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Background: Quantitative susceptibility mapping (QSM) has emerged as

a promising paraclinical tool in multiple sclerosis (MS). This retrospective

pilot study aims to evaluate whether a recently proposed deep learning-

assisted, k-space-operating reconstruction, denoising and super-resolution

technique (DLR) applied on 3D-echo-planar-imaging (3DEPI) protocols, has

the potential to improve the quality and clinical utility of QSM in MS, at 3T.

Secondarily, we assess whether applying DLR vs. a conventional reconstruction

(CR) can improve the quality of QSM based on noise-susceptible, fast

3DEPI protocols.

Methods: 3T MRI 3DEPI-data were acquired on seven MS patients and offline-

reconstructed using CR and DLR. A sample size of 433 lesions was identified,

based on FLAIR segmentation. Two experts, independently and method-

blinded, rated lesion-wise the CR- and DLR-3DEPI-derived QSM, assessing the

confidence in identifying paramagnetic rim lesions (PRLs), central vein sign

(CVS), QSM hyper/isointense lesions and image quality. Gradient-recalled-echo

(GRE), 2- and 1-average 3DEPI (acquisition time: 7:02, 3:44, and 1:56 min,

respectively) from a healthy individual were offline-reconstructed using CR and

DLR. Derived QSM maps were compared visually and quantitatively.

Results: Deep learning reconstruction-3DEPI-based QSM was rated significantly

higher for the confidence in identification of the MS-specific biomarkers

(hyper/isointense lesions: P < 0.001, CVS: P = 0.01) and overall image

quality (P < 0.001), compared to CR-3DEPI-based. Inter-method agreement

was high for both raters (Cohen’s κ = 0.98/0.92), suggesting that DLR

improves the quality without changing the rater’s perception of the

individual QSM-related clinical findings. Additionally, QSM derived from

fast DLR-3DEPI with a fourfold acquisition-time reduction compared to
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GRE, exhibited excellent visual and quantitative consistency with GRE-

based QSM.

Conclusion: Our results constitute a first demonstration of the enhanced quality

and clinical utility of the DLR-3DEPI-based QSM in MS.

KEYWORDS

quantitative susceptibility mapping (QSM), gradient-recalled-echo (GRE), 3-
dimensionalsegmented-echo planar imaging (3DEPI), multiple sclerosis (MS),
susceptibility (χ), central vein sign (CVS), paramagnetic rim lesion (PRL), artificial
intelligence (AI)

1 Introduction

Quantitative susceptibility mapping (QSM) is an MRI-
based modality, with which estimates of the voxel-wise bulk
magnetic susceptibility are obtained (Wang et al., 2017; Deistung
et al., 2017). The physical underpinnings of QSM contrast are
associated with tissue molecular composition (especially with
iron and myelin content) and disease-induced damage (Möller
et al., 2019). In multiple sclerosis (MS), QSM enables the
identification of pathological changes that play a crucial role in
the pathophysiology of the disease. Unlike conventional MRI,
QSM aids in characterizing and disentangling the microstructural
changes accumulating within MS lesions (Granziera et al., 2021;
Langkammer et al., 2013; Gillen et al., 2021; Kaunzner et al., 2019).
It is increasingly employed to identify chronic active lesions, a
subset of MS lesions characterized by persistent inflammatory and
degenerative activity associated with a more aggressive disease
course (Absinta et al., 2019; Cagol et al., 2024a; Bagnato et al.,
2024). In these lesions, QSM can reveal the presence of a rim
of paramagnetic signal along the lesion edge, indicating the
accumulation of iron-laden macrophages and microglia (Huang
et al., 2022; Dimov et al., 2022). These paramagnetic rim lesions
(PRLs) represent promising diagnostic and prognostic biomarkers,
and their importance in the management of MS is expected to
grow in the near future (Preziosa et al., 2021; Martire et al.,
2022). Additionally, QSM has recently emerged as a promising
technique for differentiating MS lesions based on myelin content,
providing biomarkers sensitive to remyelination. In fact, MS lesions
exhibiting a hypointense or isointense QSM contrast have been
shown to accurately identify remyelinated areas upon pathological
examination (Rahmanzadeh et al., 2022). Furthermore, QSM can
support the identification of the central vein sign (CVS), an MRI
biomarker with high performance in supporting the differential
diagnosis of MS (Castellaro et al., 2020; Cagol et al., 2024b).

In practice, gradient-recalled-echo (GRE) or 3D-segmented-
echo planar imaging (3DEPI) acquisitions are often used as basis
for the estimation of susceptibility (χ) maps (QSM Consensus
Organization Committee et al., 2024). 3DEPI-based acquisitions

Abbreviations: QSM, quantitative susceptibility mapping; GRE, gradient-
recalled-echo; 3DEPI, 3-dimensional-segmented-echo planar imaging;
MS, multiple sclerosis; χ, susceptibility; CVS, central vein sign; PRL,
paramagnetic rim lesion; AI, artificial intelligence; DLR, deep learning-based
reconstruction; CR, conventional reconstruction; FLAIR, FLuid Attenuated
Inversion Recovery.

are faster, a crucial factor for clinical applicability. However, the low
SNR, increased susceptibility artifacts and geometric distortions
typically provided by 3DEPI-based sequences has led to the
recommendation of using GRE in clinical settings, despite its longer
acquisition times (QSM Consensus Organization Committee et al.,
2024; Tourell et al., 2024). Recently, a vendor-specific deep
learning-assisted (U-net based), k-space-operating reconstruction,
denoising and super-resolution technique (Siemens Healthineers,
Erlangen, Germany) has been proposed (Hammernik et al., 2019;
Lopez Schmidt et al., 2023; Behl, 2021). Initial assessments of
the deep-learning reconstructed (DLR) MRI contrasts indicated
excellent quality and increased SNR along with substantial
reduction in scanning and reconstruction time (Pfeuffer et al.,
2024) compared to conventional reconstruction (CR)-based maps.
Given that resolution, artifact limitation, and SNR are crucial for
enhancing tissue characterization, we aimed to assess the potential
added value of the DLR pipeline in characterizing QSM-based
biomarkers in people with MS.

To achieve that aim, in this pilot study, rapid 3DEPI
acquisitions are combined with the DLR to investigate the clinical
accuracy and validity of the susceptibility maps derived, in the
context of MS. Toward that aim, 3T MRI 3DEPI data of seven MS
patients were post-reconstructed using product CR and research
DLR. The derived χ maps were assessed by two experts –
blinded to the reconstruction method – who rated for each
contrast lesion-wise the confidence in identifying the presence
of PRLs, CVS, QSM hyperintense and isointense lesions, as well
as the overall QSM image quality based on the perception of
susceptibility/motion/other artifacts and SNR. Additionally, to
assess the acquisition time (TA) advantage we can achieve using
DLR, while maintaining the QSM quality, we acquired 3T GRE as
well as 2- and single-average 3DEPI data (acquisition time: 7:02,
3:44, and 1:56 min, respectively) on a healthy individual. QSM
maps from the progressively faster acquisitions were compared
visually and quantitatively using the QSM derived from the GRE
data as a reference.

2. Methods

2.1 MR imaging

Three-dimensional-segmented-echo planar imaging (Sati et al.,
2014) MRI data (0.67 mm isotropic, TE: 35 ms, TR: 64 ms,
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flip angle: 10◦, no GRAPPA, TA ∼6.5 min) from seven MS
patients were obtained at the University Hospital using a
Siemens MAGNETOM Prisma 3T system (Siemens Healthineers,
Forchheim, Germany) equipped with the manufacturer’s 64-
channel head/neck array coil. The patients were part of the
INsIDER study that was approved by the local ethics committee
(IRM of northwest Switzerland) and registered at clinicaltrials.gov
(NCT05177523). Table 1 presents the cohort’s characteristics.
FLuid Attenuated Inversion Recovery (FLAIR) images for each
patient were also available. The patients were selected only based
on providing a high lesion load and not based on any other
pathological parameter.

Additionally, for the assessment of the potential time advantage
we can obtain using DLR, one healthy participant (male,
32 years old) underwent a brain MR examination at the same
scanner. An RF-spoiled GRE scan was obtained using a 3D
Fast Low-Angle SHot (FLASH) sequence (Frahm et al., 1986)
(0.7 mm × 0.7 mm × 2 mm, TE = 20 ms, TR = 39 ms,
flip angle = 15◦, GRAPPA Factor = 3, TA ∼7:02 min).
3DEPI (Sati et al., 2014) scans with two and one averages
(3DEPI2 and 3DEPI1, respectively) were also obtained during
the same session, with matching parameters to the GRE protocol
(0.7 mm × 0.7 mm × 2 mm, TE = 20 ms, TR = 56 ms, flip
angle = 21◦, ETL = 5, TA ∼3:44 min and ∼1:56 min, respectively).

All scan parameters can be found in Supplementary
Tables 1–3. All MR acquisitions were performed by MW (MR
Physicist, 25 years of experience) and DGG (MRI/Neuroimaging
researcher/Engineer, 5 years of experience).

2.2 CR and DLR-based magnitude/phase
and QSM maps estimation

A dedicated system with GPU resources (8 GB) was used for
the retrospective reconstruction of magnitude and phase images
with both CR and DLR. CR refers to the vendor-implemented,
common reconstruction methodology for obtaining magnitude
and phase images from the MR-system. The DLR methodology
accepts as input the k-space raw data (in a vendor-specific format,
as.dat file) and comprises two independent, sequential processing
steps. Firstly, the deep resolve boost (DRB) step (Hammernik
et al., 2018): images are generated on the acquired resolution

using a variational network architecture with six iterations that
alternate between parallel imaging reconstruction and 3D image
regularizations using U-nets [with L1 loss function and Adam
(Kingma and Jimmy, 2014) as optimizer]. The network parameters
were determined through supervised training based on training
data derived by ∼500 fully sampled 3D head, abdomen, and pelvis
datasets, from healthy volunteers, acquired at 1.5T and 3T MRI
scanners. Secondly, the deep resolve sharp (DRS) step (Afat et al.,
2022; Chaika et al., 2023; Almansour et al., 2021): the obtained
images from DRB were interpolated using a deep learning-based
super-resolution algorithm with a factor-of-two interpolation. Both
steps were implemented in PyTorch (Paszke et al., 2019) trained
on a dedicated GPU cluster and with networks exported for
prospective use in the scanner reconstruction pipeline. It is worth
noting that the training data did not include any of the data
assessed in the current study. In both CR and DLR, “Adaptive
Coil Combination” from the vendor-supplied inline reconstruction
was used, as suggested by the most recent QSM Consensus (QSM
Consensus Organization Committee et al., 2024).

Quantitative susceptibility maps were estimated from the
reconstructed phase images using CUDA-implemented total
generalized variation (TGV-QSM) algorithm (Langkammer et al.,
2015) which combines in a single optimization problem all the
major QSM pipeline steps (i.e., the phase unwrapping, background
field removal, and field-to-source inversion). The specific TGV
implementation used is described in Stewart et al. (2022), along
with all relevant parameterization details. The number of iterations
was set to 2,500, for the dipole inversion step and regularization
factors were α1: 20 and α2: 30. QSM reconstruction was performed
on the same system as the reconstruction, taking ∼4 min for
the control data and ∼15 min for the MS patients, due to the
interpolated submillimeter resolution. A schematic representation
of the processing is depicted in Supplementary Figure 1.

2.3 Qualitative analysis of MS clinical
characteristics on QSM maps

Quantitative susceptibility mapping does not constitute a
generic tool for lesions identification but provides highly
specific information useful for the further characterization of
microstructural changes in lesions. Hence, in patients with MS,

TABLE 1 Multiple sclerosis cohort clinical information.

Patients with
multiple
sclerosis

Age
(years)

Sex
(M/F)

Disease
phenotype

EDSS
score

Disease
duration
(years)

T2LV
(mm2)

Lesions
count

Medication

Patient 1 56 M PPMS 6 9.65 37,752 60 Ocrelizumab

Patient 2 23 F RRMS 1 2.5 7,567 33 Ocrelizumab

Patient 3 63 F PPMS 4 11.64 39,373 40 Rituximab

Patient 4 64 M PPMS 5 3.88 4,003 68 Ocrelizumab

Patient 5 54 F SPMS 6.5 20.82 13,427 89 Rituximab

Patient 6 42 M RRMS 2 14.47 15,559 63 Dimethyl fumarate

Patient 7 22 M RRMS 2 0.33 17,468 80 Ocrelizumab

46 ± 17* 4/3 – 3** 9.0 ± 7.3* – 61 ± 18.6* –

Age is noted at the time of the MRI scan. EDSS, Expanded Disability Status Scale; T2LV, T2-lesion volume; PPMS, primary progressive MS; RRMS, relapsing-remitting MS; SPMS, secondary
progressive MS. *Mean ± standard deviation in the entire population. **Median in the entire population.
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we first obtained lesion masks in the FLAIR space using a deep
learning-based tool (La Rosa et al., 2020), then we manually
corrected the results and registered the lesion masks to the
GRE/3DEPI native space using FSL-FLIRT (Jenkinson et al., 2012)
for lesion classification using QSM.

Two raters (AC, neurologist with 4 years of experience
in rating QSM contrasts and NOSS, neuroradiologist with
2 years of experience in rating QSM contrasts), performed a
qualitative assessment on all derived QSM maps, blinded to the
reconstruction method used. Specifically, the assessment included:
(1) identification of PRLs, (2) classification of white matter lesions
as QSM-hyperintense or -isointense compared to the perilesional
tissue, as previously proposed (Granziera et al., 2021; Langkammer
et al., 2013), and (3) identification of the CVS. Additionally,
the overall image quality was rated based on the presence of
(1) susceptibility artifacts, (2) motion artifacts, and (3) other
artifacts. A scoring system ranging from 1 (poor quality) to 5
(excellent quality) was employed to rate the visibility and spatial
definition of PRLs, the confidence in classifying WML based on
QSM, the visibility and conspicuity of the CVS, and the severity
of artifacts. A third expert rater (ER; biologist with 14 years of
expertise in MS-related lesion assessment and segmentation) was
consulted in cases where the two primary raters disagreed on
lesion classification. This third rater, blinded to the reconstruction
method employed, provided definitive classifications of lesions as
PRLs, QSM-hyperintense or QSM-isointense, and determined the
presence or absence of CVS, without assigning any qualitative
scores. The derived classification consensus was used as ground
truth for the calculation or sensitivity and specificity.

Before rating, the CR-based and DLR-based QSM images
were de-identified for technique and patient details. A schematic
representation of the processing is depicted in Supplementary
Figure 2. The raters were not involved in the initial diagnosis for
any of the MS cohort patients. Generally, lesions with <3 mm in
size (in any plane), confluent lesions or very poorly visible lesions
(due to artifacts) in FLAIR were excluded. Out of the sample size of
433 individual lesions, 12 were excluded based on the above criteria.
Additionally, we followed the NAIMS criteria for CVS (Sati et al.,
2016) and those described in (Rahmanzadeh et al., 2022) for QSM
lesion classification.

2.4 Statistical analysis of images and
derived scores

For the clinical aspects, all statistical analysis was done
lesion-wise (on the full sample size, unless otherwise stated).
Cohen’s κ was used to assess inter-rater and inter-reconstruction
method scores agreement. Wilcoxon signed-rank test was
used to compare the image quality intra-rater scores between
the reconstruction methods as well as the inter-rater scores
for each method. Sensitivity and specificity were calculated
based on the following formulas: Sensitivity = TP/(TP + FN)
and Specificity = TN/(TN + FP), where TP: True Positive
count, TN: True Negative count, FP: False Positive count, FN:
False Negative count.

Quantitative susceptibility mapping reconstructions based on
the data from a healthy individual, were compared qualitatively and
statistically using mean absolute error (MAE), root mean squared

error (RMSE), and ROI-based evaluations of the basal ganglia and
brain stem major nuclei, as done in previous QSM methodological
studies (Langkammer et al., 2016b). The specific ROIs are denoted
in Supplementary Figure 3. Statistical analysis was performed by
DGG in Matlab 2023b (The MathWorks, Natick, MA, USA). P
values of <0.05 were considered statistically significant.

3 Results

3.1 Visual assessment of MS and normal
appearing tissue-related characteristics
on DLR and CR data-based QSM in the
MS cohort

In Figure 1, representative slices of the FLAIR, CR-based and
DLR-based χ-maps are presented for all patients included in the
study. Characteristic MS-related lesions are abundant in careful
visual assessment. Multiple artifacts present in CR-based χ-maps
are alleviated in the corresponding DLR-based χ-maps, offering
superior depictions of the local, clinically relevant and structural
contrast in white matter lesions.

In Figures 2A, B, exemplary zoomed-in ROIs from CR-
based and DLR-based QSM maps obtained on 3DEPI data
are presented. Sharpening and reduction of susceptibility-related
artifacts led to clearer depiction of the paramagnetic rims in DLR-
based QSM. Structural information in the surrounding areas also
appeared sharper and artifact-free, enhancing the identification of
pathological changes, within and around lesions. This is evident in
Figure 2C, where a well-defined hyperintensity in DLR-based QSM
caused by a periventricular lesion (as seen in the corresponding
FLAIR) is almost non-identifiable in the CR-based QSM, due to
the susceptibility (and interpolation) artifacts that deprecate the
signal surrounding the ventricles-tissue interface. Another example
for the superiority of DLR over CR is illustrated in Figure 2D: the
presence of vasculature and the cerebrospinal fluid (CSF) interface
with the tissue creates artifacts on the CR-based QSM that can
be misidentified as hypointensities, whereas artifacts are alleviated
in DLR-based QSM, revealing mostly isointense WM and sharper
depiction of the vasculature.

Overall, DLR-based QSM also provided more homogeneous
signal in the normal-appearing white matter (NAWM), structures
and lesion border definitions. While not within the primary scope
of this study, an additional quantitative assessment in different
ROIs, based on the CR- and DLR-3DEPI-based QSM of patients
with MS, indicated no statistically significant differences between
the ROI mean values of the two pipelines, as well as lower
standard deviations for DLR-3DEPI-based QSM (Supplementary
Figure 4), denoting a lower percentage of outliers in the DLR-based
susceptibility maps.

3.2 Lesion-wise comparisons of
qualitative ratings based on DLR and CR
data-based QSM in MS

Table 2 reports the average lesion-wise scores assigned by
the two raters for each QSM biomarker of interest. The scores
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FIGURE 1

Representative slices of all MS patients FLAIR, conventionally (CR) and deep learning (DLR)-reconstructed 3DEPI data-based QSM, with a plethora of
characteristic MS-related lesions. Close visual assessment reveals multiple artifacts in CR-based QSM that are cleared in DLR-based QSM offering
superior depictions of the local, clinically relevant contrast in WM.

are averaged separately for PRLs, hyper/isointense lesions and
CVS identification, as well as for cumulatively for the whole
lesion sample size (433 lesions in total, 12 excluded). In all

cases, qualitative scores were higher for DLR-based over CR-based
QSM maps. DLR-based QSM maps provided a significant increase
in raters’ confidence in classifying MS lesions based on their

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2025.1544376
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1544376 July 11, 2025 Time: 18:49 # 6

Gkotsoulias et al. 10.3389/fnins.2025.1544376

FIGURE 2

Selection of exemplary zoomed-in ROIs emphasizing on findings of clinical relevance in MS, for comparison between conventionally (CR) and deep
learning (DLR)-reconstructed 3DEPI data-based QSM. (A,B) Due to the reduction of non-local χ effects (that cause artifacts), DLR-based QSM offers
clearer depictions of the paramagnetic rims. Additionally, the structural information in the surrounding areas appears sharper and artifact-free,
making the identification of the clinical landmarks easier. (C) A hyperintensity caused by a periventricular lesion (as seen in the FLAIR) is almost
non-identifiable in the CR-based QSM, due to the susceptibility artifacts that deprecate the signal surrounding the interface of ventricles-tissue. In
DLR-based QSM, the same hyperintensity is clearly identified and delineated. (D) The presence of vasculature and the ventricles-tissue interface in
this periventricular region creates artifacts on the CR-based QSM that can be misidentified as hypointensity, whereas, in the DLR-based QSM, the
artifacts are alleviated, revealing mostly isointense WM and sharper depiction of the vasculature.
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TABLE 2 Mean scores from expert qualitative evaluations.

Specific MS or
image quality
characteristics

CR-QSM DLR-QSM P-
value

Paramagnetic rim
lesions

2.86 ± 1.20 2.93 ± 1.18 0.78

Hyper/isointense
QSM lesions

2.80 ± 0.66 2.88 ± 0.65 <0.001

Central vein sign 2.58 ± 0.62 2.61 ± 0.63 0.01

All lesions 2.70 ± 0.69 2.76 ± 0.69 <0.001

Susceptibility
artifacts

2.21 ± 1.11 4.57 ± 0.35 0.01

Motion artifacts 4.10 ± 0.73 4.86 ± 0.24 0.12

Other artifacts 2.71 ± 0.91 4.57 ± 0.45 0.01

Overall quality 3.00 ± 1.19 4.67 ± 0.37 <0.001

Table indicating the scores (average ± standard deviation) of the – per lesion types –
averaged scores of the two raters. The scores are presented separately for PRLs,
hyper/isointense lesions and CVS identification, as well as for all MS characteristics
together. CR-QSM denotes the conventionally reconstructed 3DEPI-based χ-map and the
DLR-QSM denotes the deep learning- reconstructed 3DEPI-based χ-map. Similarly, scores
of the raters are presented for the identification of susceptibility artifacts, motion artifacts,
and other artifacts, all together comprising the overall image quality. The P values were
obtained by statistical comparison of lesion-wise average rater scores using paired Wilcoxon
signed-rank tests. Total number of included lesions: 433; excluded lesions: 12. Data
represent the mean ± standard deviation of scores from both raters. Scores were compared
on the lesions sample and sub-samples using the Wilcoxon signed rank tests. P values below
0.05 constitute the result statistically significant. CR-QSM, conventionally reconstructed
3DEPI-based QSM; DLR-QSM, deep learning-reconstructed 3DEPI-based QSM.

appearance in QSM (hyper vs. iso) (P < 0.001) and identifying the
CVS (P = 0.01).

Table 2 also reports the average scores assigned by the two
raters on the overall image quality based on the presence of
susceptibility, motion, and other artifacts. DLR-based χ-maps
consistently showed higher scores compared to CR-based χ-maps.
There was an improvement of image quality in terms of both
susceptibility artifacts (P = 0.01) and “Other artifacts” (P = 0.01).
The scores assigned to image quality in terms of motion artifacts
were not statistically different between the two reconstruction
approaches; remarkably, the presence of motion artifacts in the
original 3DEPI data was minimal. The overall image quality was
significantly higher for DLR-based (4.67 ± 0.37) compared to CR-
based (3.00 ± 1.19) χ-maps (P < 0.001). It is worth to note that
the consistently lower standard deviations in the scores of DLR-
based χ-maps indicate a tighter clustering of the values to the mean,
hence higher agreement of the individual scores.

3.3 Inter-rater and inter-method
agreement of the lesion-wise qualitative
ratings on DLR and CR data-based QSM

Inter-rater and inter-method agreement, assessed using
Cohen’s κ-scores, are presented in Table 3. For both CR
and DLR-based χ-maps, inter-rater agreement analysis was
similar, ranging from moderate agreement in the identification
of the CVS (0.42 vs. 0.41) to excellent agreement for the
identification of PRLs (0.87 vs. 1). It is of high importance

TABLE 3 Inter-rater and inter-method agreement.

MS
characteristics
or Lesion type

Inter-rater Inter-method

Cohen’s kappa
(κ) score

Cohen’s kappa
(κ) score

CR-
QSM

DLR-
QSM

Rater
1

Rater 2

Paramagnetic Rim
Lesions

0.87 1 1
(37–37)

1 (38–38)

Hyper/
Isointense QSM
Lesions

0.61 0.62 0.97
(98–97)

0.91
(127–124)

Central Vein Sign 0.42 0.41 0.97
(42–42)

0.86
(67–77)

All Lesions 0.63 0.63 0.98 0.92

Cohen’s kappa (κ) scores of the agreement between the raters on the classification to
the different MS characteristics for each method, as well as the inter-method agreement
for each rater. The scores are presented separately for PRLs, hyper/isointense lesions and
CVS identification, as well as for all MS characteristics together. CR-QSM denotes the
conventionally reconstructed 3DEPI-based χ-map and the DLR-QSM denotes the deep
learning-reconstructed 3DEPI-based χ-map. Next to the inter-method κ-scores for rater 1
and 2, in parenthesis, the corresponding number of identified lesions for CR vs. DLR-based
QSM is shown (for hyper/isointense lesions, only the number of hyperintense is shown).
Inter-method κ-scores are reported as κ-score (number of CR-based QSM identified lesions –
number of DLR-based QSM identified lesions). For hyper/isointense QSM lesions, only the
number of hyperintense lesions is shown in the table. CR-QSM, conventionally reconstructed
3DEPI-based QSM; DLR-QSM, deep learning-reconstructed 3DEPI-based QSM.

to note that the inter-method (QSM based on DLR data
vs. QSM based on CR data) agreement was excellent for
both Rater 1 and Rater 2 in for all MS-related biomarkers
(see Table 3), indicating that the rater’s perception for the
individual findings does not significantly change between the
two methods, but their confidence in the characterization of
these findings is increased for the DLR-3DEPI-based QSM in
comparison to CR-3DEPI-based QSM. For both raters, sensitivity
and specificity analysis did not show any notable differences
between the DLR-3DEPI-based and CR-3DEPI-based QSM
(Supplementary Table 5).

3.4 Direct comparison of GRE and fast
3DEPI-based χ-maps obtained from the
healthy control

In Figure 3A, a comparison of the χ-maps derived from
GRE and 3DEPI2, 3DEPI1 sequences with both CR and DLR
are displayed. Progressively increasing noise effects in faster
acquisition reconstructions are evident for CR-based χ-maps,
whereas the DLR-based χ-maps show overall higher SNR,
sharper structural information. Figure 3B shows selected zoomed-
in ROIs from QSM maps obtained from GRE, 3DEPI1, and
3DEPI2 with both CR and DLR. The sharper definition of
structural characteristics in the DLR-based QSM is comparatively
more evident in regions where high tissue iron load leads to
QSM hyperintensities, e.g., basal ganglia (see also Supplementary
Figure 5 for zoomed-in ROIs of thalamic and brain stem
nuclei). QSM artifacts associated with abrupt changes at tissue
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susceptibility interfaces (GM-WM, vasculature, and sinuses) are
generally reduced in DLR-based susceptibility maps. WM in DLR-
based QSM appears more homogenous, even using as basis the
3DEPI1 data. Notably, the definition of the subthalamic nuclei
in the DLR-based QSM is sharper and the relevant nuclei can
be identified robustly, in comparison to the CR-based maps
(see Supplementary Figure 6).

Statistical assessment of the QSM estimations indicated: (i)
RMSE for 3DEPI1 vs. GRE and 3DEPI2 vs. GRE was slightly
lower for DLR-based QSM (20.4%, 19.4%) vs. CR-based QSM
(21.5%, 21%), (ii) MAE indicating a similar trend of reduction,
to 4.16 ppb, 4.03 ppb, from 4.98 ppb, 4.41 ppb of CR-based. The
assessment of the major brainstem/basal ganglia nuclei showed
a reduction of the mean differences between GRE and 3DEPI
DLR-based QSM, to 1.61 ppb, from 2.48 ppb for CR-based. The
standard deviations of GRE, 3DEPI1, and 3DEPI2 DLR-based QSM
in the different ROIs were reduced in comparison to CR-based (see
Supplementary Table 4), indicating a potentially lower percentage
of outliers present in the DLR-based χ maps.

4 Discussion

In this pilot study, the combination of fast 3DEPI MRI
acquisitions and a novel, k-space operating AI-based denoising,
reconstruction and super-resolution (“DLR”) pipeline was
evaluated for obtaining QSM maps for the characterization
of individual lesions in MS. We showed through a thorough,
lesion-wise assessment that DLR-3DEPI-based QSM provided
non-inferior or superior quality in supporting the identification
of susceptibility imaging biomarkers of great importance in
characterizing pathological changes in patients with MS, in
comparison to CR-3DEPI-based QSM. These improvements
were independent of the rater’s perception of the individual
clinical findings. Additionally, we included in this study a first
quantitative/qualitative demonstration of the DLR efficiency in
enhancing the quality of very fast (fourfold decrease in acquisition
time compared to GRE) 3DEPI acquisitions – that are generally
more susceptible to noise and artifacts – resulting in QSM of
comparable quality to the one obtained based on GRE data with
matching parameters and resolution.

In recent years, numerous AI-based methods have been
proposed and shown to improve image quality across various
MRI contrasts (Pfeuffer et al., 2024; Gong et al., 2018; Bahrami
et al., 2019; Do et al., 2020; Rudie et al., 2022; Kiryu et al., 2023).
However, it is crucial to separately evaluate the application of these
AI methodologies for each case of pathological characterization
to assess their potential benefits and to ensure that they
maintain clinical utility. This can only be achieved through
expert evaluations. In our study, the DLR-3DEPI-based χ-maps
were consistently rated higher than CR-3DEPI-based χ-maps for
individual MS pathological findings and in terms of artifacts and
overall image quality. This improvement is likely due to the
denoising and super-resolution capabilities of the DLR pipeline.
At the same time, inter-method agreement was excellent for both
raters, indicating that the DLR-3DEPI-derived χ-maps do not
alter the rater’s perception of the individual findings but increase
their confidence in the characterizing them, in comparison to
CR-3DEPI-based QSM assessments.

It is worth noting that inter-rater Cohen’s kappa was lower
for CVS compared to other MS-related biomarkers, such as PRLs.
While QSM has been proven to be an optimal method for the
identification of PRLs (Bagnato et al., 2024), it is still under
evaluation for its application in detecting the CVS (Sati et al.,
2016; Li et al., 2022). Given that blood vessels differ in their
susceptibility properties depending on the state of hemoglobin
oxygenation (oxygen-saturated hemoglobin is weakly diamagnetic,
while deoxyhemoglobin is paramagnetic) (Eldeniz et al., 2021),
the identification of CVS becomes more ambiguous depending on
the QSM signal of the lesion core (hyper-, iso/hypo-intense). This
variability likely contributes to the reduced inter-rater agreement,
alongside other factors that may obscure smaller structures in QSM,
such as regularization effects. Previous studies assessing the use
of QSM for CVS identification have reported lower percentages
of lesions observed with CVS on QSM (Zhang et al., 2019)
compared to earlier studies employing other imaging techniques
(Maggi et al., 2018).

While this study primarily focuses on the qualitative assessment
of the two raters, we also conducted a quantitative investigation
of the comparability between QSM maps obtained based on
conventional GRE sequences and two 3DEPI protocols (with
progressively faster acquisition times) for both DLR and CR. The
results clearly indicated that the consistency, sharpness and SNR
of the DLR χ-maps is increased while the effect of artifacts is
decreased, despite the lower SNR in the faster-acquired 3DEPI
measurements. Given the paramount importance of time in clinical
settings, the potential of a fourfold reduction in examination
time holds significant potential for advancing the broader clinical
adoption of QSM, with reduced costs and efficient utilization
of scanner resources, not only in MS, but also to a broader
spectrum of pathologies involving potential susceptibility imaging-
sensitive alterations (Shibukawa et al., 2024; Gkotsoulias et al.,
2025; Langkammer et al., 2016a; Cogswell et al., 2021). Despite
the obvious advantages of rapid DLR-3DEPI-based QSM-shown
here on a healthy brain, additional studies are needed to ensure
the clinical utility of specifically these fast protocols in MS or
other pathologies. It is worth noting that the QSM maps obtained
between the two parts of the study are not comparable: (i) the
clinical scans were acquired with a 0.67 mm isotropic resolution,
whereas the scans of the control subject were obtained with a
0.7 mm × 0.7 mm × 2 mm resolution, providing higher SNR
per voxel due to the increased voxel volume. While this setup is
optimized for speed and clinical feasibility, it is less suitable for
extracting microstructural information. (ii) In the MRI scans of
MS patients, motion susceptibility is higher due to the extended
scanning duration (more than one measurement is acquired), while
in general, the shimming is automatically set. In contrast, the single
control subject MRI scans were performed solely for the purposes
of this analysis, with shorter scan times and careful attention
to parameters like shimming and head positioning, aiming to
compare faster and slower protocols based QSM.

Our study comes with a number of limitations. First, the MS
cohort in this pilot study was limited in size, comprising seven
patients. However, the nature of the presented assessments is
lesion-based and not patient-based (except when it comes to overall
QSM image quality metrics). Hence, the high lesion load in all
subjects ensured a sample size of 433 lesions and can provide
reassurance regarding the generalizability of the findings. Second,
all patients were scanned with a single 3T MRI system; Future
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FIGURE 3

(A) CR-based QSM maps (1st row) derived from GRE, 3DEPI2, and 3DEPI1 (2 and 1-averages 3D-segmented-EPI) data indicate effects from artifacts
and noise; especially in faster acquisition reconstructions, whereas the DLR-based QSM maps (2nd row) are showing increased SNR, reduced impact
from artifacts and higher consistency. (B) Zoomed-in ROIs of representative slices of the control participant’s CR-based and DLR-based QSM from
GRE, 3DEPI2, and 3DEPI1 (2 and 1-averages 3D-segmented-EPI data). DLR-based QSM offers clearer depictions of the expected hyperintensities in
basal ganglia and brain stem nuclei (due to higher iron accumulation in these regions). In DLR-based QSM maps, most artifacts associated with
abrupt χ changes such as interfaces of different structures, vasculature or movement are alleviated (see also Supplementary Figure 5, for examples,
of thalamic substructures, basal ganglia, and brain stem nuclei), revealing better the characteristics of the underlying structures. Similarly, WM is
more homogenous and less noisy, even in the DLR-based QSM of the fastest acquisition (single-average 3DEPI). The DLR-based QSM of all three
acquisitions appears more visually similar to each other in comparison to the CR-based. CR, conventional reconstruction; DLR, deep-learning
reconstruction.
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evaluations of the method would benefit from the inclusion of
larger patient cohorts and different clinical MRI scanner strengths
(above and below 3T).

The recent QSM Consensus (QSM Consensus Organization
Committee et al., 2024) guidelines suggest that using isotropic
voxels and multi-echo schemes in the QSM-related acquisitions is
preferable. While in terms of physical underpinnings-modeling of
QSM this is indeed the optimal case (Schweser et al., 2016; Deistung
et al., 2017), we made the selection of the parameters always keeping
in mind the limitations of the specific 3DEPI implementation and
the strong time constraints posed—especially for newly introduced
methods— in the clinical environment: For the clinical evaluations,
the native resolution of the protocols used is isotropic while in the
secondary part of the study that introduces the faster protocols,
the native resolution was 0.7 mm × 0.7 mm × 2 mm (both
axially interpolated post-acquisition, by a factor of 2). GRE was
constrained in single echo, for fair comparison to the 3DEPI-
derived QSM. Methodologically, while the TGV is a very prominent
and recently proposed method, it would be interesting in future
studies to include more methodologies for QSM estimation. It is
worth noting that while the number of raters (2) may seem limited,
they both had specific experience in conducting QSM assessments
in large, multi-center cohorts of MS patients – a third experienced
rater was employed to ensure that classification consensus in the
cases of disagreement. Last, it is important to mention that the
susceptibility values within a WM lesion and their difference to
the surrounding tissue are influenced by the location and local
microstructure of the brain tissue, including myelin density, iron
deposition and orientation characteristics of WM myelinated fibers
and other factors (Deistung et al., 2017; Gkotsoulias et al., 2024;
Li et al., 2016; Li et al., 2011). For that reason, we proceeded
with a qualitative, analysis as it is done in clinical practice; in
this context, the improvement observed in the ratings reflects
rather an improved image quality and contrast to surroundings of
DLR-derived QSM.

5 Conclusion

According to expert ratings, the proposed vendor-specific DLR-
3DEPI provides basis-data that lead to substantially increased
QSM quality and clinical utility for the identification of MS-
specific biomarkers, without changing the expert’s perception of the
individual findings compared to the CR-3DEPI-based QSM. DLR
seems to be also efficient in increasing the quality and reducing
the artifacts of rapid 3DEPI protocols with fourfold-reduced
acquisition time compared to the state-of-the-art GRE, leading
to QSM visually and quantitatively comparable to GRE-based.
These findings hold significant promise for advancing the broader
implementation of DLR-3DEPI-based QSM in the management of
patients with MS.
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