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Introduction: This report deals with advanced processing of blood oxygenation-
dependent (BOLD) functional magnetic resonance imaging (fMRI) signals. It does 
not address functional characteristics of the human cortex, such as functional 
connectivity. fMRI is based on measurement of BOLD variations of transverse 
relaxation time T2

* or T2. T2
* or T2 can be calculated when multiple echoes of 

the MRI signal are recorded and may be  more resistant to artifacts or better 
characterize tissue properties than the echoes themselves.

Objectives: To develop a robust-to-noise algorithm for dynamic T2
* mapping 

from a three gradient-echo (GRE) signal, allowing exploration of the potential of 
quantitative T2

* mapping.

Methods: fMRI resting-state and block-design visual task three-echo data were 
acquired from nine healthy volunteers. A significant problem in multi-echo T2

* 
fitting is the noise in the echoes. The majority of BOLD-denoising methods first 
pinpoint some source of noise and subsequently remove the respective noise 
time series. We  instead first postulated that the blood oxygenation changes 
smoothly and consequently developed a state-of-the-art denoising algorithm 
that minimizes total variation (TV), enforcing smoothness in the processed 
BOLD echoes while preserving local temporal signal means. To ensure that 
calculated T2

* time courses are also smooth, they were estimated from TV-
denoised echoes. We used a denoising approach initially proposed by Professor 
Stanley Osher for two-dimensional (2D) images that has been very successful, 
most prominently in space research, where it enabled the reconstruction of the 
first-ever image of a black hole. To our knowledge, Osher’s approach has so far 
not been used elsewhere for the denoising of one-dimensional fMRI time series.

Results: Signal-to-noise and contrast-to-noise distributions of the denoised 
echoes, as well as of the T2

* time series, were superior to those obtained by 
the current fMRI denoising methods (3dDespike, tedana, NORDIC). The 
denoised echoes and the T2

* time courses match the shape of the theoretical 
hemodynamic function much better than previous results.

Conclusion: The TV-minimizing fMRI time series denoising algorithm yields 
denoised echoes of unprecedented quality, enabling estimation of smooth, 
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dynamic T2
* maps, i.e., a transition from qualitative-only fMRI echoes to fMRI 

signals endowed with time units.

KEYWORDS

BOLD signal restoration, denoising, multi-echo fMRI, inexact ADMM, quantitative 
fMRI, T2

* mapping, total variation minimization

1 Introduction

Functional magnetic resonance imaging (fMRI) is broadly used 
in neuroscience research and, to some extent, in clinical applications. 
The classical fMRI approach is based on the measurement of blood 
oxygenation level-dependent (BOLD) signal changes and analysis of 
temporal signal fluctuations. Paramagnetic deoxyhemoglobin in 
venous blood is a naturally occurring contrast agent for magnetic 
resonance imaging (MRI). Ogawa et al. (1990) demonstrated in vivo 
images of brain microvasculature with image contrast reflecting the 
blood oxygen level by accentuating this agent’s effects through 
gradient-echo techniques in high magnetic fields.

Because the BOLD signal units are arbitrary, the interpretation of 
single-echo data is limited to relative changes of the BOLD signal 
utilizing some statistic (typically t-values). Therefore, the results are 
affected by the signal-to-noise ratio, i.e., also by the hardware 
configuration used and by the acquisition protocol.

Within a few years after the discovery of the BOLD effect, it was 
recognized in gradient-echo and spin-echo experiments that the 
BOLD contrast is echo-time dependent (Bandettini et al., 1994). In 
multi-echo fMRI, several echoes are acquired after a single excitation 
during one sampling interval, which enables combining data from 
particular echoes to enhance BOLD contrast sensitivity in each 
voxel. Moreover, there is a possibility to calculate T2

* from the echoes 
and subsequently analyze data quantitatively. Such an approach 

might increase the robustness and the reproducibility of the fMRI 
analysis. Unfortunately, the acquisition protocol used for multi-echo 
fMRI is not identical to the standard relaxometric protocol. The 
BOLD signal measurements are noisy, Figure 1, and simple 
exponential fitting amplifies measurement noise [Michálek et al., 
2019, Equations (12–14)]. Therefore, more robust algorithms are 
needed to fully exploit the potential of quantitative multi-echo data-
based T2

* analysis.
One of the earliest studies (Gati et al., 1997) on multi-echo fMRI 

experiments estimated the relaxation rate R2
* (the reciprocal of T2

*) 
using eight multi-shot gradient echoes within a single slice to fit. A 
series of 40 consecutive images was acquired while the task stimulus 
toggled between periods of dark (baseline) and flashing (activation) 
states. Five images were collected during each period. The R2

* values 
were not estimated voxelwise but within regions of activated visible 
veins (referred to as “vessels”) and cortical gray matter (“tissue”) over 
which the signal values were averaged.

Posse et al. (n.d.) argued that BOLD contrast fMRI suffers from 
several limitations, among others lack of quantitation. To address this 
issue, they quantitatively measured T2

* signal relaxation during visual 
and olfactory stimulation using a pulse sequence named Turbo-PEPSI 
that acquired 12 echo planar images with echo times (TE) ranging 
from 12 to 228 ms. Reconstructed magnitude images were fitted with 
single exponential lineshapes of the form: ( )∗= −0 2exp /S S TE T . 
When fitting the relaxation time course data, it became apparent that 

FIGURE 1

Time courses of three BOLD signal echoes (B) at the green-marked voxel (A) of a resting-state multi-echo fMRI series comprising 312 frames (data 
from sub-01). The BOLD signal was sampled with the repetition time of TR = 1,800 ms. As invasive measurements in animals show that the true BOLD 
signal is smooth, the sampled fMRI signal should also be smooth; however, it fluctuates strongly and needs to be denoised. Without denoising, an 
estimate of the exponential time constant from the three noisy echoes would result in a strongly oscillating, rather than smooth, T2

* time course.
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activation maps based on T2
* displayed higher sensitivity than those 

obtained with conventional EPI (Posse, 2012).
Transverse relaxation time (T2

*) and initial signal intensity (S0) 
mapping using a single-shot EPI sequence were presented in the study 
by Speck and Hennig (1998). S0 changes are a measure of the inflow 
sensitivity to stimulation, while T2

* is a direct measure of the BOLD-
related signal change. Mappings were performed in three horizontal 
slices. Overall, 120 sets of 24 or 18 images (three slices, eight or six 
echo images) were acquired with a repetition time (TR) of 3 s. The 
stimulus was turned off and on for 30 s, respectively. Two data versions 
(eight echo images with a matrix size of 64 × 32 or six echoes with a 
64 × 64 matrix) were acquired. For every set of eight (or six, 
respectively) echo images, the parameter maps were calculated from 
a pixel-by-pixel least squares fit of a monoexponential to the data 
points. The authors only show the time courses of average S0 and T2

* 
values within areas where a correlation coefficient with a boxcar 
function corresponding to visual stimulation was greater than 0.3. The 
time courses in individual voxels were not provided.

Posse et al. (1999) published a comprehensive analytical treatment 
of fMRI contrast enhancement in which knowledge of T2

* plays an 
important role. First, they came to a fundamental result: the contrast 
for a single-echo BOLD signal has the maximum value when the echo 
time equals T2

*. This cannot be generally satisfied for all voxels since 
only a single time point close to the expected BOLD optimum is 
measured. Additional functional information can be  obtained by 
sampling multiple echo times in a single shot and combining the 
datasets thus obtained. Posse et al. (1999) analyzed different types of 
preprocessing of the multi-echo datasets:

	•	 Summation of datasets acquired at different echo times.
	•	 A weighted summation of the datasets acquired at different echo 

times. The weights depend on expected T2
* values of individual 

voxels as well as on the echo times.
	•	 Curve fitting to quantitate changes in T2

* and S0.

Posse et  al. (1999) derived formulas proving that the initially 
increasing contrast of simple summation decreases again after a T2

*-
dependent peak is passed. Weighted summation of the datasets should 
yield the highest contrast improvement, closely followed by T2

* fitting, 
both of which saturate with an increasing number of measured echoes.

Hagberg et al. (2002) derived a numerical method referred to as 
NumART2* that allowed for rapid whole-brain mapping of T2

*. The 
method numerically approximates the area under the exponential 
decay curve by replacing the exponential with straight lines with their 
endpoints at the echo sample points. Based on this approximation, T2

* 
is directly calculated as a linear combination of images obtained at 
three or more different echo times. The T2

* estimation from an fMRI 
task multi-echo signal is very fast, but the time courses shown in 
activated voxels are extremely noisy (signal jumps ~ 50%) despite T2

* 
being estimated from a large number (eight) of echoes.

For resting-state fMRI data, Kundu et  al. (2012) published a 
different multi-echo approach in which the blood oxygenation-
induced temporal changes in the echoes are separated from the 
inflow-dependent ones based on the observation that BOLD signal 
changes exhibit linear dependence on the echo time while the proton-
density (inflow)-dependent ones do not. Based on two statistics 
named rho and kappa, it can be distinguished for each brain voxel 
whether the TE-dependence or the inflow dependence prevails. 
Ensuing independent component analysis (ICA) labels components 

deemed TE-independent that are regressed out of the voxel time series 
as noise, thus increasing the signal-to-noise ratio. The approach was 
extended to task-based fMRI analyses in Kundu et al. (2017).

Weighted summation of the multi-echo datasets discussed in 
Posse et al. (1999), later referred to as “optimal combination,” was 
implemented by the authors of DuPre et al. (2021) as a BOLD signal 
preprocessing option and is freely available as part of their Python 
library named tedana (script t2smap.py), which is intended for 
denoising of multi-echo fMRI data.

Heunis et  al. (2021) compared six different strategies used to 
combine multi-echo fMRI data: a single-echo time series (based on echo 
2), the real-time T2

*-mapped time series (T2*FIT), and four combined 
time series (T2

*-weighted, tSNR-weighted, TE-weighted, and a new 
combination scheme termed T2*FIT-weighted). They evaluated the 
performance in terms of several metrics such as temporal signal-to-noise 
ratio (tSNR), task activity effect size, region of interest (ROI)-based 
temporal percentage signal change (tPSC), functional contrast, and 
temporal contrast-to-noise ratio (tCNR). They recommended the use 
and continued exploration of their T2*FIT method for offline task-based 
and real-time region-based fMRI analysis because the T2*FIT time series 
consistently yielded the largest offline effect size measures, and real-time 
ROI-based functional contrasts and temporal contrast-to-noise ratios. 
The only drawback of the T2*FIT time series they observed was the 
decrease in tSNR. For this reason, they advised further research to 
mitigate the decreased tSNR of the T2*FIT time series. Their 
recommendation is particularly important regarding the total variation 
(TV)-based T2

* mapping algorithm described in our study, which—as 
will be shown in Chapter 3—does increase, not decrease, tSNR.

1.1 Noise and denoising in fMRI 
measurements

The survey above shows that noise in multi-echo fMRI measurements 
distorts input data to the T2

* fitting equations and is detrimental to T2
* 

mapping. Multiple sources contribute to fMRI noise (Liu, 2017): 
background noise, noise in the magnetization term, and noise in the 
relaxation term. Some noise components in the magnetization term and 
in the relaxation term are caused by physiological processes such as 
subject motion, cardiac pulsations, and respiratory activity. Noise related 
to periodic processes (cardiac or respiratory) can be effectively removed 
by spectral analysis of the fMRI signal and matched band-pass filtering. 
Other advanced algorithms for physiological noise separation, like that 
of Kundu et al. (2012, 2017), first perform ICA. Then, the echo-time 
dependence of independent fMRI components is exploited to distinguish 
between BOLD-like components (i.e., those components with voxel 
amplitudes that show a linear dependence on echo time) and non-BOLD-
like noise components that do not exhibit a strong linear dependence. As 
a final step, the non-BOLD components are regressed out.

The fMRI background noise reflects the contributions of sources 
that are independent of the signal of interest, e.g., thermal noise arising 
from the thermal agitation of charge carriers in both the subject and the 
MRI system electronics, radio frequency (RF) spikes due to intermittent 
mechanical contacts between metal components, and spurious RF 
noise from the environment. The background noise term is present 
even if there is no activity-related signal of interest and can be measured 
simply by acquiring the data without exciting any magnetization.

Random uncorrelated background noise appears in the measured 
fMRI signal as spikes of random magnitude at random time instants. 
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Isolated spikes cannot be fully removed by classical denoising methods 
like frequency filtering, ICA, or principal component analysis (PCA). 
The Fourier spectrum of a single spike contains all frequencies with the 
same magnitude and, therefore, cannot be separated from the BOLD 
signal of interest by any type of frequency filtering. Frequency filters 
remove only some of the frequencies (low-pass, high-pass, band-pass, 
etc.); hence, some frequency components of the spike will be retained. 
A similar argument holds for component-based signal-noise 
separation, such as PCA or ICA. In PCA, the principal components are 
eigenvectors of the signal autocovariance matrix, i.e., they are a time 
series. PCA filtering removes principal components (eigenvectors), 
whose associated eigenvalues are below a certain threshold, from the 
time series expansion, whereas eigenvectors related to large eigenvalues 
are retained. Again, a single spike is expanded as a linear combination 
of all the eigenvectors; therefore, deleting only some of the eigenvectors 
from the expansion cannot completely remove the spike. Similarly, 
independent components are also whole time series, not isolated spikes.

Contrary to that, TV-based denoising removes isolated signal 
peaks by design. Total variation of a time series is simply the sum, over 
the whole series, of all absolute signal changes from one time instant to 
the next one. If the start and the end of a time series are connected by 
a monotonically increasing or decreasing signal, the TV is the absolute 
value of the difference between the start and the end. When the fMRI 
signal is contaminated by random spikes, the true monotonic signal is 
disguised in a sawtooth-like measured time series with the saw teeth at 
the spike locations. The sum of absolute differences (TV) of the 
sawtooth wave is, of course, higher than that of the monotonic true 
signal, so minimization of the signal TV while keeping it close to the 
measured signal restores the smooth original, increasing or decreasing, 
signal. Thus, minimization of TV—contrary to classical denoising 
approaches—effectively removes spurious noise (spikes). Our aim was 
to develop an algorithm that would yield T2

* time courses more faithful 
to the canonical hemodynamic response function than a simple curve 
fitting to unprocessed multiple echo measurements. We knew from 
previous research (Michálek et  al., 2019) that exponential fitting 
amplifies noise, and also during previous research (Michálek, 2015), 
we had the experience that TV-based denoising removes spurious noise 
much more efficiently than other known methods. This is the reason 
why we chose 1D TV-minimization for fMRI time series denoising.

2 Methods

2.1 Data

Data used in this study were collected from nine healthy volunteers 
(five men, ranging from 25 to 39 years, mean age 29.8 years). The study 
was approved by the local ethics committee of Masaryk University, and 
all participants signed the informed consent. The measurement was 
performed at the Multimodal and Functional Imaging Laboratory at the 
CEITEC Masaryk University on a Siemens Prisma 3 T MR whole-body 
scanner with a 64-channel head–neck coil. The MRI protocol was 
identical for all participants and consisted of anatomical images and 
four fMRI runs. First, high-resolution T1-MPRAGE anatomical images 
were acquired for anatomical localization. In the second part of the 
protocol, we acquired four BOLD runs with two different acquisition 
settings. With each setting, one experimental task run and one resting-
state run were recorded. The fMRI protocols were based on an MB-EPI 
BOLD sequence obtained from the Centre for Magnetic Resonance 

Research, University of Minnesota. For this article, only the first two 
runs of the four were used—one task and one resting-state run with 
identical acquisition settings (except the number of time frames) as 
follows: the field of view (FOV) was 192 × 192 mm, 48 transversal slices, 
voxel size 3 × 3 × 3 mm, and the three echo times TE = 15.00, 32.64, and 
50.28 ms, respectively. The TE values were chosen according to the MR 
machine and sequence capabilities. The first TE was chosen 
approximately as the lowest possible value (rounded up to an integer), 
the second TE was as close as possible to the first one and was very 
similar to the typical optimal TE used in single-echo acquisition, and 
the third TE was as close as possible to the second one to not 
unnecessarily prolong the TR. The flip angle was 70°, based on the Ernst 
angle calculation. Because we used an averaged T1 time for gray matter 
from the literature and there can be subtle differences among the brain 
regions and individual subjects, we  rounded it slightly down. 
We acquired the slices without a gap, i.e., the slice thickness of 3 mm is 
the final data resolution in the z-direction. The original data matrix size 
was 64×64×48 (in-plane resolution 64×64 pixels, 48 slices). The 
bandwidth was set to 2,230 Hz/pixel. We used the anterior–posterior 
phase encoding. The slices were set as transverse according to the 
AC-PC line. We used in-plane acceleration (GRAPPA) with a factor of 
2 and a multiband acceleration factor of 2. Fat saturation was turned on. 
The repetition time TR was 1,800 ms. A total of 210 time frames 
(dynamic scans) were acquired during the task run (total acquisition 
time 06:36 min), and 312 time frames were obtained during the resting-
state run (total acquisition time 09:40 min).

Figures 1–5, 7 and 9 in this report were created from the data of 
the first volunteer (sub-01), while Figures 6, 8 and 10–12 used data 
from all nine study participants.

2.1.1 fMRI task
The fMRI block-design task consisted of two regularly alternating 

epochs. The first epoch was the baseline, with the volunteer instructed 
to lie still and fix their eyes on a red cross on a black background in 
the middle of the stimulation screen. In addition, the subject was 
advised not to think intensely. This epoch lasted 30.025 s. A second 
epoch followed in which the red numbers 1, 2, 3, and 4 in a series of 
10 gradually appeared on a checkerboard background, and the subject 
was asked to press simultaneously the corresponding buttons. This 
active measurement period lasted 21.35 s. The sequence of the two 
epochs was repeated seven times within one fMRI run.

2.1.2 Preprocessing of the multi-echo datasets
Preprocessing was done using the SPM12 software (available from 

https://www.fil.ion.ucl.ac.uk/spm/software/download/) and in-house 
scripts running under MATLAB 2017b. To allow testing of the T2

* 
estimation on data that underwent various degrees of preprocessing, 
the fMRI time series for each of the three echoes was processed 
individually in the following stages:

	•	 Correction of movement by the “realign and unwarp” 
SPM12 function.

	•	 Spatial normalization into the MNI space, with the same warp 
applied to all echoes.

	•	 Regression of white matter (WM) and cerebrospinal fluid (CSF) 
representative signals as predictors of artificial (non-neural) 
fluctuations. We used a simple method based on a general linear 
model (GLM) with three columns to regress out the main WM and 
CSF effects. Two columns represented the signal fluctuation in WM 
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and CSF, respectively, and the third column was used to fit the 
constant term. The fitted effect of WM and CSF was subtracted from 
the data. The effect of the constant term was not subtracted to avoid 
a change in the mean signal intensity. The representative time series 
of WM and CSF were constructed as the first principal components 
of the set of detrended time series that were delimited by an a priori 
mask based on tissue probability maps from SPM12 for WM and 
CSF, respectively.

	•	 Spatial smoothing with a Gaussian filter of FWHM (full width at 
half maximum) = 5 × 5 × 5 mm3.

2.1.3 Dimensions of the multi-echo datasets
The acquired multi-echo fMRI data were accommodated in five-

dimensional (5D) datasets of the shape [R × C × S × E × F] with:

R: number of rows in the 3D image grid.
C: number of columns in the 3D image grid.
S: number of slices in the 3D image grid.
E: number of echoes captured during one repetition time.
F: number of acquired frames.

The symbol Y denotes the 5D fMRI dataset:

	 ( )ϕ × × × ×= ∈, , , , R C S E F
r c s e vY

where ( )ϕ , , , ,r c s e v  denotes a five-dimensional real matrix from 
R C S E F× × × × , the space of all real-valued matrices with dimensions 

[R × C × S × E × F]. In this notation, ϕ , , , ,r c s e v is the measured BOLD 
signal value of the echo e  at the space location , ,r c s, and volume v. The 
five-dimensional matrix Y  is the data object we  work with when 
processing a multi-echo fMRI dataset in MATLAB.

The number of rows R = 64, number of columns C = 64, number 
of slices S = 48, and number of echoes E = 3 were common to the 
resting-state and the task datasets. The resting-state data comprised 
F = 312 time frames, and the task data comprised F = 210 frames.

2.2 Pitfalls of T2
* mapping from three 

echoes

For the transverse magnetization decay, we assumed the following 
monoexponential model:

	 ( )∗= −0 2exp /e S t T

where t is the echo time, S0 is the initial signal intensity, T2
* is the 

“observed” or “effective” decay time constant, and e is the echo signal 
intensity. With two unknowns S0 and T2

*, T2
* can be estimated by 

fitting an exponential to the echoes if at least two echoes measured 
during one repetition are available.

2.2.1 Gaussian spatial smoothing changes the 
mean values of the echo time courses

Preprocessing of the fMRI signal is, to a large extent, standardized 
and involves correction steps for random confounding signals (“noise”) 
such as head movement, magnetic field inhomogeneity, or slice timing 
differences. In widely used program packages for fMRI analysis, such as 

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/download/), 
corrections usually involve the following preprocessing steps:

	•	 Motion correction and unwarping.
	•	 Spatial normalization, including co-registration.
	•	 Spatial smoothing of the acquired frames.

For spatial smoothing, a Gaussian low-pass filter is used in SPM12. 
We parametrized the Gaussian filter by choosing FWHM = 5 mm in 
all directions. Using this parametrization, it turned out that in most 
voxels, spatial smoothing vertically shifted the mean values of the 
BOLD echo time series, as illustrated in Figure 2. The time course (312 
scans in total) of the Gaussian-smoothed echo 1 (green) at the voxel 
(21,44) lies approximately 21% below the unsmoothed BOLD signal 
mean (red). The shift resulted from the Gaussian smoothing, which 
calculates a voxel’s value by weighted averaging in three directions of 
the image rows, columns, and slices. The averaging shifts a voxel’s time 
series mean even if the voxel lies on a sharp boundary between different 
tissue types, beyond which the voxel’s value should not propagate. As 
for the echoes 2 and 3, Gaussian smoothing left the signal means more 
or less unchanged. By way of example, at voxels (22,55) and (29,41), the 
echo time series are shifted quite differently.

Vertical shifts of the Gaussian-smoothed echo time series can 
be explained as follows:

An SPM MATLAB code inspection (spm_smooth.m, spm_
smoothkern.m) shows that the 3D Gaussian filter with 
FWHM = 5 mm has, at voxel distances [−6, −3, 0, 3, 6] mm from the 
central voxel, the following relative weights (in %): [1.9835, 37.5354, 
100.0000, 37.5354, 1.9835]. Voxels at distances larger than 6 mm from 
the center have weights less than 1% of the central voxel, and 
we neglect them.

First, a simplified 1D numerical example: if we assume that all five 
voxels [−6, −3, 0, 3, 6] on the 1D filter grid are white (have value 1), 
then the Gaussian-smoothed central voxel will again be white, and 
analogously for all five voxels black (value 0). If, however, the voxel 0 
lies on the boundary between white and black, e.g., [−6, −3] are black 
and [0, 3, 6] are white, then the Gaussian-smoothed voxel 0 will have 
the brightness value of only 0.7793 rather than 1, i.e., 22% lower.

This is only a 1D example. In the real 3D fMRI volume, the 
Gaussian filter works with 5 × 5 × 5 = 125 neighboring voxels that 
have relative weights >1%. In 3D, percentual brightness shifts may 
be larger than in the 1D case, depending on how many voxels in the 
5 × 5 × 5 voxel cube possess brightness that is significantly different 
from the central voxel being smoothed.

We work with three MRI magnitude images that were acquired at 
the time instants = = =1 2 315.00, 32.64, 50.28TE TE TE

If, for the first echo, sufficiently many unsmoothed voxels on the 
5 × 5 × 5 voxel grid are brighter (have higher initial signal intensity 
S0) than the voxel being smoothed (central voxel), then the mean level 
of echo 1 time series at that voxel will be  shifted upwards, and 
vice versa.

Vertical shifts in the second and third echo time series may be caused 
by the fact that within the 5 × 5 × 5 voxel surroundings captured by the 
Gaussian, there are tissues with different relaxation rates R2

*. Tissues with 
faster relaxation (higher R2

*) fade out sooner than those with lower R2
*. 

Depending on the Gaussian weighting of fast-relaxation and slow-
relaxation voxels within the 5 × 5 × 5 voxel volume, this may result in a 
vertical shift of the time series mean of echoes 2 and 3 or may leave the 
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mean unchanged. As the shift in the first echo time series depends on the 
initial signal intensity, while the second and third time series shift depend 
on the voxel relaxation rate R2

* (or time T2
*), the time series shifts of 

echoes 1, 2, and 3 will, in general, differ. Empirically, this is confirmed by 
the three echo triples in Figure 2.

2.2.2 Changes in the mean value of the echo time 
courses distort the estimates of T2

* values
Obviously, T2

* estimated from the green, spatially smoothed, vertically 
shifted BOLD echo time series in Figure 2 will be different from the T2

* 
calculated from instantaneous means of the red, unfiltered echoes: if 
we  assume the monoexponential magnetization decay model 

( )∗= −0 2exp /e S t T  with initial signal intensity S0, then, for two echoes e1 
and e2 acquired at times t1 and t2 after the RF excitation, T2

* can 
be estimated using the log-linear fit ( ) ( )∗ ≈ − −2 2 1 1 2/ log logT t t e e .  
If the time difference between the two echoes is ( )− =2 1 17.64t t  ms and 
the unsmoothed first two echo values are as in Figure 2, voxel (21,44), (red 

dots) =
1 20200e  and =

2 12100e , respectively, then we get an estimate 
∗ =2 34.42msT . If we instead estimate T2

* from the spatially Gaussian-
smoothed time courses (green dots) with =

1 15900e  and =
2 12100e , 

we get the distorted estimate ∗ =2 64.59msT . This means that a −21% 
distortion of the first echo by Gaussian smoothing caused an almost 88% 
distortion of the T2

* estimate and made it unusable. Clearly, distorted T2
* 

estimates from Gaussian-smoothed echoes no longer properly reflect the 
blood oxygenation level. This justifies the following requirement:

Requirement. T2
* estimation must be done from multi-echo BOLD 

time series not processed by Gaussian spatial smoothing because 
spatial smoothing destroys echo mean values and, consequently, the 
T2

* estimates.
Authors of the online manual: https://tedana.readthedocs.io/en/

stable/multi-echo.html (tedana, n.d.) also recommend doing any step 
that will alter the relationship of signal magnitudes between echoes, 
such as spatial smoothing, after denoising the echoes. However, they 
do not show how the amplitudes may change due to Gaussian spatial 

FIGURE 2

In red: raw (not denoised) time courses of three echoes at three randomly selected green-marked voxels from 312 realigned and MNI-coregistered fMRI 
frames (data from sub-01). In green: signal time courses at the same voxels after spatial Gaussian smoothing (FWHM = 5 voxels). At the voxel (21,44), 
e.g., Gaussian smoothing has squeezed the signal mean of the first echo by ~21.3% with respect to the raw signal, while the means of the second and 
third echoes remained unchanged. The means may contrarily increase in other voxels, such as (22,55) for echoes 2 and 3. As calculated in the text, the 
vertical drop of the Gaussian-smoothed first echo (21,44) has caused a massive distortion in the T2

* estimate, which increased by almost 88%.
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smoothing, nor do they explain why the signal amplitudes are being 
altered. We have not found an explanation in their recommended 
reference, DuPre et al. (2021), either.

2.3 Restored BOLD signal should 
be smooth and preserve the measured 
local mean values of the echoes

2.3.1 In vivo measurements of the BOLD echoes 
indicate that the physiological BOLD signal is 
smooth

In the past, the biophysical and physiological sources of BOLD 
fMRI signals were analyzed by different researchers in animal studies, 
which afforded the systematic assessment of physiological sources 
and the combination of fMRI with invasive approaches. Silva et al. 
(2000) investigated BOLD changes elicited by somatosensory 
stimulation of the forepaw in rats, and Nagaoka et  al. (2005) 
examined BOLD response to visual stimulation in the primary visual 
cortex of cats. Their results were reviewed by Kim and Ogawa (2012). 
The measured time courses of BOLD responses to a forepaw stimulus 
in the rat somatosensory cortex in Kim and Ogawa (2012), Figure 5A 
and to a visual stimulus in the cat visual cortex in Kim and Ogawa 
(2012), Figure 5B suggest that, after averaging out the measurement 
noise, the BOLD signal is smooth.

However, in our GRE-measured BOLD echoes, all three echoes 
fluctuated randomly without showing any regular pattern (Figure 1) and 
did not have the appearance of a sampled smooth signal.

2.3.2 Formulation of temporal BOLD signal 
restoration as minimization of total signal 
variation

In a first attempt to remove noise while preserving the signal 
mean values for reasons discussed in Section 2.2.2, we  applied 
temporal Gaussian filtering separately to each of the three echoes at 
every voxel of the brain. However, as the Gaussian is a low-pass filter, 
there still remained large oscillations in the filtered signal at voxels 
with fast fluctuations in the unprocessed data because low-pass 
filtering does not remove fast signal changes.

To make denoising frequency independent, we propose to specify 
the temporal BOLD signal restoration task in terms of the following 
two requirements:

	•	 As the physiological BOLD signal measured in animal 
experiments can be  assumed to be  smooth, minimize the 
variation of the measured BOLD signal to make the restored time 
course smooth (smoothness).

	•	 At the same time, keep the restored signal values as close to the 
local signal mean (i.e., mean signal value in the neighborhood of 
the current timepoint) as possible (data fidelity).

The trade-off between the smoothness and the data fidelity is 
controlled by a weight μ. Mathematically, this can be formulated as a 
one-dimensional (1D) TV–l2 (total variation and l2 distance) 
optimization problem, whose two-dimensional version is widely 
known in the image processing literature as the Rudin–Osher–Fatemi 
(ROF) model for image denoising (Rudin et al., 1992).

The solution to the TV–l2 problem is known to have favorable 
properties: contrary to linear filters (e.g., low-pass such as Gaussian, 

high-pass, etc.) that suppress nuisance signals depending on their 
frequency, in the nonlinear TV–l2 filtering disturbing events are removed 
depending on their value and extent along the timeline: it is shown in 
Chambolle and Pock (2016) that gradually decreasing the data fidelity 
weight μ results in removing nuisance structures with increased size 
and contrast.

To enforce smoothness of the T2
*-time courses, each of the 

three echoes of the 5D dataset must be restored separately voxel 
by voxel. For notational simplicity, the symbols used below in the 
derivation of the algorithm may refer to any voxel of any of the 
echoes = = =1, 2,or 3e e e .

We will denote with 


b  the measured 1D time series of the fMRI 
values of the echo e at some voxel ( ), ,r c s :

	 { } { } { } { }∈ … ∈ … ∈ … ∈1,2, , , 1,2, , , 1,2, , , 1,2,3r R c C s S e

	 ( )=


, , ,b Y r c s e 	

Similarly, we will denote with u the estimate of the restored, noise-
free, time course at ( ), , ,r c s e , and with ku  the estimate in the k-th iteration.

2.3.3 Objective function
The solution to the BOLD time course restoration, formulated as 

the TV–l2 problem, requires that the sum:

	
( ) ( ) µ

= + −
2

22



  G u TV u u b
	

be minimized. Here, ( )TV u  denotes the TV of the restored temporal 
signal and is defined as the sum of magnitudes of the forward 
differences of the denoised signal u:

	
( ) ( )

= =
= ∇ = ⋅ =∑ ∑ 1

1 1



   

F F

v
v v

TV u u v d u Du

and −
2

2



u b  is the squared error between the measured echo 


b   
and its estimate u.

The symbols have the following meanings:

F: number of measured fMRI frames.
v: frame index.
u: restored 1D time course of the BOLD signal at some voxel.
∇
u: forward differences between neighboring timepoints.


vd : v-th vector whose dot product with u  yields the v-th 
difference ( )∇

u v
D: [F × F]-matrix whose v-th row is 

T
vd

With the above notation, the objective function to be minimized 
for 1D BOLD signal restoration can be written as follows:

	
( ) µ

= + −
2

1 22



  G u Du u b
	

The objective function is, up to a projection matrix R, formally 
equal to that of Michálek (2015, p.  6). Therefore, it can 
be minimized using the inexact alternating direction method of 

https://doi.org/10.3389/fnins.2025.1544748
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Michálek and Mikl� 10.3389/fnins.2025.1544748

Frontiers in Neuroscience 08 frontiersin.org

multipliers (ADMM) algorithm derived there, with the projection 
matrix R replaced with the identity matrix I.

2.3.4 Partially inexact ADMM for denoising 
one-dimensional time series

Eckstein and Yao (2017) proved the convergence of two new 
approximate versions of the ADMM. Each of the methods permits 
both subproblems to be solved inexactly. The first method uses an 
absolutely summable error criterion. The second method uses a 
relative-error criterion and an auxiliary iterate sequence that 
enables relative-error approximate implementation of augmented 
Lagrangian algorithms.

To cast the iterations of the inexact ADMM in Michálek (2015) 
into the flow of Algorithm 2 in Eckstein and Yao (2017), only the 
relative-error criterion and the auxiliary iterate sequence need to 
be added. The complete algorithm for 1D BOLD signal restoration 
then assumes the following form:

2.3.4.1 Algorithm. Partially inexact ADMM for 1D denoising with 
a relative error criterion.

�Initialization: pick scalar parameters µ β> >0, 0 and (σ ∈ 0,1  
and initial points λ ∈



  0 0 0 0, , , Fu r w R
for k=0, 1, 2,.. do

=
 ,0k ku u
repeat {for l=1,2,..}

( )λβ µ
β

− − 
= ⋅ − − + −  

 





   , 1 , 1
k

T k l k k lg D Du w u b

α =
 

 

T
kk

k T
kk

g g

g Ag
, where β µ= ⋅ +∑ T

i i
i

A D D I ,

α−= −
  , , 1k l k lu u g

until σ
β

− + ≤ −
22, ,2 ,     k k l k lr u g g Du w

+ =
 1 ,k k lu u

λ λ
β β β

+ + +
      = − − ⋅ −          

 

  1 1 11max ,0 sgn
k k

k k ki i
i i iw D u D u

( )λ λ β

β

+ + +

+

= + −

= −

 

 

  

1 1 1

1

k k k k

k k

Du w

r r g
end for

A unique parameter setting was used for all one-dimensional 
denoising runs  
used for this manuscript. The parameter values for the above algorithm  
were as follows: µ β σ− −= = = … = =10 42 , 2 , 0,1, ,10, 1,2,3,4,5, 0.k l  
For the algorithm as presented above, a convergence proof exists. 
We used k = 10 as a termination criterion for the outer loop of the 
Algorithm, as it empirically provided sufficient precision for the fMRI 
BOLD time course denoising. We also observed that for our data, the 
precision of the algorithm was sufficient if a fixed number of steps, 
e.g., 5, were taken for the inner loop instead of the relative-error 
criterion; therefore, the inner iterations are forcibly stopped after five 
gradient steps.

2.3.5 Echo restoration
The three temporal BOLD signal echoes were restored 

simultaneously for all voxels using the procedure described in Section 
2.3.4 from echoes that were preprocessed only in the unwarp + realign 
step in SPM12, but—notably, for reasons explained in Section 2.2.2—
not spatially smoothed.

2.4 T2
* estimation

From the restored (denoised) echoes, the dynamic T2
* time 

courses were estimated using the procedure described in Michálek 
et  al. (2019), which is based on a weighted log-linear fit to a 
monoexponential model. The advantage of the said algorithm 
compared to usual monoexponential fitting procedures is a 
compensatory weighting of later echoes to account for noise boost 
caused by the logarithmic operation. Unlike in Michálek et al. (2019), 
for the dynamic T2

*-TV estimation, we did not estimate the Rician 
noise floor since it would require more redundancy in the signal, e.g., 
a greater number of echoes. According to our experiences with only 
three noisy echoes, reliable estimation of three dynamically changing 
parameters (S0, T2

*, and the noise floor) is not feasible. T2
* maps were 

calculated in individual subject spaces.

2.5 Methods of assessment of the BOLD 
signal quality obtained by TV-based 
denoising

We propose to quantitatively explore the efficiency of a 
denoising algorithm by comparing standard measures of fMRI 
signal quality between the outcome of the denoising and the 
signal before denoising, or between signals denoised using 
different methods.

We used two standard measures to quantify the BOLD 
signal quality:

	•	 Temporal signal-to-noise ratio (tSNR) of the denoised resting-
state BOLD signal (Friedman and Glover, 2006).

	•	 Contrast-to-noise ratio (CNR) of the task-induced BOLD signal, 
as defined by Geissler et al. (2007).

The tSNR calculations were based on the nine resting-state 
datasets and the CNR calculations on the nine task datasets. Rather 
than comparing tSNR and CNR at individual voxels, we calculated 
their distributions over all nine study participants on subject-specific 
ROIs defined in Section 2.5.1. The efficiency of a denoising method 
was quantified by the value of the tSNR and CNR medians of the 
respective distributions. This method of denoising efficiency 
assessment is akin to that of Heunis et al. (2021). The difference is 
that we quantify the efficiency by calculating medians, which, to our 
experience, suppress outliers better than the means used by Heunis 
et al. (2021).

In addition, we defined, for task data, the following new measure 
of fMRI signal quality:

	•	 Similarity between the particular type of task BOLD signal and 
the theoretical hemodynamic function (Section 2.5.4).
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2.5.1 Regions of interest
The temporal signal-to-noise ratio (tSNR) of the resting-state 

datasets was evaluated in all brain voxels indicated by a subject’s 
brain mask. The mask was generated subject-specifically using 
the histogram of the whole resting-state fMRI series. The 
histograms are bimodal, i.e., have two peaks. The background 
threshold was selected at the bin with the lowest histogram value 
between the two peaks. Voxels that violated the condition of a 
monotonic decrease of the multi-echo signal were excluded from 
the analysis.

To create well-defined ROIs for the nine task datasets, we selected 
participant-specific ROIs depending on the correlation between the 
second echo time courses and the theoretical hemodynamic response.

In fMRI analysis, multiple comparisons in different brain 
voxels are carried out simultaneously. If more than one α-level 
hypothesis test is performed, the risk of making at least one Type 
I  (false positive) error will exceed α. This would result in an 
excessive number of false positives (Lindquist and Mejia, 2015). 
Therefore, some method of correcting for multiple comparisons 
is needed to identify areas of activity that reflect true effects and 
thus would be expected to be replicated in future studies (Han 
and Glenn, 2017).

The total number of simultaneous hypothesis tests (one for each 
voxel) for our nine participants ranged between 40,237 and 57,123. 
Unlike the frequently used Bonferroni correction or family-wise 
error rate (FWER) to guard against excessive false positives that arise 
from multiple comparisons, we used the Benjamini–Hochberg false 
discovery rate (FDR) correction procedure (Benjamini and 
Hochberg, 1995), which is more powerful than other methods that 
control false positive rates (Glickman et al., 2014). The prespecified 
FDR was α = 0.05, which means that, on average, 5% of the voxels 
found significant will be false positives. Participant-specific lists of 
voxels deemed active with α = 0.05 were generated using an FDR 
implementation available from https://www.mathworks.com/
matlabcentral/fileexchange/71734-fdr-false-discovery-rate. For each 
study participant, their specific ROI was defined by their 
FDR-satisfying voxels.

To generate lists of voxels passing the FDR condition (i.e., the 
subject-specific ROIs), we worked out the following algorithm:

	•	 For all voxels of the echo 2 of the task-induced subject data, 
calculate the normalized circular correlation ρ (cf. 2.5.4) between 
the fMRI time series and the normalized hemodynamic response 
of the task.

	•	 For each voxel correlation, calculate the t-value as ρ
ρ
−

=
−

2
1
nt

(Cohen et al., 2013).
	•	 For each voxel, calculate the Student’s t cumulative distribution 

function from the t-value using MATLAB’s function 
tcdf: ( )= −, 2P tcdf t n .

	•	 From the voxel’s value of Student’s t cumulative distribution 
function, compute the p-value of the t-statistic as ( )= ⋅ −2 1p P .

	•	 Using the FDR.m procedure, find indices of voxels that satisfy the 
condition α≤FDR with the significance level α = 0.05.

An example of one slice of the FDR-generated ROI is in Figure 3. 
The highest density of the ROI is seen in the visual cortex.

2.5.2 tSNR calculation
The voxel-by-voxel tSNR values were calculated using the 

procedure proposed by Friedman and Glover (2006) and saved as one 
3D array per dataset. The original MATLAB code for tSNR 
computation was kindly provided by Prof. Glover.

2.5.3 CNR calculation
We adopted the CNR definition by Geissler et al. (2007):

	 σ
∆

=
SCNR

where ∆S  is the average signal change (task-related variability, 
contrast), and σ  is the non-task-related variability over time (time 
series noise), both calculated voxelwise. We calculated ∆S  from the 
task data as the difference between the BOLD signal average across 
the task stimulation ON epoch and the average across the OFF epoch. 
First, we defined an averaging boxcar function synchronous with, but 
different from, the task stimulation. The averaging function had the 
value 1/(total number of ON points), where stimulation was ON, and 
[−1/(total number of OFF points)], where stimulation was OFF. The 
difference between the BOLD signal mean across the ON epoch and 
the mean across the OFF epoch was calculated as the maximum of 
the time lag-dependent cross-correlation function between the 
BOLD signal and the averaging boxcar function. Taking the 
maximum of the cross-correlation function eliminates the time lag 
between the stimulation and the hemodynamic response.

Since, for each participant, the resting-state runs were recorded 
using the same acquisition settings as the task runs, it is justified to 
assume that both had the same voxelwise standard deviation of the 
noise. Therefore, we used the voxelwise noise standard deviations σ  

FIGURE 3

FDR-generated region of interest, middle slice. The highest density 
of the automatically computed ROI coincides with the visual cortex, 
as appropriate for the assessment of visual task fMRI data. The input 
to the above algorithm was the unprocessed echo 2 acquired from 
our sub-01 during the task described in 2.1.1. To get a fair 
comparison, the same ROI mask was used for CNR evaluation of 
T2

*-TV fitting, optimal combination, tedana, and T2
*-raw fitting.
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that were obtained from the resting-state tSNR calculation to compute 
the voxelwise CNR.

2.5.4 Similarity between the hemodynamic 
response function and the voxelwise BOLD signal 
time courses

We defined the similarity between the theoretical 
hemodynamic response and the BOLD signal time course as the 
maximum (with respect to the time shift) of the normalized 
circular cross-correlation function. The calculation involved the 
following steps:

	•	 The normalized hemodynamic response (NHR, common for all 
voxels) was calculated by subtracting the mean from the 
theoretical hemodynamic response and rescaling the remaining 
zero-mean signal such that the sum of the squares of its time 
samples was 1.

	•	 Analogously, the BOLD signals (either the T2
*-TV-denoised time 

course, the tedana.py-denoised time course, the optimally 
weighted sum, or the T2

* raw time course) were normalized voxel 
by voxel.

	•	 Calculation of the circular cross-correlation between the NHR 
and normalized BOLD functions, which amounts to repeated 
calculation of the scalar product of unity vectors. The magnitude 
of the normalized circular cross-correlation thus lies between 0 
and 1. The value of 1 indicates that the NHR and the normalized 
BOLD signal are identical.

Detecting the maximum of the circular correlation function has 
an advantage over a simple correlation coefficient in that it eliminates 
the time lag between the stimulation and the BOLD response if there 
is such.

2.5.5 Statistical evidence for observations made 
on the output data

fMRI is a dynamic process that yields individual time series data 
for tens of thousands of brain voxels with tens of thousands of different 
tSNR, CNR, or correlation values. The efficiency of two fMRI methods 
can be compared by computing some parameters of the tSNR, CNR, 
or correlation, like the median or the mean value. To decide if some 
method (e.g., TV-based denoising) behaves differently from another 
method (e.g., NORDIC denoising), we can calculate the probability 
that a difference in some parameter values, e.g., means, is not random.

It turned out that the probability distribution of the tSNR, CNR, 
or correlation values is not normal (Gaussian). Therefore, we are using 
for hypothesis testing the non-parametric Wilcoxon rank sum test 
implemented in MATLAB.

3 Results

3.1 Example: TV-based 1D restoration of 
multi-echo resting-state BOLD signal in 
one voxel

In Figure 4, the original (red) noisy 3-echo time courses from 312 
resting-state fMRI frames are compared with their TV-restored 
(green) counterparts for the same green-marked voxel as in Figure 1. 

As required for smooth T2
* estimation, the random noise in the green 

signals has been, to a large extent, removed by minimization of the 
TV. In contrast to Figure 2, where the means of the echo time courses 
were pushed up or down, the local signal mean values of all three 
echoes in Figure 4 have been preserved thanks to the data fidelity term 
of TV-based restoration.

3.2 Example: resulting T2
* maps from 

TV-restored echoes

The TV-based restoration of temporal fMRI time courses was 
applied to the multi-echo task-related fMRI datasets described in 
Section 2.1. From the TV-restored echo time courses, dynamic T2

* 
maps were estimated as described in Section 2.4. Figure  5 shows 
examples of signal restoration and dynamic T2

* mapping in three 
different voxels.

3.2.1 Sample voxels
In Figure  5, examples of raw and restored BOLD echo time 

courses from three brain voxels are compared, and the estimated 
dynamical T2

* waveforms are shown.
The three sample voxels were selected based on their response to 

a visual task execution. For each voxel of the brain with a valid 
dynamic T2

* time series, we  evaluated its normalized cross-
correlation, that is, its similarity, with the theoretical hemodynamic 
response. The theoretical hemodynamic response was calculated by 
convolving the task “on”/“off ” boxcar function with the canonical 
hemodynamic response function (HRF) and is plotted in arbitrary 
units. We used the canonical HRF calculated as the difference of 

FIGURE 4

In red: raw time courses from 312 realigned and MNI-coregistered 
resting-state fMRI frames of three echoes picked at the same green-
marked voxel (data from sub-01) as in Figure 1. The first echo has the 
highest mean. In green: the time courses of the signal at the same 
voxel after TV-based temporal restoration. All three TV-restored 
echoes exhibit substantially reduced noise while preserving local 
means, which will enable accurate dynamic T2

* estimation.
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Gamma functions and implemented as a MATLAB function named 
spm_hrf.m in the SPM12 package (available from https://www.fil.ion.
ucl.ac.uk/spm/software/download/). The two time courses were 
normalized such that, if identical, the normalized cross-correlation 
was 1. We sorted the brain voxels in descending order of the cross-
correlation. For illustration in Figure 5, we selected two voxels with 
high correlation, (29,7,25) and (42,28,39), as well as one voxel 
showing no obvious similarity with the hemodynamic response 
(24,38,24). Voxel (29,7,25) was in the visual cortex, and voxel 
(42,28,39) was in the motor cortex.

The restored echoes (in green) together with the raw echoes (in red) 
in panels (B,E,H) confirm that the procedure detailed in Section 2.3.4 

yields restored echo signals that satisfy the property of the BOLD signal 
discussed in Section 2.3.1: in accordance with invasive BOLD signal 
measurements in animals, the restored echoes change smoothly. 
Furthermore, the restored echoes satisfy the requirement essential for 
accurate T2

* estimation: they preserve the local mean (mean value in a 
small time neighborhood) of the raw echoes, as required in Section 2.2.2.

The dynamic T2
* time courses in the three sample voxels are 

plotted in green in Figures  5C,F,I. For visual comparison, the 
theoretical response is plotted in blue below them. Similar to the 
restored echoes, the estimated T2

* waveforms are smooth. The echoes, 
the T2

*, and the hemodynamic response waveform had the same 
sampling time, i.e., TR = 1,800 ms.

FIGURE 5

Voxelwise echo restoration and T2
* estimation in fMRI multi-echo series. (A,D,G) resulting T2

* map with a selection of sample voxels. (B,E,H) restored 
echoes (green) are—contrary to unrestored echoes (red)—smooth, as are experimental in vivo BOLD signal measurements. (C,F,I) owing to the smooth 
echoes, the estimated T2

* time courses (red) are also smooth. (A,B,C) the highest T2
* amplitudes were observed in the visual cortex, voxel (29, 7, 25). 

(D,E,F) the T2
* time course is synchronous with the theoretical hemodynamic response (blue) in a voxel from the motor cortex (42,28,39) of the brain. 

(G,H,I) voxel (24,38,24) belongs to the transition between gray and white matter; hence, the particular part of the brain should not be activated by the 
task. This is confirmed by (I), where—unlike in (C,F)—no similarity between the theoretical hemodynamic response and the T2

* time course is 
noticeable.
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We dismissed the highest T2
* contrast that was found in the voxel 

(31,7,24). The peak-to-peak amplitude measured in the MATLAB 
figure was approximately 21 ms, but such a high value suggested that 
it was located in a large blood vessel rather than in the visual cortex.

Synchronicity between the stimulation, the measured BOLD 
signal, and the associated T2

* variations was also detected in motor 
cortex voxels such as (42,28,39) in panels (D,E,F).

Some brain regions are not activated by visual stimulation. For 
example, the voxel (24,38,24) depicted in panels (G,H,I) lies on the 
transition between the gray and white matter and should not 
be affected by the visual task that induced blood oxygenation in the 
visual cortex. This is confirmed both by the time courses of the three 
echoes at that voxel (H) and by the resulting time course of the T2

* 
estimate (I, green) that does not respond to stimulation.

3.2.2 tSNR (temporal signal-to-noise ratio) of 
resting-state BOLD echoes evaluated over nine 
volunteers

To quantify differences between the TV-based denoising and 
known state-of-the-art denoising methods, we  calculated the 
distributions of tSNR values of the unprocessed echo 2 in the resting 
state and several denoised variants of the BOLD signal processed by 
the denoising code made publicly available by its authors. For each of 
the nine resting-state datasets reported in 2.1, we  compared the 
distributions of voxelwise tSNR values of the following eight BOLD 
signal variants (Figure 6):

	A)	 TV-denoised echo 2 using the novel TV-based time series 
denoising algorithm presented in this article (TV-l2).

	B)	 Echo 2 denoised using the NIFTI_NORDIC code by Vizioli 
et  al. (2021) (available at https://github.com/SteenMoeller/
NORDIC_Raw). We  obtained the best results with default 
parameter settings.

	C)	 Echo 2 despiked using the 3dDespike function of the Analysis 
of Functional NeuroImages (AFNI), a software suite for the 
analysis and display of multiple MRI modalities, code available 
at: https://afni.nimh.nih.gov/, with the best parameter settings 
corder = 25, cut = (1.2,1.7).

	D)	 Unprocessed echo 2 of the respective subject’s resting-
state dataset.

	E)	 T2
* mapping from three echoes using the TV-based workflow 

described in this study.
	F)	 tedana-three-echo-denoised BOLD signal (Kundu et al., 2012), 

code available at: https://github.com/ME-ICA/tedana, script 
tedana.py. We  obtained the best results with the static T2

* 
log-linear fit and the PCA method “kundu-stabilize.”

	G)	 “optimal combination” of three echoes as described by Posse 
et al. (1999), code implemented in the signal preprocessing part 
of the tedana package, at: https://github.com/ME-ICA/tedana, 
script t2smap.py.

	H)	 T2
* mapping from three raw echoes without any denoising, also 

computed by tedana, script t2smap.py.

As mentioned in Section 2.1, for each of the nine participants, one 
task and one resting-state run were measured with identical 
acquisition settings. This allowed us, per each resting-state run, to 
calculate and save a 3D array of the voxel-by-voxel standard deviations 

σ  of the BOLD signal residuals after second-order polynomial 
detrending and use it as a noise estimate for the subsequent calculation 
of the temporal CNR in Section 2.5.3.

The resulting tSNR histograms shown in Figure 6 were calculated 
across all brain voxels of all participants. Figure 6 compares the tSNR 
distributions of the raw echo 2 and seven different preprocessing 
methods applied to the resting-state BOLD signal time courses. 
Depending on whether researchers consider single-echo or multi-echo 
fMRI data, the left or the right column of Figure  6 may be  more 
relevant. tSNR medians and their respective confidence intervals are 
included with each plot. The TV-l2 denoising of echo 2 (A) produces 
the highest tSNR of the four single-echo BOLD signal processing 
results, both in the median and in the upper tail of the distribution. The 
single-echo NORDIC-denoised time course features better tSNR 
distribution (B) than the 3D-despiked echo (C). The 3D-despiked echo 
2 using AFNI’s 3dDespike function has, in turn, a somewhat better 
signal-to-noise ratio than the raw echo 2 (D), which is often used for 
fMRI data analysis and can be regarded as a reference BOLD signal.

The right column shows that multi-echo preprocessing of fMRI 
data does not necessarily yield higher tSNR values. The tedana 
package (F) has the highest tSNR of the multi-echo methods, yet it is 
outperformed by the single-echo methods (A) and (B). tSNR of the 
T2

* mapping from TV-denoised three echoes (E) is for resting-state 
data, about on a par with the weighted sum of three echoes, referred 
to as “optimal combination” (G). An important difference, however, is 
that T2

* mapping delivers quantitative output measured in time units 
(seconds), while the output of tedana or optimal combination is in 
arbitrary units. The “optimal combination,” essentially a weighted sum 
of three echoes, acts as a low-pass filter, and its tSNR is better than that 
of the plain unprocessed echo 2 (H). It may still be attractive since it 
is computationally less demanding than T2

* mapping or tedana, but it 
is also less efficient.

It should be pointed out that, contrary to single-echo data that are 
always in arbitrary units, the two multi-echo methods of T2

* mapping, 
either from raw echoes or from TV-denoised echoes, are quantitative 
in nature since they provide results in the physical units of time. For 
some applications, like T2

* weighting of fMRI signals, this is 
a requirement.

We tested the statistical significance of the differences in tSNR 
distributions of preprocessed fMRI signals using the Wilcoxon 
rank sum test. The results are summarized in Section 3.2.7.

3.2.3 Comparison of echoes processed by 
different denoising algorithms at a particular 
voxel

To convey a visual impression of how denoising modifies the echo 
time series, in Figure 7, we plotted the results of different denoising 
approaches at the voxel (32,6,23) of the resting-state run with our 
subject sub-01. Voxel (32,6,23) was selected because it had the highest 
correlation between the task-induced T2

* time series and the 
hemodynamic response function. Three denoised versions of echo 2 
are compared with the measured, unprocessed echo 2.

	A)	 TV-denoised echo 2 using the TV-based time series 
denoising algorithm.

	B)	 Echo 2 denoised using the NIFTI_NORDIC code by Vizioli 
et al. (2021).
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	C)	 Echo 2 despiked using the 3dDespike function of the AFNI 
software suite.

	D)	 Unprocessed echo 2 at (32,6,23) of sub-01.

tSNR values of the echo 2 variants are printed in the lower right 
corner of the plots.

For participant sub-01 at voxel (32,6,23), the TV-denoised resting-
state echo 2 yields the highest tSNR and is—contrary to the other time 

series—smooth. The second-best tSNR was generated by AFNI’s 
3dDespike function. tSNRs of (B), (C), and (D) were not much different.

3.2.4 CNR of four single-echo and four 
multi-echo preprocessing methods of task BOLD 
data

Posse et al. (1999) presented a theory concerning multi-echo 
signal processing strategies aimed at enhancing the BOLD 

FIGURE 6

Comparison of tSNR distributions for eight different signal preprocessing variants of all resting-state BOLD signal time courses over the nine study 
participants. Depending on whether researchers consider single-echo or multi-echo fMRI data, the left or the right column may be more relevant. 
tSNR medians and their respective confidence intervals are included with each plot. Left column: (A) TV-l2 denoising of echo 2 produces the highest 
tSNR of the four single-echo BOLD signal processing methods. (B) The single-echo NORDIC-denoised time course features better tSNR distribution 
than (C) the 3D-despiked echo. The 3D-despiked echo 2, in turn, has a somewhat better signal-to-noise ratio than (D) the raw echo 2, which is often 
used for fMRI data analysis. Right column: multi-echo preprocessing of fMRI data does not necessarily lead to higher tSNR values. The tedana package 
(F) has the highest tSNR of the multi-echo methods, yet it is outperformed by the single-echo methods (A,B). tSNR of the T2

* mapping from total-
variation-denoised three echoes (E), is, for resting-state data, about on a par with the weighted sum of three echoes, referred to as “optimal 
combination,” (G). An important difference, however, is that T2

* mapping delivers quantitative output measured in time units (seconds), while the 
output of tedana or optimal combination is in arbitrary units. The “optimal combination,” essentially a weighted sum of three echoes, acts as a low-
pass filter, and its tSNR is better than that of the plain unprocessed echo 2 (H).
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contrast sensitivity. Posse’s theoretical analysis showed that 
weighted summation of multiple echoes (later referred to as 
“optimal combination”) could provide a 2.35-fold gain in CNR 
compared with the corresponding single-echo measurements. 
Another multi-echo processing approach, the T2

* fitting of the 
multi-echo data, was predicted by Posse et al. (1999) to yield a 
gain in sensitivity, although approximately 10% less than the 
weighted echo combination.

We first calculated CNR distributions for the single-echo fMRI 
task data by applying methods that we previously used for the tSNR 
analysis on resting-state data (Section 3.2.2):

	A)	 TV-denoised echo 2 using the novel TV-based time  
series denoising algorithm presented in this article  
(TV-l2).

	B)	 Echo 2 denoised using the NIFTI_NORDIC code by Vizioli 
et al. (2021).

	C)	 Echo 2 despiked using the 3dDespike function of the 
AFNI software.

	D)	 Unprocessed echo 2 from the resting-state dataset of the 
respective subject.

Then, we compared the CNR achieved by the new TV-denoised 
multi-echo T2

* mapping with that of the two multi-echo BOLD data-
processing methods analyzed by Posse et al. (1999) and the tedana.
py-implemented multi-echo denoising by Kundu et al. (2012):

	E)	 T2
* mapping from three echoes using the TV-based workflow 

described in this study.
	F)	 tedana multi-echo denoising, script tedana.py.
	G)	 Weighted multi-echo summation. To calculate the weighted 

echo summation (Posse et al., 1999) for all voxels, we used the 
script t2smap.py of the freely available software tedana (DuPre 
et al., 2021).

	H)	 T2
* mapping from three raw echoes without any denoising, also 

computed by tedana, script t2smap.py.

CNR was compared for the total of nine participants’ task data on 
subject-specific, FDR-generated ROIs (see Section 2.5.1).

The left column of Figure 8 compares CNR distributions over all 
task runs of nine study participants for four types of single-echo task-
based BOLD signal processing: (A) The TV-l2 denoising of echo 2 
produces the highest CNR of the four single-echo BOLD signal 
processing methods, (B) the CNR distribution achieved by single-
echo NORDIC denoising is higher than that in (C), where the CNR 
histogram for the 3D-despiked echo is shown. The 3D-despiked echo 
2 has a better CNR than the raw echo 2 (D), which is frequently used 
for fMRI data analysis.

The right column of Figure 8 shows that the T2
* estimate from three 

TV-l2 denoised echoes (E) has the highest CNR median of the four 
methods, with many non-zero CNR counts in the upper tail of the 
histogram. The tedana.py denoised BOLD signal from three task echoes 
(F) is the second best in multi-echo methods. In (G), the CNR of the 
“optimal combination” is slightly lower. CNR of the T2

*-raw estimate 
from three raw echoes (H), although computationally more expensive, 
is even lower than that of the optimal combination because—due to lack 
of denoising—it amplifies noise. The low CNR values in Figure 8D could 
also be expected from the low similarity of raw T2

* estimates with the 
theoretical hemodynamic response in Figure 9E.

The results of a statistical test of significance for the CNR medians 
are presented in Section 3.2.7.

3.2.5 Similarity between the theoretical HRF and 
the voxelwise multi-echo-based BOLD signal 
time courses

Figure  9 shows, for each of the four multi-echo-based BOLD 
signal variants, the voxel time course that best matched the shape of 
the NHR. The noise superimposed on the waveforms (C) through (E) 
violates the assumption of smooth blood oxygenation changes. The 
T2

*-TV time course is smooth as required. The smoothness of the T2
*-

TV signal is also reflected in the best values of the NHR-BOLD 
signal correlation.

Figure 9 depicts only the results from the first volunteer. To verify 
that the T2

*-TV method brings about statistically significant 
improvements, we further performed statistical tests on data from all 
study participants. As the distribution of correlation values is 
bounded to [−1,1], it was not possible to check for differences in the 
correlation averages using the t-tests or ANOVAs, because they 
assume the data to be normally distributed. We instead tested the 

FIGURE 7

Participant sub-01, voxel (32,6,23). (A) The total-variation-denoised 
resting-state echo 2 has the highest tSNR and is—contrary to the 
other time series—smooth. (B) Second-best tSNR was generated by 
AFNI’s 3dDespike function. (C) NORDIC-denoised echo 2. (D) tSNR 
of unprocessed echo2. For the participant sub-01, tSNRs of (B,C,D) 
were not much different.
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hypothesis that the best correlation values are samples from 
continuous distributions with equal medians, against the alternative 
that they are not. This was performed using the non-parametric 
Wilcoxon (or ranksum) test. In three pairwise Wilcoxon tests, 
we compared the median of the best correlation values across all study 
participants between the new T2

*-TV method and another well-
established method of multi-echo BOLD signal preprocessing. 
Significance level of the tests was α = 0.05. We  calculated the 
Wilcoxon tests using the MATLAB ranksum function. Table  1 
summarizes the results.

The low p-values indicate that, for the T2
*-TV method, the highest 

median of the best correlation values over all subjects is 
statistically significant.

The results of Table 1 regarding medians and interquartile ranges 
are presented visually in Figure 10.

3.2.6 The effect sizes
To quantify the relationship between the visual stimulation and 

the BOLD signal response at a voxel, we chose the normalized circular 
cross-correlation function defined in Section 2.5.4. It has the 

FIGURE 8

Comparison of CNR distributions over all task runs of nine study participants for four types of single-echo task-based BOLD signal processing and four 
types of multi-echo task-based BOLD signal processing. (A) The TV-l2 denoising of echo 2 produces the highest CNR of the four single-echo BOLD 
signal processing methods. (B) The CNR distribution achieved by single-echo NORDIC denoising is higher than that in (C), where the CNR histogram 
for the 3D-despiked echo is shown. The 3D-despiked echo 2 has a better contrast-to-noise ratio than the raw echo 2 (D), which is frequently used for 
fMRI data analysis. (E) T2

* mapping from three TV-denoised echoes. T2
*-TV achieves the highest CNR values of multi-echo methods. (F) The tedana.py 

implementation of the ME-ICA package by Kundu et al. (2012) yields the second highest CNR in the task-based data comparison. (G) The CNR 
distribution of the “optimal combination” that was computed using the script t2smap.py lies only slightly below that of tedana, script tedana.py. (H) T2

* 
mapping from raw echoes amplifies noise, thus deteriorating the contrast-to-noise ratio.
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advantage that the magnitude of its values lies between [0,1], so there 
is no need for an additional normalization or for a special treatment 
of outliers. Hence, distribution means can be calculated instead of 
medians, which sometimes leads to shorter computation times. For a 
perfect match between the normalized theoretical stimulation and the 
normalized BOLD response, i.e., the maximum effect size, the value 
of normalized cross-correlation is 1. It is also easily computed by 
means of standard numerical program packages without the need to 
delve into more specialized software. We evaluated the correlation 
over all brain voxels identified by subject-specific brain masks.

Illustrations for the same four single-echo and four multi-echo 
preprocessing methods that we applied to the preprocessing of fMRI 

task data are summarized in Figure 11, which displays histograms of 
the mean normalized correlation between the normalized theoretical 
hemodynamic response to stimulation and the normalized outcome 
of four single-echo and four multi-echo fMRI preprocessing methods. 
The NORDIC denoising in panel (A) yields the highest stimulus–
response correlation, with the distribution for TV-based echo 
denoising (B) visually almost indistinguishable. All three single-echo 
denoising methods, including 3dDespike (C), improve correlation 
substantially compared to (D), the unprocessed echo 2.

TV-based T2
* mapping (E) yields the best correlation among the 

multi-echo methods and provides quantitative results, contrary to other 
methods that yield outputs in arbitrary units. tedana (F) follows closely. 
For the “optimal combination” (G), the effect size is surprisingly low—the 
mean value is slightly higher than that of the unprocessed single-echo 
signal (D). T2

* mapping from raw echoes (H) deteriorates the correlation, 
probably due to noise amplification through the log-linear fitting.

Figure 12 offers another insight into the effect sizes. It displays, 
for all four single-echo and all four multi-echo methods, voxels 
whose correlation with the theoretical response to stimulation is 
greater than 0.5, sorted in descending order. The intersection of each 
curve with the horizontal axis shows how many such voxels were 
produced by the respective method. Obviously, single-echo NORDIC 
denoising and the novel TV-based echo denoising described here 
produced the maximum of high-correlation voxels. This coincides 
with the good agreement between the histograms in Figures 11A,B.

3.2.7 Wilcoxon test for comparing the medians of 
the tSNR, CNR, and correlation distributions

tSNR values for preprocessed fMRI resting-state data (Figure 6) 
and CNR and correlation values for preprocessed task data (Figure 8 
and 11, respectively) are always ≥ 0. Thus, their distributions are not 
normal and do not satisfy the assumptions for the t-test. For this 
reason, we  used the Wilcoxon rank sum test implemented in 
MATLAB. The results are summarized in Table 2.

4 Discussion

The multi-echo data acquisition protocol is different from standard 
relaxometric protocols, and multi-echo fMRI data are noisy. If T2

* maps 
are estimated from a low number of echoes, the fitting algorithm may 
even amplify the noise, as can be verified both by a simple analysis 
[Michálek et al., 2019, Equations (12–14)] and empirically. Therefore, 
efficient denoising is vital for low-noise T2

* mapping.
It is known that BOLD signal time courses measured in vivo are 

smooth. Based on this physiological BOLD signal property, 
we  proposed a novel denoising algorithm to render the denoised 
signals smooth while keeping them as close as possible to the raw 
measured signal. These two requirements can be  cast into a 
mathematical problem to be solved:

For each raw measured voxel BOLD time series, calculate a 
reconstructed time series such that the following two requirements are 
kept in balance:

	•	 Minimize the TV of the oscillations in the time series.
	•	 Make the l2 norm of the difference between the measured time 

series and the reconstructed time series as small as possible.

FIGURE 9

Similarity between the shape of the theoretical hemodynamic 
response and the BOLD signal calculated from three echoes at the 
best-matching voxel. (A) Theoretical hemodynamic response. (B) T2

* 
mapping from three TV-denoised echoes. (C) tedana.py-denoised 
BOLD signal; (D) “optimal combination” of three echoes: weighted 
sum of the three echoes contributes to denoising. (E) T2

* estimate 
from three unprocessed echoes: the noise in the measured three 
echoes is amplified by the T2

* mapping, and results in low correlation 
values. The TV-based T2

* signal (B) is smooth, as required by the 
theory of BOLD response to stimulation and confirmed by invasive 
BOLD signal measurements. Smoothness was achieved thanks to the 
denoising properties of the total-variation-based Rudin–Osher–
Fatemi algorithm, which—unlike classical approaches—suppresses 
temporally isolated local disturbances of limited extent rather than 
additive time series (fourier components, principal components, 
independent components, etc.).
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For this particular formulation of the problem of denoising, 
we proposed a novel TV-based TV-l2 minimization algorithm for time 
series denoising. The algorithm removes, from a measured time series, 
disturbances up to a certain duration and magnitude (Chambolle and 
Pock, 2016). Such disturbance removal is not linked to any particular 
frequency band.

We compared our TV-denoised time series with the results of 
denoising obtained by other state-of-the-art fMRI denoising methods 
listed below. We used publicly available code implemented by the 
methods’ authors. Each of the denoising methods solved another 
problem formulation; therefore, the results of denoising were 
also different.

	•	 3dDespike of the AFNI software suite for the analysis of multiple 
MRI modalities1 matches a fixed-order Fourier series to the voxel 
time series and then nonlinearly (using the tanh function) 
suppresses the difference between the curve and the data time 
series (the residuals) to minimize the median absolute 
difference (MAD).

	•	 NORDIC (Vizioli et  al., 2021) removes from the time-signal 
principal components (PCs) that cannot be distinguished from 
zero-mean Gaussian distributed noise.

	•	 tedana.py (Kundu et al., 2012; Kundu et al., 2017) first removes 
some PCA components from the time series and then carries out 
ICA, in which independent components (ICs) are labeled as 
“BOLD” or “non-BOLD” with “non-BOLD” regarded as noise 
and eventually removed from the cleaned signal.

The raw BOLD signal contains many isolated spikes that 
disappear after a few sampling periods. Isolated pulses in the time 
domain contain all frequencies because the Fourier transform of 
a single spike contains all frequencies with the same magnitude. 
Therefore, random signal spikes cannot be  removed using 
frequency filters like Gaussian smoothing, moving average, 
low-pass, band-pass, high-pass, etc., that suppress only a subset 
of frequencies in the frequency domain. An attempt to remove 
isolated peaks present in multi-echo fMRI measurements using, 
e.g., low-pass filters will result only in making the peak wider and 
lower. Similarly, removing whole time series (“component”), as 
done by Fourier, PCA, or ICA denoising methods, generally does 
not remove isolated spikes.

The superior tSNR and CNR values of the TV-based 
denoising demonstrated in Section 3.2 are due to the fact that the 
TV-based minimization algorithm is capable of removing 
disturbances that are isolated in time (Chambolle and Pock, 
2016), whereas denoising approaches based on principal 
component removal (NORDIC or tedana.py) or independent 
component removal (tedana.py) remove whole time series. 

1  https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/

alpha/3dDespike_sphx.html

TABLE 1  Results of the Wilcoxon right-tailed rank sum test with a 5% significance level.

Comparison 
between

Median and interquartile 
range (IQR) of the best 
correlation of T2*-TV 

over nine subjects

Median and interquartile 
range of the best correlation 

of the compared method 
over nine subjects

p-value Is the median of the best 
T2*-TV correlations of 

nine subjects 
significantly higher?

T2*-TV vs. tedana Median = 0.966

IQR = 0.0062

tedana:

median = 0.925

IQR = 0.0357

0.000144 Yes

T2*-TV vs. optimal 

combination

Optimal combination:

median = 0.941

IQR = 0.0275

0.000617 Yes

T2*-TV vs. T2*-raw T2* raw:

median = 0.921

IQR = 0.0364

0.000082 Yes

All p-values are less than 0.05, which allows us to accept the alternative hypothesis that, for the nine test subjects, the median of the best correlation values between the T2*-TV fMRI signal and 
the normalized hemodynamic response is significantly higher than the correlation medians obtained for other multi-echo BOLD signal processing methods.

FIGURE 10

Boxplots of the medians (red lines) and interquartile ranges (box 
heights) for nine subjects of the best correlation values between 
fMRI signals resulting from different types of multi-echo processing 
and the normalized hemodynamic response. As explained in 
Table 1, the median for the T2

*-TV method (red line) is significantly 
higher than correlation medians obtained for the other multi-echo 
BOLD signal processing methods. The narrow IQR of the T2

*-TV 
indicates that the correlation values are less dispersed for the T2

*-
TV method than for other types of multi-echo fMRI signal 
processing.
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PC- and IC-based denoising approaches lack the ability to remove 
isolated time events.

Of the three available denoising code implementations that 
we tested, only 3dDespike possesses the ability to suppress isolated 
signal pulses. Unfortunately, the available code has built-in constraints, 
which we  were not able to override when optimizing the 
algorithm’s parameters.

We also tried to use a 1D wavelet-based denoising code for 
resting-state fMRI time series (Patel et al., 2014) for our block-design 
task data. Unfortunately, it did not work since, in activated voxels, the 
algorithm removed the whole width of stimulation-synchronous 
pulses from the BOLD signal.

One pitfall to be  avoided in T2
* mapping is the fact that 

Gaussian spatial smoothing, a standard step in fMRI signal 
processing, irreversibly destroys the mean values of the echo time 
courses due to blending neighboring voxel values: e.g., echo 1 time 
series can be shifted down while echo 2 and echo 3 stay at their 
means. The shift of any of the echoes irreparably distorts the T2

* 
estimates; hence, T2 * mapping after spatial smoothing is 
unreliable. This was the reason why we created the T2

* maps based 
on data that were only unwarped and realigned before 
TV-based denoising.

T2
* time courses estimated from TV-denoised echoes yielded a 

quantitative BOLD signal (i.e., measurable in time units) that was 

FIGURE 11

Histograms of the mean normalized correlation between the normalized theoretical hemodynamic response to stimulation and the normalized 
outcome of four single-echo and four multi-echo fMRI preprocessing methods. (A). Among single-echo methods, the NORDIC denoising yields the 
highest stimulus–response correlation, with the distribution for TV-based echo denoising (B) visually almost indistinguishable. All three single-echo 
denoising methods, including 3dDespike (C), improve correlation substantially compared to (D), the unprocessed echo 2. Total-variation-based T2

* 
mapping (E) yields the best correlation among the multi-echo methods, with tedana (F) closely following. For the “optimal combination” (G), the effect 
size is surprisingly low—the mean value is barely higher than that of the unprocessed single-echo signal (D). T2

* mapping from raw echoes 
(H) deteriorates the correlation, probably due to noise amplification through the log-linear fitting.
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FIGURE 12

Another view of the effect sizes. The colored lines display, for all eight fMRI preprocessing methods, sorted voxels whose correlation with the 
theoretical response to stimulation is greater than 0.5. The intersection of each curve with the horizontal axis suggests how many such voxels were 
produced by the respective method. Single-echo NORDIC denoising and the novel TV-based echo denoising produced the highest numbers of high-
correlation voxels, as expected from the good agreement between the histograms in Figures 12A,B.

TABLE 2  Results of the Wilcoxon right-tailed rank sum test for comparing the tSNR, CNR, and correlation medians of four single-echo and four multi-
echo fMRI preprocessing methods with a 5% significance level for the hypothesis test that median 1 is significantly higher than median 2.

Method 1 Median 1 Interquartile 
range 1

Method 2 Median 2 Interquartile 
range 2

p-value Significance h: 
median 1 is 
significantly 
higher than 

median 2

tSNR of single-echo methods for resting-state data

TV_Echo2 154.5 119.25 NORDIC_Echo2 95.85 55.408 0 1

3dDespike_

Echo2

58.19 29.918 0 1

Echo2 46.51 23.896 0 1

tSNR of multi-echo methods for resting-state data

tedana 76.23 36.934 T2star-TV 68.37 52.733 0 1

OptCom 69.99 33.686 0 1

T2star-loglin 19.25 10.147 0 1

CNR of single-echo methods for task data

TV_Echo2 1.1463 0.8861 NORDIC_Echo2 1.115 0.72726 0.39251 1

3dDespike_

Echo2

0.839 0.48016 0 1

Echo2 0.679 0.39251 0 1

CNR of multi-echo methods for task data

T2star-TV 0.85982 0.9289 tedana 0.799 0.61959 0 1

OptCom 0.759 0.54445 0 1

T2star-loglin 0.486 0.43889 0 1

Normalized correlation of single-echo methods for task data

NORDIC_Echo2 0.19445 0.15674 TV_Echo2 0.182 0.16837 0 1

3dDespike_

Echo2

0.18582 0.13239 0 1

Echo2 0.12396 0.085902 0 1

Normalized correlation of multi-echo methods for task data

T2star-TV 0.19559 0.17262 tedana 0.17425 0.15328 0 1

OptCom 0.12996 0.095696 0 1

T2star-loglin 0.11921 0.072266 0 1

The method with the highest median was always selected as method 1. All p-values are less than 0.05, which allows us to accept the alternative hypothesis that, over all nine test subjects, the 
median of method 1 is significantly higher than that of method 2.
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smooth, as implied by invasive BOLD signal measurements in 
animals, and matched the theoretical hemodynamic response better 
than other BOLD signal variants commonly used in fMRI analysis 
(echo 2, 3dDespike-d echo 2, optimal combination or T2

* fit from the 
raw echoes, ME-ICA denoised multiple echo signals, or NORDIC-
denoised time courses). In terms of BOLD signal quality metrics, T2

* 
time courses calculated from TV-denoised echoes showed, in the 
median, higher tSNR (except tedana) and higher CNR than the other 
BOLD signal forms.

Another observation we  made was that the detected T2
* 

amplitude (the contrast ∆S ) is diminished through some other 
preprocessing stages, e.g., spatial normalization to the MNI space. 
This is not surprising since spatial normalization (i.e., image 
registration) is necessarily accompanied by voxel interpolation, 
averaging, or deletion. Therefore, we recommend performing T2

* 
mapping immediately after unwarping/realigning the data and 
before normalization to MNI space. However, even then, it may 
be  necessary to use a dedicated registration algorithm that will 
guarantee not to destroy the dynamic T2

* maps through spatial 
normalization to MNI.

5 Conclusion

The aim of this study was to develop a fast and robust algorithm 
for voxelwise time-dependent T2

* mapping based on multi-echo 
(three-echo) fMRI data. The T2

* maps could be  used, e.g., for 
derivation, from the whole time series, of static quantitative parameters 
like mean T2

* or delta T2
* (corresponding to BOLD percentage signal 

change) to enable robust estimation of tissue properties. Such 
characteristics can be  subsequently verified, e.g., on an epileptic 
dataset from the perspective of the possibility to detect epileptic lesions.

We addressed the problem of noise amplification in T2
* estimates 

from noisy echoes by deriving a time series reconstruction algorithm 
based on the revolutionary image-denoising approach by Rudin et al. 
(1992). This enabled us to obtain voxelwise smooth quantitative T2

* 
maps of the whole brain featuring higher BOLD signal quality than 
the “optimal combination” widely used in the fMRI analysis or than 
other advanced BOLD data-processing methods. The minimalistic 
number of a mere three echoes fosters rapid data acquisition and 
extends the range of applications where knowledge of dynamic T2

* 
maps may help research or therapy.
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