., PD333-3C/H0/L2) fixed 
to the task computer screen captured the timing of visual stimuli and 
progression of experimental epochs. For neural-behavioral data 
stream alignment, a unique temporal pattern of fifteen single DBS 
pulses was delivered at the start and end of each experimental session 
and detected along the metal casing of the pulse generator by an 
external electrical signal detector (MikroElectronika EEG Click 
MIKROE-3359). All sensors were calibrated and checked for electrical 
interference and cross-talk at the start of each experimental session.

Behavioral analysis

To eliminate outlier trials, we excluded incorrect trials and any 
trials with a reaction time (RT, cue onset to movement onset) or trial 
duration (movement onset to offset) exceeding three standard 
deviations of the block average for correct trials.

To evaluate overall learning, we computed a block slowness-error 
index for each subject. Each block slowness-error index is the sum of 
block average error rate (1  – block accuracy), reaction time (cue 
presentation to movement initiation) and trial duration (movement 

FIGURE 2

Cortical and subcortical lead reconstructions. (Top) Sensorimotor quadripolar electrocorticography strips, central sulcus (white), and (Bottom) 
quadripolar deep brain stimulation leads localized within the basal ganglia. Left hemisphere neural data (contralateral to movement), recorded using 
the specified bipolar montages, were used for neural analysis.
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onset to offset). For each subject, the block average trial durations and 
reaction times were each first min-max scaled to [0, 1], using data 
from all days to derive the minimum and maximum values. Lower 
slowness-error index values indicate better performance.

Neural analysis

All significance testing for neural analysis utilized permutation 
testing that simulates error within the null distribution, and secondary 
tests were performed only to assess the direction of primary detected 
effects. Multiple comparison correction was therefore not performed.

Trial selection
In addition to the behavioral cutoffs applied for behavioral 

analysis, the following trial exclusion criteria and trial subsampling 
methods were performed for neural analysis. Trials with less than 
25 ms between final/first movements associated with adjacent trials 
were excluded. Subsequently, subsampling was performed within a 
given day to match trial counts between sequences within each group 
of four blocks to avoid a possible imbalance over time, e.g., 75% of 
remaining Sequence 1 (S1) trials coming from the first half of the 
session and 75% of remaining Sequence 2 (S2) trials coming from the 
second half of the session. Within each group of four blocks, sequence 

subsampling followed epoch-specific selection rules. Only trials with 
RT ≥ 100 ms were considered. Trials from the higher count sequence 
were subsampled to match trials from the lower count sequence based 
on RT durations. Finally, random subsampling matched trial counts 
across days within each subject for each epoch type.

Signal preprocessing
Neural signal preprocessing used the following pipeline. Data 

from each channel was linearly detrended, demeaned and high-pass 
filtered at 0.25 Hz using a two-pass FIR filter. Electrical noise was 
excluded in the frequency domain. Two-pass Kaiser FIR filters with 
normalized transition widths of ≤ 0.1 were used for all subsequent 
bandpass filtering.

Data intended for single-trial classification, amplitude analysis 
and undirected phase analysis was filtered with the following 
passbands: δ (0.5–4 Hz), θ (4–8 Hz), α (8–12 Hz) and β (12–30 Hz for 
amplitude analysis and cross-frequency coupling, 12–20 Hz and 
20–30 Hz for single trial classification). For γ, filters were 
logarithmically spaced from 30 to 250 Hz. High γ (70–250 Hz) center 
frequencies were used for all analyses involving γ, while slow 
(30–50 Hz) and mid (50–70 Hz) γ center frequencies were used only 
for single-trial classification. These filters were all non-overlapping in 
the frequency domain to reduce collinearity between adjacent 
frequency bands when performing single-trial classification. The 

FIGURE 3

Experimental design and behavioral data collection. (A) On each day, subjects practiced typing two sequences. Interleaved practice blocks each 
contained 20 repetitions of visually cued sequence production for a single sequence. At the start of each block, the sequence was briefly shown and 
removed. A green fixation cross cued each subsequent trial. Subjects performed the task while on dopamine medication, and no DBS was delivered 
during the task or between days. (B) Days 1–3 employed novel Sequences 1 and 2 (S1 and S2), and Day 4 employed novel Sequences 3 and 4 (S3 and 
S4). (C) The reaction time period (dashed box) used for neural analysis is demonstrated in an example trial showing raw data from a custom behavioral 
setup used to capture finger movement (using capacitive proximity/touch sensors, force-sensitive resistors and mechanical key switches) and the 
visual cue (using a photodiode placed on the task computer screen). Capacitance sensors were calibrated to detect proximity changes of fingers 
hovering 0 to 2 cm above the keys (capacitance variation around low values). They could also detect changes in surface area of finger contact with the 
key associated with changes in force subthreshold for the force sensors (capacitance variation between low/mid-range and ceiling values). Thus, 
capacitance sensor readings were used for motor onset detection, except when motor onset began with a finger already in full contact with the key, in 
which case force sensor readings were used (as in the first keypress of this example trial).
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Hilbert transform computed the analytic signal. For undirected cross-
frequency coupling (CFC) analysis using pairwise phase consistency 
(PPC), the resulting amplitude envelope of each β and γ center 
frequency was filtered with the same bandpass filter previously used 
to extract δ, followed by a second application of the Hilbert transform.

For analysis of directed phase coherence (including directed CFC) 
using phase slope index (PSI), δ was instead extracted using linearly 
spaced passbands (0.5, 3.25; 0.75, 3.5; 1, 3.75; 1.25, 4). For directed δ-β 
and δ-γ coupling analysis, these linearly spaced δ passbands were 
applied to the β amplitude envelope and to the amplitude envelope of 
each center frequency of high γ (70–250 Hz), followed by a second 
application of the Hilbert transform.

For artifact screening, filter-Hilbert was used to estimate 
70–250 Hz broadband amplitude, which was then z-scored over the 
entire session. Any trial in which z ever surpassed 8 standard 
deviations was omitted from neural analysis.

Single-trial classification
If two sequences contain at least one differing element within the 

first few elements, then multi-element preplanning necessitates some 
sequence-specific neural activity. To test for neural activity related to 
multi-element preplanning, we  thus tested for sequence-specific 
preparatory neural dynamics using single-trial classification of 
pre-movement neural activity. To evaluate learning-driven 
optimization of multi-element preplanning, we then evaluated change 
in sequence-specific predictive value of neural activity with practice 
by testing change in model performance across days.

A different classifier was trained on data from each recording 
channel on each day, and mean decoding accuracy was used to 
estimate the discriminability of sequence-specific neural activity. S1- 
or S2-labeled trial data was extracted from the RT period in the tn ms 
immediately prior to sequential movement onset, where tn was the 
average RT on Day 3 for Subject n. Data then underwent feature 
selection and logistic classification with L1 regularization. For each 
subject, trials per sequence were balanced across classes, channels 
and days.

Time-frequency regions with maximal differences between 
sequences were selected as features. To assess, e.g., differences in 
narrowband amplitude dynamics in PM for S1 vs. S2 on Day 3 for 
GP1, we calculated the two-sided t-statistic for amplitude at each 
time-frequency point. For each of 10,000 permutations, trial labels 
were shuffled, and the t-statistic was recalculated. Thus, each time-
frequency point had an associated null distribution of 10,000 t-statistic 
values. Time-frequency points at which the test value fell below the 
80th percentile compared to its respective null distribution were 
masked. In each of the remaining islands of features for each center 
frequency, the time point with the highest percentile score relative to 
its null was selected as a feature to use in the model. For all resulting 
features, corresponding amplitude values were taken from S1 and S2 
trial data. For phase data, the same process was implemented, save for 
two differences. Phase opposition sum (VanRullen, 2016) was used 
instead of the t-statistic, and since phase is a circular process, each 
selected phase value was converted into two features: sin(phase) and 
cos(phase). Each amplitude and phase feature was median-centered 
and scaled according to its interquartile range to have unit variance.

Hyperparameter optimization, model training and model testing 
were performed with nested cross validation. The inverse L1 
regularization constant (λ−1) was optimized per classifier in 10-fold, 

10-repeat stratified cross validation performed on a stratified 90% 
subset of the data. The following λ−1 values were tested: 5E-2, 1E-1, 
5E-1, 1, 5, 1E1, 5E1, 1E2, 5E2, 1E3, 5E3, 1E4, 5E4, 1E5, 5E5. Greater 
shrinkage produced performance at or below chance level. The 
selected value for λ−1 was then used for final model training and 
testing on the full dataset with 10-fold, 100-repeat stratified 
cross validation.

Permutation testing evaluated for significant sequence-specific 
neural activity in each brain region and how the predictive value of 
neural activity changed with practice. Right-sided permutation testing 
assessed significance of model mean decoding accuracy relative to 
chance. The outer 10-fold, 100-repeat stratified cross validation was 
repeated 1,000 times with permuted trial labels, and the resulting 
1,000 null values were compared to test sample mean decoding 
accuracy. Two-sided permutation testing assessed the change in mean 
decoding accuracy across days for a given channel. Mean decoding 
accuracies for each of the 100 repeats per day were permuted across 
days, and the between-day difference in overall mean decoding 
accuracy was recalculated for each permutation as the null value.

Feature importance testing
To evaluate how learning-driven changes in sequence-specific 

neural activity might be reflected in the spectral characteristics of field 
potential recordings, the absolute importance of various signal 
properties to the performance of trained models was tested and 
compared across days. We permuted, in the test set, the trial labels for 
all phase or amplitude features associated with a given canonical 
frequency band, as the majority of across-frequency or across-phase/
amplitude feature correlations were not high (ρ < 0.5). For each fold 
in each repeat of the 10-fold 100-repeat outer cross-validation used 
for prior model training and testing, the test data trial labels for the 
respective trained model were permuted once for a given feature 
group, and the resulting change in test accuracy from test performance 
was computed. Change in decoding accuracy was then averaged 
across all 10 folds in each of the 100 repeats. Feature groups for which 
permutation produced a negligible accuracy increase were set to zero 
in data plots for visual clarity. No instance of accuracy increase with 
feature permutation surpassed 1%.

We then repeated group permutation testing, except with all phase 
and amplitude features for δ through β grouped together and likewise 
for low γ through high γ. Change in decoding accuracy was averaged 
across folds per repeat before between-day permutation testing.

Coherence analysis
Functional connectivity was evaluated over the course of practice 

to assess which network interactions may support learning-driven 
optimization of multi-element preplanning. Single-trial plots 
indicated that δ phase aligned to cue in various regions, so data was 
aligned to cue and evaluated in a window length of the mean RT of 
Day 3 per subject. Nonparametric cluster-based permutation across 
time, with a cluster size correction, was used for all phase analyses. To 
simplify data visualization, significant across-day effects associated 
with low and insignificant levels of within-day local or interregional 
coherence were not typically depicted with shaded time regions in the 
figures, but the p-values are still reported in the 
Supplementary Data Tables.

For all phase analyses, we  first computed each metric within 
sequence before averaging the resulting time series across sequences 
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prior to statistical testing. This was intended to address two main 
issues. First, we  expected possible sequence-specificity in 
spatiotemporal patterns of neural activity that could be reflected in 
mesoscale spectral activity—an idea for which both single-trial 
classification and single-trial δ phase plots then provided confirmatory 
evidence. This implies that different sequences could be associated 
with different characteristic γ amplitude envelope morphologies, 
which may display different phase-specific coupling patterns with δ. 
Second, in cases for which two sequences were not performance-
matched on a given day (e.g., Sequences 3 and 4), one may observe 
differences in activity between sequences due to performance level 
(rather than learning stage). In either case, a reasonable approach 
would be to respect the sequence-specific relationships, so we first 
computed metrics within each sequence. However, we also expected 
the general oscillatory network dynamics associated with learning to 
be the same regardless of sequence, so we then averaged the resulting 
metric time series across sequences before statistical testing.

Inter-trial δ phase locking value (PLV) assessed cue-aligned 
consistency of local δ phase (Lachaux et  al., 1999). For a given 
recording channel, the resulting time series (one for each sequence) 
were smoothed with a 150 ms-long Gaussian window and averaged 
across sequences. To test for significant PLV on a given day, 
we randomly sampled phase data from the duration of the session for 
each permutation. PLV was computed for each sequence null group 
using the appropriate number of trials for each sequence. The 
magnitudes of the resulting two null PLV time series were then 
smoothed and averaged across trial groups to attain a single null time 
series for that permutation. This was repeated for each permutation. 
To test for a significant difference in PLV time series between days, 
we calculated the test time series by subtracting the PLV time series 
from 1 day from that of the other day. For each permutation, trials 
were shuffled across days but within sequence.

Inter-trial δ pairwise phase consistency assessed cue-aligned 
interregional δ phase coherence (Vinck et al., 2010). For each channel 
pair, the resulting time series (one for each sequence) were smoothed 
with a 150 ms-long Gaussian window and averaged across sequences. 
For baseline PPC testing, methods were identical to those used in 
baseline PLV testing, except the null was constructed by sampling 
channel data as pairs, i.e., the baseline distribution corresponded to 
an actual estimate of baseline session-wide coherence for that channel 
pair, not to the level of coherence that would be expected if the two 
channels were coupled only randomly. For between-day PPC 
permutation testing, test time series were calculated by subtracting the 
PPC time series between days, and for each permutation, phase data 
for both channels in a given channel pair were shuffled together across 
days but within sequence.

To assess the direction of pairwise δ phase relationships observed 
with PPC, phase slope index between two channels was computed per 
time point for each sequence (Nolte et al., 2008). PSI values were not 
smoothed before being averaged across sequences. To assess whether 
significant δ phase lead/lag occurred with respect to chance, i.e., 
neither channel led the other, rather than with respect to session 
baseline, data for each permutation was randomly sampled from the 
session duration separately for each channel in the pair, for 
each sequence.

Pairwise phase consistency and phase slope index were also used 
to estimate undirected and directed coherence, respectively, for cross-
frequency couplings. δ Phase was paired with the δ phase of the β or 

γ amplitude envelope. Computations analogous to those used for δ 
synchrony analysis were performed, except for two modifications. For 
δ-high γ coupling, PPC or PSI was calculated separately for each 
narrowband within 70–250 Hz for each sequence. The result was 
averaged across γ center frequencies before averaging across 
sequences. Second, for baseline permutation testing, the phase data 
was held constant while the amplitude data was sampled from the 
session. Shuffling amplitude while holding phase constant was 
intended to test for significant coherence given a specific 
phase distribution.

Results

Behavioral stratification based on sequence 
learning

Subjects were behaviorally stratified for sequence learning based 
on changes in a composite measure of block performance—a block 
slowness-error index—for which lower value corresponds to better 
performance (Figure 4A). Day 1 to Day 3 comparisons of pooled block 
performance indices for each of S1 and S2 evaluated within-sequence 
practice-driven performance changes. Significant decrease in 
slowness-error index suggests sequence learning, but improvement on 
S1 and S2 could also have been driven by more general task learning, 
e.g., optimization of task-related cognitive processes and motor 
familiarization with the experimental apparatus (Ariani and 
Diedrichsen, 2019; Taylor and Ivry, 2011; Wulf, 2013; Song, 2019; 
Clark and Ivry, 2010; Serrien et al., 2007; Doyon and Benali, 2005). 
Even so, superior performance of S1 and S2 on Day 3 compared to that 
upon subsequent presentation of novel sequences on Day 4 would 
suggest some sequence learning had in fact occurred for S1 and S2. 
Thus, subjects were labeled improvers (ID ending in 1) only if their 
performance both improved from Day 1 to Day 3 and worsened when 
presented with novel sequences on Day 4. A Day 1 to Day 4 
comparison to assess general task learning is confounded by 
behavioral interference between the familiar sequences and those 
presented on Day 4, so we did not attempt to behaviorally stratify 
based on task learning.

GP1 and STN1 showed indications of sequence learning, whereas 
GP2 and STN2 did not (Figure 4B; Supplementary Figures 1, 2). In 
GP1 (S1: p = 0.032; S2: p = 0.002) and STN1 (S1: p < 0.001; S2: 
p < 0.001), slowness-error index improved for both sequences from 
Day 1 to Day 3, then worsened when practicing novel sequences on 
Day 4 (GP1: p < 0.001; STN1: p < 0.001). Neither GP2 nor STN2 
showed significant improvements in Sequence 1 (S1) and Sequence 2 
(S2) slowness-error index (p > 0.05 for all), and only GP2’s slowness-
error index significantly differed between Days 3 and 4 (GP2: 
p = 0.005; STN2: p > 0.05). These results suggest behavioral 
stratification as follows: improvers (GP1 and STN1) and nonimprovers 
(GP2 and STN2).

Sleep durations and end-of-session upper limb scores on the 
Movement Disorders Society Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS) were similar between groups (Goetz et al., 
2008) (Supplementary Table 3). This suggests relative differences in 
performance improvement may not have been due to large 
differences in sleep or motor symptom presentation in the 
typing arm.
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Pre-movement cortical and basal ganglia γ 
activity is sequence-specific and 
increasingly predictive of sequence 
content with performance improvement

We next assessed which brain regions might participate in multi-
element preplanning and how this changes with learning. We used 
single-trial classification of pre-movement neural activity to predict 
the identity of the upcoming sequence. Model performance thus 
quantified sequence-specific predictive value of neural activity. For 
each experiment day and each recording channel per subject, 
we performed feature selection on neural data preceding sequential 
movement onset and trained a model to predict the identity of the 
sequence that the subject was about to type (Figures  5A,B; 
Supplementary Figure  3). To isolate practice-driven changes in 
sequence-specific neural activity from changes that occur as a 
byproduct of the changing behavior, we  only directly compared 

neural activity between sequences for which overall behavioral 
performance was similar. In most subjects, performance levels 
significantly differed between Sequences 3 and 4 (Days 1–3: 
p > 0.05 in all subjects; Day 4: p > 0.05 in GP1, p = 0.002 in GP2, 
p = 0.031 in STN1, p < 0.001 in STN2) (Supplementary Figure 4), so 
Day 4 data was excluded from single-trial classification analysis. To 
reduce the influence of neural activity related to the first sequence 
element, we  designated the same digit as the first element in all 
sequences for each subject. See Methods: Neural analysis for 
additional measures taken to reduce the influence of confounds.

We compared each model’s performance to chance and tested 
within-channel change in decoding accuracy across Days 1 and 3, with 
the caveat that Day 1 to Day 3 changes may reflect effects of both 
sequence practice and task exposure. Notably, sequence-specific 
activity was detected throughout the recorded network in all subjects 
(p < 0.001 for all models) (Figure 5C). Practice drove nearly network-
wide increases of this activity’s predictive value in improvers (p < 0.001 

FIGURE 4

Behaviorally distinguishing improvers and nonimprovers. (A) Example calculation of block slowness-error index from block average data. Each block 
slowness-error index is the sum of block average error rate [1 – accuracy], reaction time [cue onset to movement onset] and trial duration [movement 
onset to offset]. For each subject, the block average trial durations and reaction times were each first min-max scaled to [0, 1], using data from all days 
to derive the minimum and maximum values. Error bars indicate ± s. (B) Block slowness-error index for each subject. Comparison across days 1 and 3 
for each of S1 and S2 assessed within-sequence practice-driven performance changes. To help evaluate whether performance changes from day 1 to 
day 3 were at least in part related to sequence learning and not solely attributable to changing familiarity with the task and keypad, performance was 
also compared between pooled day 3 sequences and pooled day 4 sequences. Subjects were labeled improvers (ID ending in 1) only if their 
performance both improved from day 1 to day 3 and worsened when presented with novel sequences on Day 4 (For all comparisons: α = 0.05, two-
sided, two-sample t-test with unequal variance. For within-sequence comparisons and pooled sequence comparisons, n = 8 and 16 sequence blocks 
per group, respectively, except for GP1 day 1 S1 and GP1 Day 4 for which n = 7 and 15 due to exclusion of 0% accuracy blocks, as composite 
performance would be poorly defined). * p < 0.05, ** p < 0.01, *** p < 0.001. S1–S4, Sequence 1–4.
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for all except Par; STN1 Par: p > 0.05) but decreases in GP (p < 0.001), 
STN (p < 0.001 for vSTN and dSTN) and M1 (p < 0.001 for GP2 and 
STN2) in nonimprovers (significant increase in nonimprovers’ other 
channels with p < 0.001).

To assess which electrophysiological signal properties granted 
sequence-specific predictive value, we  performed feature analysis. 
Minimal correlations (ρ < 0.5) between features grouped by phase, 
amplitude and canonical frequency band allowed grouped feature 

FIGURE 5

Pre-movement sequence-specific γ activity, present in all brain regions, demonstrates practice-driven increases and decreases in discriminability in 
improvers and nonimprovers, respectively. (A) Visualization of feature selection pipeline. Neural activity prior to the onset of sequential movement was 
selected to predict the identity of the sequence the subject was about to type. Feature selection was repeated for separate models for each channel on 
each day in each subject. (Left) For selection of amplitude features, the S1 vs. S2 two-sided t-statistic was computed at each time-frequency point. 
(Middle) The t-statistic at each time-frequency point was recomputed for 10,000 permutations of trial labels to determine the percentile ranking of the 
test value at each time-frequency point relative to its null distribution. (Right) Time-frequency points falling below their respective 80th-percentile 
cutoffs were masked, and in each of the remaining time-frequency regions, the time point achieving the highest percentile was selected as an 
amplitude feature. This process was repeated for phase data, using phase opposition sum as the summary statistic. Each resulting phase feature was 
split into two features that corresponded to the cartesian phase coordinates. Classification utilized 10-fold 100-repeat lasso-penalized logistic 
classification. (B) Example selected features for Days 1 and 3 in GP1’s PM. (C) Mean decoding accuracy per model after feature selection (Comparison 
to chance: α = 0.05, one-sided, permutation testing with 1,000 resamples). Comparison across days: α = 0.05, two-sided, permutation test with 10,000 
resamples. Empty circle reflects mean decoding accuracy across folds for one repeat; white circle reflects mean decoding accuracy across repeats. In 
(D,E), grouped feature permutation testing was performed to test the importance of different features to model performance. (D) Decreases in 
absolute decoding accuracy with permutation of features grouped by canonical frequency band and signal property (amplitude or phase). Impact on 
model performance of shuffling each feature group is shown for Day 1 (left of vertical line) and Day 3 (right of vertical line) in a subset of representative 
brain regions. (E) Decreases in absolute decoding accuracy with permutation of features instead grouped only by frequency and into two groups: δ 
through β (0.5–30 Hz, phase and amplitude) and low γ through high γ (30–250 Hz, phase and amplitude) (Comparison across days: α = 0.05, two-
sided, permutation testing with 10,000 resamples). White circle reflects mean; black horizontal line reflects median. Box edges correspond to 25th and 
75th percentiles. Whiskers span the entire data range excluding outliers. Outliers were computed as 1.5·IQR away from the upper or lower quartile and 
are not shown. For all analysis in this figure, n sequence trials per day = 238 for GP1, 206 for GP2, 158 for STN1, 182 for STN2. * p < 0.05, ** p < 0.01, 
*** p < 0.001. GP, globus pallidus; Put, putamen; vSTN, ventral subthalamic nucleus; dSTN, dorsal subthalamic nucleus; M1, primary motor cortex; PM, 
premotor cortex; S1, primary somatosensory cortex; Par, parietal cortex.
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permutation testing (Supplementary Figure 5). Low γ (30–50 Hz), mid 
γ (50–70 Hz) and high γ (70–250 Hz) were collectively the most 
important, though the importance of γ phase relative to and γ 
amplitude varied (Figure  5D; Supplementary Figure  6). Thus, for 
formal statistical analysis, we divided features into only two groups: 
(1) δ through β and (2) low γ through high γ and found that γ activity 
was the primary driver of practice-driven changes in model 
performance (Figure  5E; Supplementary Figure  7). In most brain 
regions, the across-day change in accuracy decrease linked to 
permutation of grouped γ features was large and in a direction that 
paralleled practice-driven change in model performance (GP1: 
p < 0.001  in all brain regions; GP2: p = 0.025  in GP, p < 0.001 
otherwise; STN1: p < 0.001 in vSTN and M1, p > 0.05 in dSTN and 
Par; STN2: p > 0.05 in M1, p < 0.001 otherwise). In contrast, effects 
for permutation of grouped δ through β features were small and did 
not consistently track model performance across days (GP1: 
p < 0.001 in GP and M1/S1, p = 0.013 in Put, p > 0.05 in PM; GP2: 
p < 0.001  in GP and M1, p > 0.05  in Put, p = 0.001  in PM; STN1: 
p = 0.004 in vSTN, p = 0.020 in dSTN, p > 0.05 in M1 and Par; STN2: 
p = 0.049995 in vSTN, p = 0.024 in dSTN, p < 0.001 in M1 and Par). 
These findings suggest network-wide participation in multi-element 
preplanning through sequence-specific population activity that was 
optimized with learning and reflected in γ activity.

Improvement is associated with 
cortically-led δ phase synchrony in 
response to cue

We next evaluated how oscillatory network dynamics may have 
facilitated the observed learning-related changes in sequence-specific 
activity. Assuming that the overall architecture of functional 
connectivity is sequence-general even for sequence-specific 
spatiotemporal patterns of neural activity, we calculated functional 
connectivity for each sequence and averaged the result across 
sequences per day before statistical testing. This minimized confounds 
due to performance differences between learning stage-matched 
sequences. Thus, we  could analyze all experimental sessions, and 
across-day comparisons of functional connectivity paralleled 
behavioral stratification. Sequence practice-related effects were those 
that occurred in overlapping time regions between both Days 1 and 3 
and Days 3 and 4; though we  did not behaviorally stratify task 
learning, we did examine task exposure-related neural activity by 
comparing Days 1 and 4.

The supposition that δ phase facilitates recruitment of sequence-
specific ensemble activity implies δ phase-spike coding, which ultimately 
predicts that δ phase consistently aligns to motor events. Cortical δ 
phase locks to movement-related visual cues in healthy subjects, so 
we computed δ phase locking value (PLV) to cue in our subjects after 
confirming all recording channels had δ amplitude sufficient for phase 
estimation (Lakatos et al., 2008; Hamel-Thibault et al., 2018; Lachaux 
et al., 1999; Saleh et al., 2010) (Figure 6A; Supplementary Figures 8, 9). 
In GP subjects, PLV was significant throughout motor cortex on all 
days, increasing with task exposure in M1 (or M1/S1). However, only 
GP1 had significant PLV in basal ganglia on all days and increasing PLV 
in GP and PM with task exposure. In STN subjects, M1 PLV was also 
significant on all days. In other channels (not surgically targeted in GP 
subjects), PLV effects differed between STN1 and STN2. In STN1, PLV 

increased with task exposure in vSTN and Par and with both sequence 
practice and task exposure in dSTN—effects absent in STN2, for whom 
PLV was mostly insignificant or diminished with task exposure. These 
results suggest that cue-aligned δ phase in motor cortex, striatum and, 
increasingly, dSTN was important to sequence learning and reveal an 
enhancement of motor network-wide δ phase alignment to cue with 
task exposure that occurred only in improvers.

Such anatomically widespread δ phase alignment to cue in 
improvers suggests cross-area coordinated δ activity sufficient to 
facilitate coordinated recruitment of motor cortical and striatal 
ensembles with learning (Ganguly et  al., 2022). To assess this, 
we  analyzed interregional δ phase coupling. Using pairwise phase 
consistency (PPC), we tested for an increase, relative to session-wide 
baseline, in undirected phase coherence aligned to cue and compared 
PPC between days (Vinck et al., 2010). When undirected coherence was 
significant, we compared the phase slope index (PSI; directed coherence) 
to chance (no channel leads) (Nolte et al., 2008). Two brain regions with 
a common input could show significant and stable undirected coherence 
even if a phase lead developed with learning. Undirected coherence 
exceeded baseline too infrequently to justify systematic between-day 
PSI testing, so we also noted as sequence practice- or task exposure-
related any directed coherence that occurred only on specific days (Day 
3 for sequence practice; Days 3 and 4 or Day 4 for task exposure).

Only improvers demonstrated cortically-led network δ synchrony 
(Figures  6B,D–E). This synchrony increased above session-wide 
baseline in response to the cue and demonstrated sequence learning- 
and task exposure-related effects in improvers. In GP1, PM led M1/S1 
and Put, and Put led GP, with small but significant M1/S1-striatal 
coherence associated with leads for M1/S1 → GP and Put → M1/S1. 
GP led PM with task exposure. These effects were absent in GP2, for 
whom M1 instead led PM for familiar sequences. In STN1, M1 led 
dSTN for familiar sequences, and Par led dSTN and M1 with task 
exposure. Significant cue-related inter-STN PPC for familiar 
sequences indicates STN was recruited to network δ synchrony, partly 
by M1 and perhaps by an unrecorded region. In STN2, no directed 
phase leads occurred, and significant inter-STN PPC lacked the 
consistent local δ phase needed for event-locked coordinated phase 
coding (Figure  6A). Notably, in both nonimprovers, inter-BG δ 
synchrony started high and decreased with task exposure—an effect 
paralleled in session-wide inter-BG δ coherence, opposite that 
observed in improvers (Figure  6C). High inter-basal ganglia δ 
synchrony in nonimprovers was linked to a lack of cue-aligned local 
BG δ phase and an absence of cortico-basal ganglia δ synchrony.

Sequence learning is associated with δ-γ 
coupling within and between cortex and 
basal ganglia

Having identified coordinated δ activity theoretically capable of 
supporting δ → spike coupling to facilitate the sequence-specific activity 
reflected in classification analysis, we next directly evaluated δ-γ coupling. 
We assessed both local and cross-area δ phase-high γ coupling. Using 
pairwise phase consistency and phase slope index, we  calculated 
undirected and directed coherence between δ phase and the δ phase of 
the γ amplitude envelope (γh

δ). For interregional cross-frequency coupling 
(CFC), we report all results for which at least one subject demonstrates an 
effect of either sequence practice or task exposure.
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FIGURE 6

Improvement is associated with cortically-led network δ phase synchrony, to which sequence learning and task exposure add distinct effects, while 
lack of improvement is associated with highly synchronous BG δ. (A) (Left) All Day 3 single-trial δ phase time series after cue onset in the pallidum of 
GP1 and GP2. (Right) δ Phase locking value (PLV) computed across trials per channel after cue onset on days 1, 3 and 4. Solid line indicates PLV 
significantly higher than chance (α = 0.05, one-sided, cluster-based permutation test with 10,000 resamples). See Supplementary Table 4 for p-values. 
Shaded box indicates significant difference in PLV between days (α = 0.05, two-sided, cluster-based permutation with 10,000 resamples). See 
Supplementary Table 5 for p-values. (B) Effects in δ synchrony. (Large plots) δ pairwise phase consistency (PPC, undirected measure) time series for all 

(Continued)
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Contrary to expectation, local δ → γh
δ coupling was rare, 

suggesting that local δ → spike coupling may not have been a primary 
mechanism facilitating sequence-specific activity 
(Supplementary Figure 10). Practice-dependent γh

δ → δ coupling was 
more common, though also inconsistent across subjects. Nonetheless, 
M1 high γ amplitude still significantly increased in the RT period on 
all days in all subjects (Supplementary Figure 11), as expected for 
successful movement. This indicates that activity reflected in local 
δ → γh

δ coupling was not a necessary step in general motor initiation 
for these subjects (Singh, 2018; Crone et al., 1998).

Sequence learning was more associated with a range of 
interregional δ-γh

δ effects (Figures  7A,B). These effects differed 
depending on the involved brain regions, which is consistent with the 
specialized roles of different regions in the cortico-basal ganglia 
network. In GP1 but not GP2, sequence practice was associated with 
premotor lead of M1/S1, as well as M1/S1 and PM lead of putamen. 
In STN1 but not STN2, sequence practice was associated with dSTN 
lead of M1 and vSTN, as well as M1 lead of Par. In STN2, Par instead 
led M1 on Days 1 and 3, but this effect diminished with task exposure. 
Otherwise, there were no task exposure-related effects in any subjects. 
Notably, δ led γh

δ only for M1 γh
δ with sequence learning in improvers, 

potentially reflecting underlying δ → spike coupling that led to the 
improvement-related increase in M1 γ’s predictive value (Figure 5).

Network β does not gate motor cortical δ

Using the same approach, we finally tested whether network β gated 
motor cortical excitability by assessing δ-β coupling. We calculated 
coupling between δ phase and the δ phase of the β amplitude envelope 
(βδ). Cortical excitability reflected as a deflection in cortical δ, could 
be  led by cortical β, subcortical β or a combination of both. Thus, 
we assessed both intraregional and interregional δ-βδ coupling.

There was substantial overlap of regions with consistent movement-
related β desynchronization and regions with cue-related δ phase 
alignment (all motor regions in improvers; motor cortex and putamen 
in nonimprovers) (Figure 6A; Supplementary Figure 12), suggesting 
widespread local δ-β coupling. However, significant local δ-βδ directed 
coupling was rare, never occurred across all days and demonstrated 
inconsistent direction of phase lead in M1 across subjects 
(Supplementary Figure 13). Local β gating of low-frequency shifts in 
M1 excitability was not likely a general mechanism in motor initiation.

Likewise, there was no evidence for consistent interregional β 
gating of M1 excitability; however, striatocortical δ → βδ coupling 

developed with sequence learning in GP1 (Figures  8A,B). This 
contrasts with sequence practice-related corticostriatal δ-βδ coupling 
in GP2. With task exposure, primary motor cortex led PM in both GP 
subjects, but only in GP1 was GP led by all recorded brain regions 
(Put, M1/S1, PM) (Figures  8C,D). In STN subjects, no sequence 
practice-related effects were observed. However, with task exposure in 
STN1, Par led M1 and dSTN—effects absent in STN2. These results 
associate sequence learning and task exposure with unique, 
anatomically-specific patterns of δ-β coupling in improvers.

Discussion

This study is the first invasive electrophysiological investigation of 
human cortico-basal ganglia dynamics in motor sequence learning. 
Though all subjects demonstrated M1 β desynchronization, δ phase 
alignment to cue and γ synchronization, a consistent β → δ → γ cascade 
was absent—possibly reflecting PD-related neuropathophysiology 
(Figures 9, 10). Instead, δ-β and δ-γ coupling emerged with learning, 
possibly supporting optimization of preparatory activity. However, 
consistent with our predictions, we observed increasingly predictive 
sequence-specific cortical and basal ganglia γ activity alongside 
cue-aligned cortico-BG δ synchrony in improvers. Strikingly, all brain 
regions were eventually recruited, producing network δ synchrony. 
Furthermore, M1 γ’s increasing predictive value was linked to its 
coupling with synchronized network δ, tying coordinated network δ to 
enhanced recruitment of sequence-specific neural activity. In contrast, 
in nonimprovers, decreasingly predictive γ corresponded with minimal 
CFC and absent coordinated network δ activity. Highly coherent 
inter-BG δ did not synchronize with cortex or align to visual cues, 
suggesting it was pathological. These results suggest that both cortex 
and basal ganglia supported multi-element preplanning and that 
cortico-basal ganglia communication was critical to learning-driven 
optimization of motor preparation. This highlights how motor learning 
can harness a hierarchical functional network architecture to optimize 
information transfer and temporally structure neural activity in PD.

The β → δ → γ framework for motor 
initiation: an assessment in Parkinson’s 
disease

The expected cascade of network β → cortical δ → cortical γ for 
general motor initiation was absent in our subjects, indicating it was 

channel pairs. Solid line indicates PPC significantly higher than session-wide baseline, i.e., h0 = coherence aligned cue is the same as general 
coherence levels not aligned to cue (rather than h0 = no coherence) (α = 0.05, one-sided, cluster-based permutation with 10,000 resamples). See 
Supplementary Table 6 for p-values. Shaded box indicates significant difference in PPC between days (α = 0.05, two-sided, cluster-based permutation 
with 10,000 resamples). See Supplementary Table 7 for p-values. (Insets) Phase slope index (PSI, directed measure) for data series in which PPC 
significantly surpassed baseline. PSI is displayed for the same total time window as PLV and PPC. Solid line indicates significant PSI (h0 = no channel 
leads, α = 0.05, two-sided, cluster-based permutation with 10,000 resamples). See Supplementary Table 8 for p-values. (C) Session-wide baseline basal 
ganglia δ pairwise phase consistency averaged across time. Calculated by taking the null distribution of time series resampled from each session in 
(B) and averaging each null PPC sample across time. Change in session baseline across Days 1 and 4 was tested (α = 0.05, two-sided, permutation 
testing with 10,000 resamples). See Supplementary Table 9 for p-values. White circle reflects mean; black horizontal line reflects median. Box edges 
correspond to 25th and 75th percentiles. Whiskers span entire data range excluding outliers. Outliers were computed as 1.5·IQR away from the upper 
or lower quartile and are not shown. ***p < 0.001. (D) Network diagrams illustrating sequence practice-related δ coherence effects. (E) Network 
diagrams illustrating task exposure-related δ coherence effects. GP, globus pallidus; Put, putamen; vSTN, ventral subthalamic nucleus; dSTN, dorsal 
subthalamic nucleus; M1, primary motor cortex; PM, premotor cortex; S1, primary somatosensory cortex; Par, parietal cortex.

FIGURE 6 (Continued)
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not prerequisite (Ganguly et al., 2022; Fasano et al., 2022; Singh, 2018; 
Kaufman et al., 2014; Churchland and Shenoy, 2024; Crone et al., 
1998; Herrojo Ruiz et al., 2014; Herrojo Ruiz et al., 2014; Jenkinson 
et al., 2013; Muralidharan and Aron, 2021; Torrecillos et al., 2018; Yin 
et al., 2021; Pascual-Leone et al., 1994). Our observation of both lead 
directions for δ-γ and δ-β couplings is novel, as most studies have 
employed undirected coupling measures (Combrisson et al., 2017; 
Attaheri et al., 2022; Natraj et al., 2022; Ramanathan et al., 2018). 
Coupling in which β or γ led δ was often associated with enhanced δ 
alignment to cue or lead of other brain regions, suggesting a practice-
driven role for β- and γ-related neural activity in influencing network 
δ dynamics. This may reflect compensatory or pathological 
mechanisms related to increased cortical δ sometimes observed with 
PD progression (Pal et al., 2020; Ponsen et al., 2013; Rucco et al., 2022).

Practice-driven pre-movement 
sequence-specific activity

Pre-movement sequence-specific activity has been observed in 
nonhuman primate motor cortex, and we  provide the first 
electrophysiological evidence of it in human cortex and basal ganglia 
(Lu and Ashe, 2005; Hatsopoulos et  al., 2003). Among canonical 
frequency bands, γ’s large bandwidth necessitated the most 
narrowband filters for time-frequency analysis, which inherently 
increased its representation in the total feature set. However, lasso 
regularization and within-time-frequency percentile-based feature 
selection helped prioritize features based on sparsity and 
discriminative value. Thus, sequence-specific γ activity may have 
arisen from unique neural ensembles, with distinct firing patterns and 

spatial proximities to the recording contacts resulting in differing field 
potential dynamics (Chang, 2015; Ray et al., 2008).

While animal model motor learning studies suggest that increasingly 
predictive cortical and BG γ should couple with network δ, we did not 
observe δ → γ for BG γ (Khanna et al., 2021; Ganguly and Carmena, 
2009; Peters et al., 2014; Rostami et al., 2024; Guo et al., 2021; Ganguly 
et al., 2022; Lemke et al., 2019). Unrecorded regions may have facilitated 
BG γ’s increased predictive value. Alternatively, δ may have indirectly 
influenced sequence-specific activity through its lead of β, which may 
bind action plan-specific ensembles across the network (Ganguly et al., 
2022). Decreased decoding accuracy in some brain regions of 
nonimprovers may have reflected reduced consistency of ensemble 
activity, potentially contributing to lack of motor improvement. Given 
our small sample size and recordings at the level of neural populations 
rather than individual neurons, these suggestions are conjecture and 
should inspire future experimental work.

Sequence learning and task exposure 
produced distinct patterns of cortico-basal 
ganglia functional connectivity in 
improvers

Different patterns of both CFC and δ synchrony emerged with 
sequence learning and task exposure in improvers. For CFC, most 
notably, basal ganglia→cortex CFC developed only with sequence 
learning, with putamen and dSTN δ leading β and γ in cortex. This 
aligns with models implicating putamen and dSTN in action selection 
and learning and suggests that they perform these roles through CFC 
patterning of high-frequency cortical activity (Doyon, 2008; Marinelli 

FIGURE 7

Sequence learning is associated with corticocortical, cortico-basal ganglia and inter-basal ganglia δ-γ couplings. (A) Sequence practice-related effects 
in interregional δ-γh

δ coherence. (Large plots) Pairwise phase consistency (PPC, undirected measure) was calculated between δ phase and the δ phase 
of the high γ amplitude envelope. Solid line indicates significant PPC (h0 = coherence is not higher than expected given the phase distribution, α = 0.05, 
one-sided, cluster-based permutation with 10,000 resamples). See Supplementary Table 14 for p-values. Shaded box indicates significant difference in 
PPC between days (α = 0.05, two-sided, cluster-based permutation with 10,000 resamples). See Supplementary Table 15 for p-values. (Insets) Phase 
slope index (PSI, directed measure) for data series in which PPC was significant. PSI is displayed for the same total time window as PPC. Solid line 
indicates significant PSI (h0 = no channel leads, α = 0.05, two-sided, cluster-based permutation with 10,000 resamples). See Supplementary Table 16 
for p-values. (B) Network diagrams illustrating sequence practice-related δ-γh

δ effects. GP, globus pallidus; Put, putamen; vSTN, ventral subthalamic 
nucleus; dSTN, dorsal subthalamic nucleus; M1, primary motor cortex; PM, premotor cortex; S1, primary somatosensory cortex; Par, parietal cortex.
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et al., 2017; Rusu and Pennartz, 2020; Caligiore et al., 2019; Simonyan, 
2019; Klaus et al., 2019; Balleine et al., 2015; Milardi et al., 2019). For 
δ synchrony, consistent with neuroimaging, we found corticostriatal 
δ coherence in GP1 (Toni et al., 2002; Doyon et al., 2003; Debas et al., 
2014). We further established a cortex→striatum direction of lead and 
found sequence learning-related M1 → dSTN connectivity. In 

contrast, task exposure drove striatocortical δ synchrony. GP → PM 
δ synchrony completed a possible loop of cortico-basal ganglia δ 
phase coordination, via PM → Put→GP → PM. This suggests that 
general motor familiarization or the optimization of attentional 
processes could involve a positive feedback loop of network δ 
synchrony, which could aid future sequence learning (Combrisson 

FIGURE 8

Striatocortical δ-β coupling increases with sequence learning, while task exposure brings a range of δ-β couplings in improvers mostly absent in 
nonimprovers. (A) Sequence practice-related effects in interregional δ-βδ coherence. (Large plots) Pairwise phase consistency (PPC, undirected 
measure) was calculated between δ phase and the δ phase of the β amplitude envelope. Solid line indicates significant PPC (h0 = coherence is not 
higher than expected given the phase distribution, α = 0.05, one-sided, cluster-based permutation with 10,000 resamples). See Supplementary Table 21 
for p-values. Shaded box indicates significant difference in PPC between days (α = 0.05, two-sided, cluster-based permutation with 10,000 resamples). 
See Supplementary Table 22 for p-values. (Insets) Phase slope index (PSI, directed measure) for data series in which PPC was significant. PSI is displayed 
for the same total time window as PPC. Solid line indicates significant PSI (h0 = no channel leads, α = 0.05, two-sided, cluster-based permutation with 
10,000 resamples). See Supplementary Table 23 for p-values. (B) Network diagrams illustrating sequence practice-related δ-βδ effects. (C) Task 
exposure-related effects in interregional δ-βδ coherence. Visualization and statistics identical to (A) (see Supplementary Tables 24, 25 for p-values). 
(D) Network diagrams illustrating task exposure-related δ-βδ effects. GP, globus pallidus; Put, putamen; vSTN, ventral subthalamic nucleus; dSTN, dorsal 
subthalamic nucleus; M1, primary motor cortex; PM, premotor cortex; S1, primary somatosensory cortex; Par, parietal cortex.
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et  al., 2017; Canavier, 2015; Harmony, 2013; Voloh and 
Womelsdorf, 2016).

Few effects of sequence practice and task 
exposure in nonimprovers: possible impact 
of pathologically synchronized basal 
ganglia δ

The absence of cue-related functional connectivity involving BG 
δ in nonimprovers may have been related to high session-wide 
inter-BG δ synchrony. Human and animal studies have detected 
δ-range spiking activity in GP and STN in low dopamine states and 
linked it to motor symptoms, suggesting that ineffective or absent 
dopamine replacement therapy can permit pathological BG δ activity 
(Levy et al., 2002; Zhuang et al., 2019; Whalen et al., 2020). Consistent 
with this, our subjects exhibiting elevated BG δ synchrony were those 
for whom general motor function remained the most compromised 
while on dopamine medication (Supplementary Table 1). However, 
their daily post-task UPDRS upper limb scores were comparable to 
those of other subjects and demonstrated no apparent across-day drop 
alongside the across-day decrease in BG δ synchrony 
(Supplementary Table 3). It is possible that task exposure drove the 
across-day BG δ synchrony decrease, promoting the possibility of 
future learning, and that the MDS-UPDRS upper limb component 
was too insensitive to detect associated changes in hallmark upper 
limb motor symptoms (Tosin et al., 2021). In any case, the concurrent 
lack of improvement and absence of practice-related effects involving 

BG δ suggests that event-related coordination of BG δ may have been 
important to motor learning in these subjects.

Coordinated network δ as a facilitatory 
network state for learning-dependent 
cross-frequency coupling during sequence 
initiation

From the theoretical standpoint, δ is an ideal substrate for 
information multiplexing, local gain modulation and information 
transfer between distant phase-aligned brain regions (Hahn et al., 
2019; Schroeder and Lakatos, 2009; Canavier, 2015; Harmony, 2013; 
Voloh and Womelsdorf, 2016). Experimental evidence supports this, 
showing a role for δ in information sequencing through phase-specific 
ensemble patterning; sensory integration and attentional control 
through gain modulation achieved by changes in neural excitability; 
and functional network organization, information transfer and 
distributed representation through cross-area coordinated activity 
that coactivates distributed ensembles (Khanna et al., 2021; Hahn 
et  al., 2019; Schroeder and Lakatos, 2009; Lakatos et  al., 2008; 
Whittingstall and Logothetis, 2009; Lemke et al., 2019; Natraj et al., 
2022; Dann et al., 2016; Wyart et al., 2012).

Consistent with these roles, in our study, cross-area coordination of 
δ phase may have formed the infrastructure for a cue-responsive network 
state, within which learning-related δ-β and δ-γ coupling developed. 
While δ synchrony and phase alignment to cue occurred on Day 1 and 
increased across days, interregional δ-β and δ-γ directed couplings were 

FIGURE 9

Observed learning-related cortico-basal ganglia activity during motor sequence initiation. Diagram of observed learning-related changes in sequence-
specific activity and functional connectivity prior to the onset of motor sequences over multiple days of practice. (Left) Sequence-specific γ activity was 
present in all brain regions for all subjects. With practice, γ’s predictive value increased in improvers but decreased in nonimprovers. (Right) As 
predicted, successful sequence learning involved cortico-basal ganglia δ synchrony and δ → γ coupling with motor cortex γ, though δ → γ coupling was 
not observed with basal ganglia γ. Sequence learning also involved other cross-frequency couplings, most notably δ → γ and δ → β couplings in which 
basal ganglia led cortex. In nonimprovers, highly coherent inter-basal ganglia δ was uncoupled from cortex and unresponsive to task events. These 
results suggest (1) that sequence learning harnessed cortically-led δ phase coordination to organize distributed higher-frequency neural activity for the 
optimization of multi-element preplanning and (2) that pathological BG δ synchrony may interfere with BG δ phase coding by reducing BG sensitivity to 
cortical input, ultimately disrupting motor learning.
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initially mostly absent. Moreover, only the δ in brain regions that aligned 
to cue participated in interregional CFC, and, outside of motor cortex, 
local δ alignment to cue was always linked to network δ synchrony. These 
results highlight a potential role for cross-area δ synchrony in driving 
consistent event-related local δ phase dynamics, which can, in turn, 
support phase coding that patterns high-frequency activity.

This link between motor performance-related δ activity and CFC 
is consistent with lesion experiments in animal models and 
observational studies of the human cortical grasp network (Khanna 
et al., 2021; Lemke et al., 2019; Natraj et al., 2022). Other work has 
found reaction time-correlated cue-responsive δ phase reset in human 
hippocampus; reaction time-correlated δ phase in rat motor thalamus 
coupled to local spiking; motor learning-related M1-cerebellar δ 

synchrony in rats with enhanced cross-area spiking activity and even 
evidence for prefrontal guidance of motor plans via δ-β coupling in 
humans (Riddle et al., 2021; Kleen et al., 2016; Gaidica et al., 2020; 
Fleischer et al., 2023). In humans with PD, increased prefrontal δ 
activity during sleep with low frequency stimulation of the basal 
ganglia may improve memory retention, suggesting importance of this 
signal to offline learning as well (Herz et al., 2025). Coordinated δ may 
ultimately reflect a system-wide neural process facilitating local and 
distributed activity patterns over the course of learning.

However, the neurophysiological basis of the activity reflected in 
δ remains unclear. While δ has been associated with excitability and 
with single-unit spiking at δ frequency, it has also, similar to γ, been 
linked to the dynamics of population spiking activity (Ramanathan 

FIGURE 10

Coordinated δ activity supports a hierarchical functional network during sequence practice and task exposure that reflects the specialized roles of 
cortico-basal ganglia regions. Composite diagrams of interregional effects associated with (A) sequence practice and (B) task exposure. As motor 
sequence learning overlaps with increasing familiarity with the experimental process, we dissociated the functional connectivity effects related to 
sequence practice from those related to task exposure. In improvers, sequence learning and task exposure produced distinct patterns of CFC and 
changes to network δ dynamics, though sequence learning and task exposure were nonetheless linked by a common framework of cortically-led 
network δ synchrony. For each type of communication, the presence and direction of coupling depended on the involved brain regions, indicative of 
their specialized roles. In nonimprovers, the absence of both sequence practice- and task exposure-related effects involving subcortical δ further 
suggests that a locus of their interdependence may be cortico-basal ganglia δ synchrony. Furthermore, in all subjects, only the δ in regions that aligned 
to cue participated in interregional CFC. Except for motor cortex δ, this local δ alignment to cue was coupled with network δ synchrony. These findings 
support a model wherein a network capable of learning leverages preparatory coordinated network δ activity to organize both sequence learning- and 
task exposure-related effects, with the two effect types distinguished by a unique interplay of δ synchrony and CFC. This ultimately poses coordinated 
network δ as an ideal substrate for task familiarization to boost future sequence learning. Neurostimulation that enhances event-related cortico-basal 
ganglia δ coupling may thus prove a broadly effective strategy to improve skilled fine motor control in PD. GP, globus pallidus; Put, putamen; vSTN, 
ventral subthalamic nucleus; dSTN, dorsal subthalamic nucleus; M1, primary motor cortex; PM, premotor cortex; S1, primary somatosensory cortex; 
Par, parietal cortex.
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et  al., 2018; Hall et  al., 2014), and it could reflect synaptic input 
(Haberly and Shepherd, 1973; Rebert, 1973; Mitzdorf, 1985; Parker 
et al., 2002). It is thus important to clarify that δ activity may not 
directly influence other neural activity, per sé, but rather reflect the 
underlying activity that drives the observed network effects.

Clinical implications

Parkinson’s disease often involves an impairment of action 
sequencing, but its neural basis is poorly understood and incompletely 
remediated by dopamine replacement therapy and conventional DBS 
(Marinelli et al., 2017; Park, 2017; Heilman, 2020). Our observation 
that both sequence learning and task exposure involved cortico-basal 
ganglia δ phase coordination in improvers suggests that enhancing 
event-related cortico-basal ganglia δ synchrony may improve not only 
the learning of specific sequences but also the ability to adapt to new 
cued motor tasks. Improved task learning could, in turn, boost future 
sequence learning for a range of sequences or contexts, suggesting 
therapies aimed at restoring cortico-basal ganglia δ synchrony could 
be  broadly effective for skilled hand movements. Electrically 
stimulating basal ganglia upon detection of motor intention and based 
on the ongoing phase of BG or cortical δ could promote cortico-basal 
ganglia δ synchrony and possibly disrupt pathological BG δ. Thus, our 
findings posit pre-movement δ phase-specific striatal or subthalamic 
DBS as a therapeutic neuromodulatory strategy to restore fine 
motor control.

Central limitations

Our study was limited by a small sample size, as is common in 
human invasive electrophysiology. Anatomically nonoverlapping 
recordings in GP and STN subjects revealed the specialized neural 
activity of different brain regions but left unverifiable the consistency 
of effects across improvers or across nonimprovers. The lack of 
improvement in half the subjects allowed binary behavioral 
stratification but limited analysis to within-subjects comparisons with 
n = 1 per learner type per brain region. Future work should replicate 
this study in larger cohorts.

It is possible that performance floor effects led to incorrect 
behavioral stratification. Despite lack of performance improvement, 
nonimprovers typed at least as quickly as improvers. This indicates 
that lack of improvement was not due to difficulty manipulating the 
keyboard and could suggest that nonimprovers found the task too easy 
at baseline to show measurable improvement with sequence learning. 
However, performance decrements when switching between 
sequences within a given day—indicative of interference caused by 
sequence learning—were not apparent in nonimprovers’ single-trial 
performance data. It is possible that initial typing speeds reflected 
typical inter-individual variability.

Conclusion

In individuals experiencing Parkinson’s disease, we outline a 
hierarchical, learning-dependent functional architecture of 

oscillatory cortico-basal ganglia activity for the initiation of fine 
motor sequences. The findings illuminate how disparities in 
information content and flow may relate to disparities in motor 
learning outcomes. Extending this work in larger cohorts of 
individuals with PD could help elucidate the relationship between 
clinical characteristics and practice-related neural dynamics. This 
would further clarify the potential for phase-specific basal ganglia 
stimulation to modulate pathological neural dynamics in the 
production of fine motor skills.
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