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Introduction: Brain-computer interfaces (BCIs) based on steady-state visual evoked 
potentials (SSVEP) rely on the brain’s response to visual stimuli. However, accurately 
recognizing target frequencies using training-based methods remains challenging 
due to the time-consuming calibration sessions required by subject-specific training 
methods.

Method: To address this limitation, this study proposes a novel hybrid method 
called Hybrid task-related component and canonical correlation analysis 
(H-TRCCA). In the training phase, four spatial filters are derived using canonical 
correlation analysis (CCA) to maximize the correlation between the training data 
and reference signals. Additionally, a spatial filter is also computed using task-
related component analysis (TRCA). In the test phase, correlation coefficients 
obtained from the CCA method are clustered using the k-means++ clustering 
algorithm. The cluster with the highest average correlation identifies the 
candidate stimuli. Finally, for each candidate, the correlation values are summed 
and combined with the TRCA-based correlation coefficients.

Results: The H-TRCCA algorithm was validated using two publicly available 
benchmark datasets. Experimental results using only two training trials per 
frequency with 1s data length showed that H-TRCCA achieved average 
accuracies of 91.44% for Dataset I and 80.46% for Dataset II. Additionally, it 
achieved maximum average information transfer rates of 188.36 bits/min and 
139.96 bits/min for Dataset I and II, respectively.

Discussion: Remarkably H-TRCCA achieves comparable performance to other 
methods that require five trials, utilizing only two or three training trials. The 
proposed H-TRCCA method outperforms state-of-the-art techniques, showing 
superior performance and robustness with limited calibration data.
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1 Introduction

In recent years, brain-computer interfaces (BCIs) have become 
increasingly important in various applications, enabling individuals 
with disabilities or neurological disorders to communicate directly 
with their external environment, without relying on peripheral nerves 
and muscles (Aghdam et al., 2020; Meng et al., 2024). Among different 
BCI approaches, SSVEP-based brain communication technology has 
gained significant attention from researchers due to its advantages, 
including high accuracy, high information transfer rate (ITR), high 
signal-to-noise ratio (SNR), and minimal user training requirements 
(Nguyen and Chung, 2018; Lee and Choi, 2021). The brain produces 
an oscillatory electrical potential known as SSVEP when an individual 
directs their attention to a periodic visual stimulus within the 
frequency range of 4–60 Hz (Alimardani et al., 2018). This electrical 
activity is detected in the occipital region at frequencies corresponding 
to the stimulus or its higher harmonics (Zhang et al., 2020).

Recently, various algorithms have been proposed for recognizing 
SSVEP frequencies. These algorithms can be categorized as calibration-
free and calibration-based approaches, depending on the availability of 
calibration data (Zerafa et al., 2018; Besharat et al., 2024). Calibration-
free methods do not rely on training data to extract SSVEP features. 
Instead, they use a classifier, usually based on the correlation coefficient 
value, to select the stimulus with the highest feature value, which is 
expected to elicit the strongest SSVEP response (Zerafa et al., 2018). One 
commonly used calibration-free approach is canonical correlation 
analysis (CCA), which aims to find weights that maximize the 
correlation between SSVEP signals and reference signals (sine-cosine) 
(Lin et al., 2006). Nevertheless, CCA has several limitations, including 
its sensitivity to noise, phase shifts, constraints on the time window 
length, and underutilization of harmonic components, all of which can 
negatively affect the accuracy of frequency recognition (Besharat et al., 
2024). Several studies have been proposed to overcome these limitations 
and improve its performance. These studies have introduced improved 
methods, such as filter bank CCA (FBCCA) (Chen et al., 2015), filter 
bank temporally local CCA(FBTCCA) (Shao and Lin, 2020), spatio-
spectral CCA (SSCCA) (Cherloo et al., 2022), and CCA based on signal 
extension (SE-CCA) (Li et al., 2023).

Several extended variants of conventional CCA have been 
proposed to optimize predefined reference signals to enhance 
performance (Zhang et  al., 2011; Zhang et  al., 2013; Ziafati and 
Maleki, 2022). Zhang et  al. (2014) introduced the Multiset CCA 
(MsetCCA) technique, which enhances SSVEP frequency recognition 
by optimizing reference signals through multiple linear transforms. 
Wong et al., (2020a) introduced MsetCCA-R, an improved version of 
MsetCCA, aiming to boost SNR by minimizing non-SSVEP-related 
elements in EEG signals. Leveraging additional insights from sine-
cosine reference signals, MsetCCA-R excels in SSVEP recognition 
tasks, enhancing target detection accuracy in BCIs.

Recent studies highlight significant improvements in classification 
performance, particularly in detecting stimulus frequencies, in 
calibration-based methods compared to calibration-free methods 
(Zhang et al., 2022; Apicella et al., 2023; Hamou et al., 2024). Among 
these, task-related component analysis (TRCA) and its improved 
versions have gained considerable attention. The TRCA method, 
introduced by Nakanishi et  al. (2017), stands out for its superior 
performance over other spatial filtering methods. It achieves task-related 
component extraction by optimizing the inter-trial covariance among 
individual training data. Wong et  al., (2020b) introduced a novel 

approach to mitigate the underestimation of the covariance matrix in 
TRCA when there is a lack of sufficient training data. This technique 
involves leveraging data from multiple stimuli, including both the target 
and its neighboring stimuli, to expand the training set. Their research 
demonstrated that this multi-stimulus TRCA (msTRCA) method 
significantly outperformed the TRCA. Wong et al. (2020) proposed the 
TRCA with a sine-cosine reference signal (TRCA-R) algorithm, which 
enhances performance compared to TRCA, especially with small 
training datasets. This approach involves projecting the EEG data into a 
subspace defined by reference signals. The projection is carried out using 
an orthogonal projector derived from the QR factorization of these 
reference signals. Another study by Sun et al. (2021) introduced the 
scTRCA (similarity-constrained TRCA) algorithm to enhance SSVEP 
detection in BCIs. By using sine-cosine templates, this method filters out 
task-related noise, ensuring the extracted components are reproducible 
across trials and highly correlated with SSVEPs. The algorithm 
constructs an optimal spatial filter through a constrained optimization 
problem, showing significant improvements, especially with limited 
training data. Oikonomou (2022) introduced adaptive TRCA 
(adTRCA), which is a spatial filtering method that utilizes temporal data 
from EEG trials. This method employs multitask learning within a 
Bayesian framework to integrate temporal information into the overall 
procedure. In another study, Huang et al. (2022) introduced latency 
aligning TRCA (LA-TRCA), a technique aimed at improving SSVEP-
based BCIs by aligning visual latencies across channels to accurately 
extract phase information from task-related signals. Subsequently, 
TRCA is employed for frequency detection on the aligned data epochs. 
Recently, Zhou et al. (2024) proposed TRCA Dynamic Window deep 
Q-network (TRCA-DW-DQN), a method for SSVEP detection that 
dynamically adjusts the window length based on signal features, unlike 
the fixed window length in traditional TRCA. This flexibility enhances 
speed, accuracy, and overall performance across various conditions and 
subjects. Kumar and Reddy (2019) presented the sum of squared 
correlation (SSCOR) algorithm, which optimizes the sum of squared 
correlations among inter-session individual data to create template 
signals. In another study, Wei et al. (2020) proposed a method called 
training data-driven CCA (TDCCA) that aims to enhance the 
robustness of spatial filters. They achieved this by training the filters 
using a correlation between concatenated training data and individual 
templates. Recently, Yuan et  al. (2022) introduced an innovative 
framework to enhance frequency recognition. This method uses CCA 
to train two spatial filters obtained by using concatenated individual 
training data and reference signals, demonstrating significant 
advancements in frequency recognition.

Despite the promising results achieved by the algorithms in 
detecting SSVEP frequencies, there is still potential for further 
improvement. Most of these algorithms perform better when 
evaluated with sufficient calibration data, yet their effectiveness 
diminishes when the training data is limited. Therefore, the ability to 
achieve high classification performance with a small number of 
training data sets becomes more crucial in BCI applications. In this 
study, we propose a novel hybrid approach known as Hybrid task-
related component and canonical correlation analysis (H-TRCCA) 
that aims to improve the performance of SSVEP recognition using a 
limited number of training trials. H-TRCCA is inspired by the 
techniques of CCA and TRCA. The H-TRCCA method involves 
deriving five spatial filters from the training data and an artificial 
signal through correlation analysis and covariance maximization. 
During the test phase, the stimuli with the highest correlation 
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coefficients are identified using the k-means++ method. Subsequently, 
the correlation coefficients obtained from CCA-based spatial filters 
are combined with the correlation coefficients obtained from TRCA 
for each candidate stimulus. The H-TRCCA method was evaluated on 
the benchmark and BETA datasets, and its performance was compared 
to the MsetCCA-R, SSCOR, TRCA, and msTRCA algorithms.

2 Materials and methods

2.1 Data description

In this study, we  utilized two publicly accessible datasets: the 
benchmark dataset (Wang et al., 2016) and the BETA dataset (Liu 
et al., 2020).

The benchmark dataset (Dataset I) contains EEG data from 35 healthy 
individuals (17 females, aged 17–34 years, mean age: 22 years). Among 
these participants, 8 (S01-S08) had prior experience, while the remaining 
27 (S09-S35) were naive to the experiment. The dataset included 40 target 
characters; each assigned a distinct stimulus frequency ranging from 8 Hz 
to 15.8 Hz at intervals of 0.2 Hz. Each subject’s dataset was divided into six 
blocks, with 40 trials (representing stimuli) within each block, resulting in 
240 recorded trials. The duration of each trial spanned 6 s: 0.5 s 
pre-stimulus, 5 s for visual stimulation, and the last 0.5 s for a blank screen.

The BETA dataset (Dataset II) comprises EEG recordings from 70 
healthy users, including 28 females and 42 males, with an average age 
of 25.14 years. The experiments in this dataset were conducted in a 
non-laboratory environment, leading to a lower SNR. It includes 40 
target characters and consists of 4 blocks per experiment. Each subject’s 
dataset consists of a total of 160 recorded data trials. For 15 subjects, 
each trial has a duration of 3 s and follows this timing structure: 0.5 s 
before stimulation onset, 2 s for visual stimulation, and 0.5 s after 
stimulation. For the remaining 55 subjects, the visual stimulation 
duration is consistent at 3 s, while the pre- and post-stimulation 
periods follow the same structure as the group of 15 subjects.

Both datasets have 64 channels, based on the international 10–20 
system, and were recorded at a sampling frequency of 250 Hz. A 50 Hz 
notch filter was applied to eliminate power-line interference during 
EEG recording. In this study, we conducted SSVEP signal analysis 
using nine channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2). 
The selection of SSVEP signals was based on a time range of [0.14 s, 
0.14+d  s], as defined in the benchmark dataset, and [0.13 s, 0.13+d s], 
as defined in the BETA dataset, where d  represents the time window 
used in the analysis (Wang et al., 2016; Liu et al., 2020).

The two datasets differed in their experimental conditions: 
Dataset I was recorded with electromagnetic shielding, while Dataset 
II was recorded without electromagnetic shielding.

2.2 Canonical correlation analysis (CCA)

Standard CCA is a multivariate statistical technique to find 
correlations between two sets of variables (Lin et al., 2006; Maye et al., 
2017). For SSVEP frequency recognition, CCA uses two multivariate 
variables, namely, multi-channel EEG signals ×∈ c sN NX   and 
reference signals (sine-cosine) ×∈ 2 h sN N

nY   to find the maximum 
correlation. Where cN , sN , and hN  denote the number of channels, 
the number of data samples (data length), and the number of 
harmonics. In the standard CCA algorithm, the reference signals are 

set to be the series of sine-cosine waveforms of the thn  stimulation 
frequency nf  and its harmonics, that are constructed according to the 
following Equation 1 for each visual stimulus.
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where sf refers to the sampling rate. The purpose of this algorithm 
is to find the weight vectors ×∈ 1cN

xw   and ×∈ 2 1hN
yv   that maximize 

the correlation between the canonical variables T
xw X  and T

n yY v  (linear 
combination of reference signal harmonics), as shown in Equation (2):
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(2)

The target stimulus tf  is determined by the stimulant frequency 
that exhibits the highest correlation with the EEG signals, as shown in 
Equation (3):

	
ρ= = …argmax , 1,2, ,t n f

n
f n N

	
(3)

where fN  indicates the number of stimulation frequencies.

2.3 Filter-bank analysis

The filter-bank strategy aids in target stimuli classification by 
decomposing SSVEPs into sub-band components and extracting 
independent information from the harmonic components, thereby 
enhancing the SNR for improved classification (Chen et al., 2015). In this 
study, Type I Chebyshev IIR digital filters were employed to create five 
sub-bands (i.e., 8*b-90 Hz, b ∈ [1, 5]) for all the frequency detection 
techniques as data preprocessing. These filters were utilized with 
passbands/stopbands set at [6/4, 14/10, 22/16, 30/24, 38/32 Hz], and 
low-pass bands/stopbands set at [90/100 Hz] (Lan et al., 2023). The overall 
detection score is determined by taking a weighted sum of the squared 
feature values across all sub-bands, as shown in Equation (4):

	
( ) ( )ρ

=
= ∑

2

1
. ˆ

bN
b

n n
b

c b r
	

(4)

where ( )ˆ b
nr  denotes the feature extracted from the thb  sub-band 

and ( ) −= +1.25 0.25c b b  is the weight function defined in Kumar and 
Reddy (2019).

2.4 Proposed method

In this study, we propose the H-TRCCA algorithm, which combines 
CCA and TRCA to generate five different spatial filters from the training 
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data and reference signal. The CCA method produces four types of spatial 
filters, while a single spatial filter is derived using the TRCA method.

2.4.1 Training step
First and second spatial filters – CCA method.
Using the CCA method, we  calculate the first and second 

spatial filters by assessing the correlation between the 
concatenated sine-cosine reference signals denoted by 

( )× × ∗= … ∈  
2

, , , h s tN N N
n ref n n nY Y Y Y  , and the concatenated 

individual template ( )× ∗ = … ∈ , , , c s tN N N
n n n nK X X X   for the thn  

stimulus frequency. The template is derived by averaging multiple 

training trials 
×∈ c st N N

n  , represented as 
=

 
=  
 

∑
1

1 tN
t

n n
t t

X
N

 , where

 

tN  represents the number of training trials (Wang et al., 2014). The 
optimization problem is formulated as shown in Equation (5):
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The weight vectors, denoted as xw  and yv , are adopted as spatial 
filters for feature extraction and subsequently renamed as aw  and bw , 
respectively.

Third and fourth spatial filters – CCA method.
To obtain the third and fourth spatial filters, the correlation 

between the training data ( )× ∗ = … ∈ 
1 2, , , c s tt N N NN

n n n nX      
(formed by concatenating 

tN  training trials) and the 
,n refY  (Yuan 

et al., 2022) is calculated using the provided Equation 6:
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(6)

The weight vectors, denoted as xw  and yv , are adopted as spatial 
filters for feature extraction and subsequently renamed as cw  and dw , 
respectively.

Fifth spatial filter – TRCA method.
The fifth spatial filter is obtained using the TRCA method, which 

extracts task-related components in SSVEP-based BCIs by maximizing 
inter-trial covariance (Nakanishi et  al., 2017). The corresponding 
optimization process involves simplifying the maximization of the sum 
of covariances. This simplification is done by expressing the problem as 
a Rayleigh-Ritz eigenvalue problem, as shown in Equation (7):

	
= argˆ max

T

T
w

w Sww
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(7)

where S and Q  are the sum of cross-covariance and the sum of 
auto-covariance matrices, respectively, as defined in Equation (8):
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where i and j  denote the indices of trials, ×∈ c sN N
i   is the single 

trial data. The weight vector, denoted as ŵ , can be obtained as the 
eigenvector of matrix −1Q S  corresponding to its largest eigenvalue, 
which is subsequently referred to as tw .

2.4.2 Test step
The testing phase consists of two stages to determine the target 

stimulus. In the first stage, the stimuli with the highest probability of 
being the target stimuli are identified and selected as candidates. 
Subsequently, one stimulus is chosen from the candidate stimuli as 
the final target stimulus.

In the first stage, given a single-trial test signal ∗∈ c sN NX  , the 
canonical correlation between X  and nY  and four Pearson’s correlation 
coefficients between the projected signals of T

aX w  and n aX w , T
aX w  

and n bY w , T
cX w  and n dY w , T

cX w  and n cX w  are calculated, as 
formulated in Equation (9):
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(9)

To select the candidate stimuli from the obtained features of n̂r , 
we employed a clustering method. The process begins with selecting the 
optimal number of clusters by utilizing Gaussian Mixture Models (GMM) 
and evaluating them with the Davies-Bouldin index (Setiawan and 
Kurniawan, 2023). Features are clustered with GMM for various numbers 
of clusters h, and the Davies-Bouldin index is calculated for each h. The 
number of clusters that yield the lowest Davies-Bouldin index is selected 
as the optimal number. Once the optimal number of clusters is identified, 
k-means++ clustering (Arthur and Vassilvitskii, 2006) is applied to the 
features. Next, the average of the features (correlation coefficients) within 
each cluster is computed and the cluster with the highest value is selected. 
This cluster encompasses the candidate stimulus frequencies.

In the second stage, the correlation coefficients for each candidate 
stimulus (indexed by k) are summed up resulting in a vector denoted 
by T  including m  candidate stimulus, as shown in Equation (10):

	
( ) ( )

=
= = …∑

5

1
, 1,2,ˆ ,k

s
T k r s k m

	
(10)

Subsequently, the Pearson’s correlation coefficients between the 
single-trial test signal ∗∈ c sN NX   and the averaged training trials for 
the thm  visual stimulus, ∗∈ c sN N

mX  , are computed as described in 
Equation (11):

	 ( ) ( )ρ= = …, , 1,2, ,T T
t tkD k X W X W k m

	
(11)

where  = … 1 2, , ,t t t tmW w w w  is the concatenated TRCA spatial 
filters computed in the training step. Further improvement can 
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be achieved by integrating spatial filters, as demonstrated in the study 
(Nakanishi et al., 2017). Then, the overall correlation coefficients for 
the thm  candidate SSVEP stimulus are computed by summing the 
values of D  and T  which is defined as C .

Finally, the target frequency tf , representing the SSVEP stimulus 
with the highest correlation coefficient, is defined as the maximum 
element of the vector kC , as shown in Equation (12):

	
= = …argmax , 1,2, ,t k

k
f C k m

	
(12)

The flowchart shown in Figure 1 depicts the process of SSVEP 
target detection using the proposed H-TRCCA method.

2.5 Performance criteria

In evaluating SSVEP-based BCI systems, two crucial criteria are 
classification accuracy and ITR (Wolpaw et al., 1998). The performance 
of the H-TRCCA in frequency detection and its comparison with 
competitive techniques are evaluated using these criteria. Accuracy 
measures the system’s ability to make precise predictions, while ITR 
evaluates the efficiency of information transfer. The ITR is expressed 
by Equation (13):

	
( )
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where P  represents the accuracy of target stimuli recognition, and 
wT  is the required time during each epoch to perform the 

frequency recognition.
This study utilized MsetCCA-R (Wong et  al., 2020b), SSCOR 

(Kumar and Reddy, 2019), TRCA (Nakanishi et  al., 2017), and 
msTRCA (Wong et al., 2020a) as competing methods. In the case of 
msTRCA, the number of neighboring frequencies was set to two, 
whereas for MsetCCA-R and H-TRCCA, the hN  parameter of the 
artificial sine-cosine signals was set to five. Additionally, all methods 
utilized five frequency bands. A comparative assessment was 
undertaken to analyze the efficacy of these techniques in classifying 
stimulus frequencies for each dataset. The recognition performance of 
the algorithms was evaluated by calculating accuracy and ITRs using a 
leave-one-block-out cross-validation approach. For Dataset I, five 
blocks of SSVEP signals were used for training, with one block reserved 
for testing, and this process was repeated six times. Similarly, for 
Dataset II, three blocks were used for training and one block for testing, 
and this was repeated four times. Specifically, for a dataset with B  
blocks of EEG signals, (B -1) blocks were selected for training, while the 
remaining block was used for testing, and this was repeated B  times.

FIGURE 1

Block diagram of the proposed H-TRCCA method. In the training phase, CCA-based spatial filters (wa, wb, wc, wd) and a TRCA-based filter (wt) are 
extracted. In the test phase, canonical and Pearson correlations are computed and clustered using k-means to select candidate stimuli. The final target 
frequency is identified by summing the Pearson correlation coefficients (D) and the candidate correlation values (T), and selecting the stimulus with the 
highest overall correlation coefficient.
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2.6 Experimental setup

The experimental results and statistical analyses were obtained 
using Matlab 2020b (The MathWorks, Inc., Natick, MA, USA) and 
SPSS Statistics 27 (IBM, Armonk, NY, USA) on an ASUS PC with a 
12th generation Intel(R) Core (TM) i5-1250H @ 2.50 GHz processor, 
16 GB of RAM, and a 64-bit Windows 10 OS.

3 Results

3.1 Target detection performance

Figure 2 provides a comprehensive comparison of accuracy and 
ITR for different data lengths ( wT ) corresponding to various target 
detection techniques on two datasets. The wT  ranges from 0.2 s to 
1 s with an interval of 0.2 s. In Figure 2A, the upper row illustrates 
the accuracy and ITR for Dataset I, while Figure 2B‘s lower row 
presents the accuracy and ITR results for Dataset II. A one-way 
repeated-measures ANOVA was employed to evaluate the 

comparability of performance across the different techniques for 
both datasets. In Dataset I, H-TRCCA exhibited a notable 
improvement of 36.04% over MsetCCA-R, 26.50% over SSCOR, 
11.16% over TRCA, and 5.92% over msTRCA at =wT  0.6 s. 
Similarly, in Dataset II, H-TRCCA demonstrated enhancements of 
29.06% over MsetCCA-R, 24.80% over SSCOR, 17.49% over TRCA, 
and 12.53% over msTRCA at =wT  0.6 s. Significant differences were 
observed between H-TRCCA and the other four methods in 
Dataset I  for all wT  values except 0.2 s and in Dataset II for all 
different wT  values (p < 0.001). Regarding the ITR results, optimal 
ITR values were mostly achieved with medium data lengths for 
both datasets. In Dataset I, the highest ITR values were 138.42 bits/
min ( =wT  1 s) for MsetCCA-R, 155.80 bits/min ( =wT  1 s) for 
SSCOR, 189.50 bits/min ( =wT  0.8 s) for TRCA, 197.39 bits/min 
( =wT  0.8 s) for msTRCA, and 217.41 bits/min ( =wT  0.6 s) for 
H-TRCCA. In Dataset II, the highest ITR values were 93.32 bits/
min ( =wT  1 s) for MsetCCA-R, 96.64 bits/min ( =wT  1 s) for 
SSCOR, 106.47 bits/min ( =wT  0.8 s) for TRCA, 119.84 bits/min 
( =wT  0.8 s) for msTRCA, and 156.34 bits/min ( =wT  0.8 s) for 
H-TRCCA. A significant difference was observed between the 

FIGURE 2

Comparing the average accuracy and ITR achieved across all subjects using different methods for (A) Dataset I (five training trials) and (B) Dataset II 
(three training trials), with varying data lengths. The error bars denote the standard error. The asterisks in the Figure indicate statistical significance, as 
determined by one-way repeated-measures ANOVA. The symbol *** denotes the significance levels (p < 0.001), indicating significant differences 
between the five algorithms. O indicates the highest ITR value.
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H-TRCCA algorithm and the other four algorithms in Dataset I for 
all wT  values except 0.2 s and in Dataset II for all different wT  values 
(p < 0.001).

A one-way repeated-measures ANOVA was performed to evaluate 
the effects of different target detection methods on accuracy and ITR 
across wT  for Dataset I and Dataset II. The results indicate that the 
choice of target detection method significantly affects both accuracy 
and ITR, with variations observed depending on the wT  and dataset. 
In general, higher accuracy was associated with longer time windows, 
while optimal ITR values were found at medium time windows ( =wT  
0.6–0.8 s). Detailed statistical comparisons are presented in Table 1.

Figure  3 showcases violin plots that illustrate the probability 
density of accuracy for five algorithms applied to both datasets. These 
plots provide a visually intuitive representation of the distribution of 
quantitative data. Analysis of the plots reveals that the violin plots for 
H-TRCCA (shown in red) generally exhibit higher median values and 
more concentrated distributions in both datasets. This suggests that 
H-TRCCA consistently achieves superior and stable classification 
performance across different subjects, outperforming the competing 
algorithms. Figure 3B shows a more dispersed distribution for all 
methods than Figure  3A due to the larger number of subjects in 
Dataset II.

3.2 The effect of the number of training 
trials on detection performance

Given the limitations of dataset collection in BCI applications, it 
is crucial to evaluate performance using a small number of tN  
instances when there is insufficient data available (Lan et al., 2023; Du 
et  al., 2024). The primary objective of H-TRCCA is to accurately 

classify SSVEP frequencies with minimal individual training data. The 
frequency recognition performance in the H-TRCCA is influenced by 
both the construction of template signals using individual training 
data and the number of tN . Figure 4 compares the accuracy and ITR 
of state-of-the-art methods with H-TRCCA across different numbers 
of tN  and wT  in Dataset I  and Dataset II. Based on Figure 4, the 
H-TRCCA demonstrates superior classification performance 
compared to other methods across various data lengths and numbers 
of training data. This superiority is especially evident when there is 
limited calibration data available. (i.e., only one or two trials). 
Moreover, Figure 4 demonstrates that increasing the tN  results in 
increased classification accuracy and ITR. Furthermore, as tN  
decreases for both Dataset I and Dataset II, the difference in accuracy 
and ITR between H-TRCCA and competitive algorithms widens for 
all data lengths. To further investigate these effects, a two-way repeated 
measures ANOVA (method × block) confirmed a significant main 
effect of blocks. For the Dataset I, the analysis yielded F (1.18, 
40.34) = 289.11, p  < 0.001, with Greenhouse–Geisser correction 
applied. Similarly, a significant effect was observed for Dataset II, 
F(1.07, 74.23) = 331.55, p < 0.001, also adjusted using the Greenhouse–
Geisser correction. Additionally, the analysis revealed a significant 
interaction effect between the methods and blocks for Dataset I, F 
(3.45, 117.50) = 46.45, p  < 0.001, and for Dataset II, F (1.77, 
122.18) = 115.47, p < 0.001, both adjusted using the Greenhouse–
Geisser correction.

Tables 2, 3 present the numerical classification accuracy and ITR 
of five methods across different tN  values, while keeping wT  fixed at 
0.6 s. Additionally, the tables include the results of a one-way repeated-
measures ANOVA analysis for these methods. The training block 
range for Dataset I was from 2 to 5, and for Dataset II, it was from 1 
to 3. The one-way repeated-measures ANOVA revealed a statistically 

TABLE 1  Comparison of the statistical results of the one-way repeated-measures ANOVA for accuracy across different time windows in Dataset I and 
Dataset II.

Evaluation metrics Dataset Time Window (s) F (df1, df2) p-value Partial 2η

Accuracy

Dataset I

0.4 F (2.04, 69.63) = 199.08 <0.001 0.85

0.6 F (1.88, 64.07) = 124.92 <0.001 0.78

0.8 F (1.91, 65.21) = 59.70 <0.001 0.63

1 F (2.08, 70.89) = 32.31 <0.001 0.48

Dataset II

0.4 F (1.78, 123.39) = 281.05 <0.001 0.80

0.6 F (2.33, 161.24) = 301.23 <0.001 0.81

0.8 F (2.21, 153.05) = 224.56 <0.001 0.76

1 F (1.79, 123.66) = 177.71 <0.001 0.72

ITR

Dataset I

0.4 F (1.71, 58.35) = 157.55 <0.001 0.82

0.6 F (2.01, 68.44) = 153.70 <0.001 0.81

0.8 F (2.06, 70.15) = 82.28 <0.001 0.70

1 F (2.20, 74.88) = 45.10 <0.001 0.57

Dataset II

0.4 F (1.49, 133.33) = 191.48 <0.001 0.73

0.6 F (1.92, 132.64) = 255.95 <0.001 0.78

0.8 F (2.17, 150.20) = 236.44 <0.001 0.77

1 F (1.74, 120.04) = 196 <0.001 0.74

The table presents the F-statistic (F), degrees of freedom (df), p-values, and partial eta squared (η^2), indicating the effect of different target detection methods on accuracy.
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significant difference (p < 0.001) among the compared algorithms for 
all training block numbers in both datasets. The analysis highlights the 
effectiveness of the H-TRCCA method, particularly with limited 
training trials. The results indicate that H-TRCCA achieves accuracies 
comparable to msTRCA with significantly fewer training trials. 
Specifically, for Dataset I with tN  ≥ 3 and Dataset II with tN  ≥ 2, 
H-TRCCA performs comparably to msTRCA at =tN  5, demonstrating 
its efficiency with less training data.

In this study, we  examined the influence of the number of 
sub-bands on the performance of the H-TRCCA and the compared 
algorithms. Figure  5 demonstrates the algorithm’s performance 
across different numbers of sub-bands (ranging from 1 to 5) for both 
Dataset I and Dataset II, along with two different tN  values with wT  
set at 0.6 s. The H-TRCCA consistently demonstrated superior 
accuracy and ITRs across the various sub-bands. To further assess 
and compare these techniques, a one-way repeated-measures 
ANOVA was conducted. Comparing cases with sufficient training 

trials ( =tN 5 for Dataset I and =tN 3 for Dataset II) and cases with 
insufficient calibration data ( =tN 2) for both datasets showed a 
significant disparity in accuracy and ITR between the H-TRCCA 
approach and the other four approaches, as indicated by the results 
of the statistical analysis.

3.3 Effect of the number of EEG channels 
and training blocks on detection 
performance

The number of channels can have a significant impact on 
determining the accuracy. We investigated the impact of channel 
count (ranging from 5 to 9) on the performance of algorithms 
(H-TRCCA and msTRCA) across different numbers of training 
trials in Dataset I  and Dataset II. Regardless of the wT , the 
H-TRCCA consistently outperforms the msTRCA method in 

FIGURE 3

Violin plots showing the accuracy distributions achieved by the five algorithms for varying data lengths on two datasets: (A) Dataset I and (B) Dataset II. 
Each violin plot features a thick black line indicating the median, with two additional black lines on either side representing the interquartile ranges (25 
and 75% percentiles).
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terms of different numbers of tN  and EEG channels, in both 
datasets. As depicted in Figure  6, under two trial training 
conditions, H-TRCCA achieved an accuracy of 20.93 to 15.41% 
higher than msTRCA in Dataset I. The highest average accuracies 
with H-TRCCA, at data lengths of 0.6 s and 1 s, reached 71.83 and 

91.57%, respectively. In Dataset II, H-TRCCA outperformed 
msTRCA by 17.42 to 22.31%, with the highest accuracies at data 
lengths of 0.6 s and 1 s reaching 57.07 and 79.38%, respectively. 
These findings demonstrate H-TRCCA’s superior performance 
with significantly less training data compared to the 

FIGURE 4

Comparison of the average accuracy and ITR results for different numbers of training trials and data lengths: (A) Dataset I with 2 to 4 training trials, and 
(B) Dataset II with 1 to 2 training trials. Statistical significance was determined using a one-way ANOVA, with *** indicating p < 0.001.
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msTRCA. These results demonstrate that H-TRCCA consistently 
achieves higher accuracy than msTRCA across all cases. The 
accuracy difference is more significant at lower values of tN  and 
cN , decreasing as these values increase, yet H-TRCCA maintains 

better performance throughout.
Figure 7 illustrates the normalized correlation coefficients of 

forty stimuli obtained by H-TRCCA and msTRCA algorithms, 
using parameters =tN 2, =wT  0.6 s, and =cN  9 for five test trials 
corresponding to frequencies of 8, 8.2, 8.4, 8.6, and 8.8 Hz. Data 
were acquired from two randomly selected subjects (Subject 6 and 
Subject 14) from Dataset I. Insufficient training trials weaken the 
spatial filters, reducing their effectiveness and causing high peaks 
at non-target frequencies. Consequently, this decreases the 
accuracy of target frequency identification, as the algorithms rely 
on the highest correlation coefficient. As demonstrated in 
Figure 7, H-TRCCA exhibits reduced fluctuation in feature values 
at non-target frequencies compared to msTRCA. This reduced 
fluctuation can be attributed to the clustering algorithm used in 
the test phase, which effectively suppresses frequencies that are 
not candidates for target detection. The effectiveness of H-TRCCA 
is further illustrated in Figure  7 (Graphs B, D, H, I, and J), 
where the H-TRCCA method consistently outperforms in 
detecting the target frequency by minimizing non-target peaks at 
8.2, 8.4, 8.6, and 8.8 Hz, respectively. Overall, H-TRCCA develops 
more effective spatial filters than msTRCA with a limited number 

of training trials, thereby minimizing interference from 
non-target frequencies.

3.4 Ensemble version of the methods

To comprehensively assess the efficacy of the proposed method, 
here, we implemented ensemble versions for the four algorithms. The 
aim of the ensemble spatial filter, as proposed by Nakanishi et al. (2017), 
is to integrate spatial filters from all stimulation targets to improve 
frequency recognition. This approach assumes that filters in identical 
frequency bands across various targets share similarities, and combining 
them can enhance spatial filtering efficacy. To create an ensemble spatial 
filter, these filters …1 2, , ,

fNw w w  are concatenated, resulting in 

 = … 1 2, , ,
fNW w w w . Consequently, the calculation of the correlation

 

coefficient for the thn  target frequency is modified by Equation (14):

	 ( )ρ= = …, , 1,2, ,T T
n n fS X W X W n N

	
(14)

In Figure 8, a comparison of accuracy and ITR for ensemble-
based methods across different numbers of training trials and data 
length 0.6 s on both Dataset I and Dataset II is presented. The upper 
row of Figure 8A shows the accuracy and ITR for Dataset I, while the 
lower row of Figure 8B presents the accuracy and ITR results for 
Dataset II. In most conditions, the ensemble version of the proposed 
approach (eH-TRCCA) demonstrated superior performance 
compared to the ensemble versions of competing methods, with 
higher accuracy. For example, in Dataset I with =tN 2, eH-TRCCA 
outperformed ms-eTRCA by 4.25%, eTRCA by 10.88%, and eSSCOR 
by 19.86%. Similarly, in Dataset II, eH-TRCCA achieved accuracy 
improvements of 5, 9.20, and 11.79% over ms-eTRCA, eTRCA, and 
eSSCOR, respectively. Furthermore, eH-TRCCA had an average ITR 
of 176.73 bits/min, whereas ms-eTRCA achieved 161.55 bits/min, 
eTRCA achieved 141.09 bits/min, and eSSCOR achieved 111.50 bits/
min for =tN 2 on average in Dataset I. In Dataset II, for =tN 2, 
eH-TRCCA reached the highest ITR at 142.72 bits/min, while 
ms-eTRCA, eTRCA, and eSSCOR attained maximum ITRs of 127.33 
bits/min, 121.33 bits/min, and 106.93 bits/min, respectively. Paired 
t-tests show that eH-TRCCA’s accuracy and ITR are significantly 
better than those of other ensemble methods in most cases, as 
indicated in Figures 8A,B.

TABLE 2  Comparison of accuracy and ITR between five algorithms with different numbers of training blocks in Dataset I, using a data length of 0.6 s.

Methods Accuracy and ITR with different numbers of training blocks

Accuracy (%) ITR (bits/min)

2 3 4 5 2 3 4 5

MsetCCA-R 39.54 43.55 46.66 47.57 73.25 84.62 92.81 96.43

SSCOR 36.34 46.78 53.85 57.11 64.01 92.67 113.59 123.83

TRCA 42.61 58.69 66.80 72.45 82.40 130.18 157.09 177.07

msTRCA 51.96 66.29 73.64 77.69 108.17 154.08 179.58 194.07

H-TRCCA 73 78.5 81.64 83.61 171.73 196.54 208.52 217.41

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The best values for each of the methods are highlighted in bold.

TABLE 3  Comparison of accuracy and ITR between five algorithms with 
different numbers of training blocks in Dataset II, using a data length of 
0.6 s.

Methods Accuracy and ITR with different numbers 
of training blocks

Accuracy (%) ITR (bits/min)

1 2 3 1 2 3

MsetCCA-R 27.22 33.57 37.92 39.97 55.79 67.62

SSCOR 5.56 34 42.18 2.07 56.61 79.26

TRCA 8.86 36.64 49.47 6.03 63.70 99.47

msTRCA 8.67 42 54.45 5.47 77.80 114.89

H-TRCCA 46.25 60.70 66.98 89.05 132.92 154.72

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The best values for each of the methods are highlighted in bold.

https://doi.org/10.3389/fnins.2025.1544452
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Besharat et al.� 10.3389/fnins.2025.1544452

Frontiers in Neuroscience 11 frontiersin.org

4 Discussion

In practical SSVEP-based BCI systems, the need for extensive 
training trials becomes more evident as the number of SSVEP targets 
increases, often requiring more than forty stimuli (Sun et al., 2021). 
Insufficient training data can significantly reduce SSVEP frequency 
recognition performance (Wong et  al., 2020b). Consequently, the 
time-consuming and fatiguing nature of the training process for the 
BCI user may hinder the collection of a substantial number of training 
trials (Zerafa et al., 2018). Hence, subject-specific training methods, 
which necessitate training with a large number of individualized data 

to enhance SSVEP frequency detection, do not seem to constitute an 
effective solution. However, to meet the practical needs of applications, 
there remains a need to improve the accuracy of frequency detection 
performance by reducing training epochs. Most subject-specific 
training techniques in SSVEP-based BCI domains have developed 
spatial filters considering the correlation between the training data 
and the artificial signal (Yuan et al., 2022) or the individual template 
(Wei et al., 2020), as well as the relationship across training trials 
(Nakanishi et  al., 2017; Kumar and Reddy, 2019). This study 
introduced a novel approach called H-TRCCA, which combines the 
strengths of both CCA and TRCA. CCA assesses the fundamental and 

FIGURE 5

Bar charts depicting the accuracy and ITR for all algorithms across different numbers of sub-bands. The asterisks on the chart signify significant 
differences among the five techniques, as specified by one-way repeated-measures ANOVA (***p < 0.001). The labels (A) and (B) denote the results for 
Dataset I and Dataset II, respectively.

FIGURE 6

Comparison of frequency recognition accuracy between H-TRCCA and msTRCA using different numbers of training trials (i.e., Nt) and numbers of EEG 
channels (i.e., Nc) for (A) Datasets I and (B) Datasets II.
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FIGURE 7

Correlation coefficients were obtained using H-TRCCA and msTRCA for five test trials (data length: 0.6 s) from two randomly selected subjects: 
(A) Subject 6 and (B) Subject 14. The recognition results are shown as blue and red circles for H-TRCCA and msTRCA, respectively. Hollow circles 
indicate incorrect detections, while solid ones indicate accurate detections.

FIGURE 8

Comparison of average recognition accuracy and ITR results between ensemble versions of algorithms for different numbers of training trials in 
(A) Dataset I and (B) Dataset II. The asterisks in the subfigures indicate significant differences between the two methods, determined by paired t-tests 
(*p < 0.05, **p < 0.01, ***p < 0.001).
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harmonic oscillations of SSVEPs by measuring the correlation 
between EEG data and reference signals, while TRCA enhances the 
reproducibility of task-related components across trials by maximizing 
covariance. Both the oscillatory features of SSVEPs and task-related 
components are taken into account for accurate SSVEP detection (Lan 
et al., 2023). Methodologically, H-TRCCA presents several notable 
differences compared to state-of-the-art techniques. Firstly, subject-
specific training methods like msTRCA, TRCA, and SSCOR often 
perform poorly when training data is insufficient. This issue arises 
because the reliability of the covariance matrix decreases, leading to 
less effective spatial filters (Sun et al., 2021). One contributing factor 
to this issue is the absence of artificial reference signals. To address this 
challenge and improve frequency detection accuracy with limited 
training data, the H-TRCCA method utilizes training data, individual 
templates, and reference signals. This method enhances frequency 
recognition by computing five correlation coefficients from various 
filter-template combinations and integrating them intelligently for 
better detection accuracy. As shown in Figure 7, H-TRCCA creates 
more effective spatial filters compared to msTRCA methods when 
calibration data is insufficient. Furthermore, recent studies have 
highlighted that classification features based on a single correlation 
coefficient exhibit poorer performance compared to an ensemble of 
multiple correlation coefficients (Nakanishi et al., 2017; Kumar and 
Reddy, 2019). To improve performance, H-TRCCA takes a different 
approach compared to the other four algorithms. Instead of utilizing 
individual spatial filters for each stimulus, H-TRCCA concatenates the 
spatial filters of candidate stimuli, thereby creating a unified spatial 
filter. Additionally, employing spatial filters on selected candidate 
stimuli reduces fluctuations and effectively suppresses non-target 
frequencies. Therefore, utilizing features selected through the 
k-means++ algorithm can significantly enhance SSVEP detection 
performance, as illustrated in Figure 7. Lastly, the H-TRCCA aims to 
construct a robust and accurate classifier by combining the correlation 
coefficients obtained from CCA-based spatial filters with those 
obtained from TRCA-based integrated candidate stimulus spatial 
filters for each candidate stimulus. Compared to the other methods 
examined in this study, H-TRCCA shows greater potential in 
addressing the issue of insufficient training data.

The effectiveness of H-TRCCA has been validated across diverse 
conditions using two publicly available datasets. A comparison of 
results from both datasets consistently shows that H-TRCCA 
outperforms state-of-the-art approaches. This superiority was 
consistently observed across different numbers of training blocks 
and sub-bands, as well as varying numbers of channels, which are 
important parameters in target recognition. These results are 
depicted in Figures 2, 4–6. Specifically, Figure 2A demonstrates the 
superior performance of the H-TRCCA over msTRCA and TRCA 
on Dataset I, specifically for data lengths of 0.6 s. The accuracy 
achieved by the H-TRCCA is 7.19% higher than that of msTRCA 
and an impressive 19.05% higher than that of TRCA. Based on 
previous studies, msTRCA has been shown to significantly 
outperform TRCA in handling insufficient calibration data (Wong 
et al., 2020a; Sun et al., 2021). Additionally, msTRCA demonstrates 
substantial improvements over TRCA in various benchmark datasets 
(Sun et al., 2021). The findings of this study suggest that H-TRCCA 
outperforms both TRCA and msTRCA in frequency detection, 
particularly when there is inadequate training data. As illustrated in 
Figure 4A, H-TRCCA achieves an accuracy of 77.89% with only two 

training trials, whereas msTRCA and TRCA require five training 
trials to reach accuracies of 77.69 and 72.45% respectively, on Dataset 
I. This demonstrates the superior performance of H-TRCCA in 
scenarios with limited training data allowing for a significant 
reduction in calibration time while maintaining performance. This 
study also explored the impact of the number of channels on different 
numbers of training data. The results shown in Figure 6 show that 
H-TRCCA has superior performance in frequency detection 
compared to the msTRCA, especially when the number of channels 
is small and a limited amount of training data is available. Reducing 
the number of channels in a real-world BCI system lowers 
implementation costs, enhances user experience, and improves 
overall comfort. To further investigate, we conducted a comparison 
between the ensemble version of H-TRCCA and the ensemble 
versions of state-of-the-art approaches. The results demonstrate that 
the ensemble H-TRCCA consistently outperforms the ensemble 
versions of other methods, highlighting its robustness and 
effectiveness. Moreover, as the number of training trials decreases, 
the performance difference between eH-TRCCA and the other four 
methods increases. Notably, the proposed method demonstrated a 
significantly greater improvement in practical SSVEP-based BCI 
systems (e.g., Dataset II) compared to state-of-the-art methods 
under controlled laboratory conditions (represented by Dataset I). 
This suggests that the proposed method may perform more 
effectively in real-world scenarios where noise and variabilities 
are present.

In EEG-based BCIs, computational efficiency is critical for real-
time applications. In this study, we compared the computational times 
of H-TRCCA and TRCA methods. During the spatial filter training 
phase, H-TRCCA took 0.6287 s for Dataset I and 0.4724 s for Dataset 
II, while TRCA took 0.5240 s and 0.3754 s, respectively. After the 
training phase, the average time per window for target recognition was 
0.0846 s for Dataset I and 0.0886 s for Dataset II with H-TRCCA, 
compared to 0.0247 s for Dataset I and 0.0239 s for Dataset II with 
TRCA. Although the proposed method required slightly more time 
for testing compared to TRCA, the difference was only a few 
milliseconds, which does not affect the computational speed of target 
detection. Therefore, both methods can be  applied to 
online experiments.

While the H-TRCCA method has shown promising performance 
in detecting SSVEP-based BCI compared to other approaches in the 
field, there is still potential for further improvement. One limitation 
of H-TRCCA is its focus on a fixed data length, which may not 
be optimal in all scenarios. To overcome this limitation, future work 
can explore a dynamic window approach, allowing for dynamic 
adjustment of the data length collected for each trial. Additionally, in 
the proposed method, instead of using standard TRCA, advanced 
methods like msTRCA (Wong et al., 2020a), TRCA-R (Wong et al., 
2020b), and scTRCA (Sun et al., 2021) can be employed. Combining 
these methods may offer improved performance compared to 
H-TRCCA, especially when there is insufficient calibration data.

5 Conclusion

In this study, we introduced the Hybrid task-related component 
and canonical correlation analysis (H-TRCCA), a novel method 
designed to enhance the performance of SSVEP-based BCIs, especially 
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when training data is limited. H-TRCCA effectively combines the 
strengths of CCA and TRCA to create spatial filters that improve 
frequency detection accuracy and reduce the need for extensive 
training trials. The results show that H-TRCCA consistently surpasses 
state-of-the-art methods, including MsetCCA-R, SSCOR, TRCA, and 
msTRCA, even with a limited number of trials. The method’s 
effectiveness is supported by comprehensive evaluations using two 
public datasets: Dataset I (benchmark dataset) and Dataset II (BETA 
dataset). The results highlight H-TRCCA’s capability to achieve high 
classification performance despite constrained training data.
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