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Spiking neural networks (SNNs), which draw from biological neuron models,

have the potential to improve the computational e�ciency of artificial neural

networks (ANNs) due to their event-driven nature and sparse data flow. SNNs rely

on dynamical sparsity, in that neurons are trained to activate sparsely tominimize

data communication. This is critical when accounting for hardware given the

bandwidth limitations between memory and processor. Given that neurons

are sparsely activated, weights are less frequently accessed, and potentially

can be pruned to less performance degradation in a SNN compared to an

equivalent ANN counterpart. Reducing the number of synaptic connections

between neurons also relaxes memory demands for neuromorphic processors.

In this paper, we propose a spatio-temporal pruning algorithm that dynamically

adapts to reduce the temporal redundancy that often exists in SNNs when

processing Dynamic Vision Sensor (DVS) datasets. Spatial pruning is executed

based on both global parameter statistics and inter-layer parameter count and

is shown to reduce model degradation under extreme sparsity. We provide an

ablation study that isolates the various components of spatio-temporal pruning,

and find that our approach achieves excellent performance across all datasets,

with especially high performance on datasets with time-varying features. We

achieved a 0.69% improvement on the DVS128 Gesture dataset, despite the

common expectation that pruning typically degrades performance. Notably, this

enhancement comes with an impressive 98.18% reduction in parameter space

and a 50% reduction in time redundancy.

KEYWORDS

spiking neural networks, spatio-temporal pruning, dynamic vision sensor, sparse

connectivity, adaptive temporal dynamics

1 Introduction

Spiking Neural Networks (SNNs) are considered as the third generation of neural

network models, and many recent studies aim to integrate spike-based processing

from biological neurons with deep learning models with the aim of improving energy

efficiency (Hassibi and Stork, 1992; Bohte et al., 2002; Roy et al., 2019). The human visual

and auditory scenes can transduced into spike signals, a process that SNNs can better

simulate in terms of reception and processing of this information (Eshraghian et al.,

2021; Guo et al., 2023). When processed on neuromorphic hardware, neurons can be

suppressed to prevent adding to data communication and computation demands, and

SNNs are thus considered “event-driven” (Modaresi et al., 2023; Merolla et al., 2014; Davies

et al., 2018). When compared to Artificial Neural Networks (ANNs), SNNs can leverage
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asynchronous, event-driven hardware, and with the right

workloads, can drastically reduce the energy cost while

retaining the ability to learn from temporal features (Xing

et al., 2024). This advantage is currently widely applied in the

research of neuromorphic computing algorithms and event data

processing (Liu et al., 2024; Zhou and Zhang, 2021; Perez-Peña

et al., 2013). However, SNNs most commonly target lightweight,

edge-based applications while the demands of neural networks

far exceed what many neuromorphic accelerators are capable

of processing. For example, Tianjic can process models with

approximately 40,000 neurons and 10 million synapses (Pei et al.,

2019; Deng et al., 2020), whereas a VGG-16 architecture requires 14

million synapses and 280,000 neurons to run the CIFAR-10 dataset.

While there is ongoing research to build scalable, server-based

neuromorphic systems (Gonzalez et al., 2024; Vogginger et al.,

2024; Orchard et al., 2021), developing compression methods is

crucial to reduce the burden of inter-chip data communication:

one of the challenges SNNs are aiming to solve.

Pruning is a fundamental method for model

compression (Janowsky, 1989; Chauvin, 1988). In neuromorphic

computing, pruning is particularly beneficial as it reduces

computational load and memory access, addressing hardware

constraints such as bandwidth and energy efficiency. Previous

pruning practices in ANNs can be categorized based on the

scale of pruning, which includes Filter-level, Group-level, and

Connection-level pruning (Gao et al., 2021). Pruning at the

filter level is structured but tends to have a considerable impact

on model performance. For example, the scaling factors of

Batch Normalization layers have been linked with synaptic

connection strengths, enabling the quantification and subsequent

pruning of filters (Lin et al., 2018; Meng et al., 2023; Li et al., 2024).

Connection-level pruning often results in less accuracy degradation

and high sparsity, however, the sparsity is unstructured. For

instance, pruning connections based on the magnitude of their

L1-norm weights, where connections with magnitudes below a

certain threshold are pruned (Chauvin, 1988), has been effectively

utilized in later works (Gale et al., 2019; Han et al., 2015; Renda

et al., 2020), including implementations in the SNN domain (Kim

et al., 2022; Shi et al., 2019). However, unstructured sparsity makes

it difficult to leverage performance gains on GPUs. Specialized

hardware has been designed specifically to deploy networks that

have undergone unstructured pruning (Han et al., 2015). In

SNNs, because event-driven hardware triggers computations only

when both incoming spikes and weights are non-zero, SNNs can

better leverage the unstructured sparsity brought about by their

event-driven characteristics (Merolla et al., 2014; Chen et al.,

2022). Unstructured pruning for SNNs remains an important

area of research, with many studies conducted in this regard (Kim

et al., 2022; Yin et al., 2023; Chen Y. et al., 2023; Han et al.,

2022).

In the context of network pruning, the Lottery Ticket

Hypothesis (LTH) (Frankle and Carbin, 2018) suggests that within

densely and randomly initialized feed-forward neural networks,

there exist subnetworks that can achieve performance comparable

to the original network within a similar number of iterations

when trained independently. These subnetworks are referred to as

“winning tickets”. In the domain of ANNpruning, a series of related

work has achieved notable results. Supermasks that encode strong

inductive biases are far superior to random masks (Zhou et al.,

2019). The significance of the initial state of winning tickets has

prompted the use of a “rewinding” mechanism to ensure stability

in the training process (Frankle et al., 2019). The discovery that

neural networks transition from learning low-frequency to high-

frequency components during optimization has led to the concept

of “early-bird” lottery tickets in network pruning (Tanaka et al.,

2020). In the SNN domain, the LTH has also been analyzed and

applied (Kim et al., 2022). However, several challenges remain in

the SNN domain, such as how to evaluate network connections

in SNNs to identify optimal winning tickets, how to design

pruning strategies for redundant frequency-encoded components

in temporal datasets, and how to achieve higher sparsity while

minimizing accuracy loss for hardware deployment. Our paper will

propose a pruning algorithm from these perspectives.

In this paper, we propose a spatio-temporal pruning algorithm

tailored for SNNs. Our approach optimizes network efficiency by

accounting for sequential data with temporal features along with

the spatial structure of the network. We address the challenge

of imbalanced pruning across different layers in SNNs which

can introduce bottlenecks at high-traffic layers when processing

data asynchronously. To address these challenges, we propose

the following: (1) Applying the Layer-Adaptive Magnitude-based

Pruning Score (LAMPS) (Lee et al., 2020) technique to SNNs to

adjust the pruning scale across layers. This approach helps reduce

model distortion caused by weight magnitude biases. LAMPS

calculates a layer-specific pruning score based on the connection

density and weight magnitudes, promoting a balanced reduction

in network complexity with minimal performance degradation. (2)

For datasets that include temporal features, we address potential

redundancy across time by adjusting the SNN’s adaptive temporal

dynamics. Our contributions can be summarized as follows:

1 We propose a spatio-temporal pruning algorithm for SNNs,

which dynamically reduces both spatial and temporal

redundancy. The method integrates adaptive temporal

pruning and LAMPS-based layer-wise balanced spatial

pruning to achieve high sparsity with minimal performance

loss.

2 We analyze the relationship between KL-Divergence of

neuron outputs and model parameter changes, demonstrating

the effectiveness of adaptive temporal dynamics in optimizing

pruning decisions.

3 Experimental results show that a 98% reduction in parameter

space across all four datasets. An improvement in accuracy

is obtained on the two DVS datasets with time-varying

features, upon conducting a 50% and 20% reduction in time

redundancy, respectively.

2 Related works

In this section, we present the progress and background

of pruning algorithms in the field of SNNs. We provide a

detailed introduction to the relevant concepts utilized, such as the
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LAMPS and how event-camera datasets are integrated into the

pruning process.

2.1 Spiking neural network pruning

Spiking Neural Networks (SNNs) leverage dynamical sparsity,

while pruning enhances static sparsity, leading to extensive

exploration in combining these complementary features. Methods

derived from Artificial Neural Networks (ANNs) have been

adapted to SNNs, such as the work by Deng et al. (2021),

which employs the Alternating Direction Method of Multipliers

(ADMM) optimization with sparsity regularization to compress

SNNs. Chen et al. (2022) proposed a pruning strategy that

regulates pruning speed by modifying the threshold function of

state transitions, enablingmore effective sparsification. Chowdhury

et al. (2021, 2022) introduced a method for pruning the temporal

dimension of SNNs by analyzing the principal components of the

accumulated membrane potential layer by layer. Recent trends in

the SNN community favor extreme, unstructured sparsity over

structured pruning, as unstructured sparsity is more compatible

with neuromorphic hardware (Meng et al., 2023). Kim et al. (2022)

explored the lottery ticket hypothesis in SNNs and implemented

the Iterative Magnitude Pruning (IMP) method, demonstrating

that high sparsity can be achieved while maintaining accuracy.

Some methods also integrate neuron states to prune both neurons

and synaptic weights (Han et al., 2024; Shi et al., 2024a; Han

et al., 2025). However, despite advancements in combining

dynamical and static sparsity, the full potential of spatio-temporal

pruning remains largely untapped. Our approach is inspired

by biological synaptic pruning, a key mechanism in human

cognitive development, where redundant synapses are selectively

eliminated to enhance brain efficiency (Fleming and McDermott,

2024). This process is crucial for attention (Das et al., 2024),

cognitive control (Millán et al., 2019), and memory optimization

(Faust et al., 2021), all of which align with the objectives of

artificial neural network pruning. Furthermore, spatio-temporal

optimization techniques have been extensively studied in deep

reinforcement learning (DRL) (Rühling Cachay et al., 2023; Cao

et al., 2020) and biological network modeling (Lin et al., 2021;

Delasalles et al., 2019). By incorporating similar principles, our

method seeks to enhance computational efficiency while preserving

task performance.

Conventional ANN pruning techniques, including structured

and unstructured weight pruning, primarily aim to reduce

model size while maintaining accuracy. However, these methods

do not account for the event-driven and temporally dynamic

characteristics of SNNs (Eshraghian et al., 2021). Our approach

extends beyond static weight sparsity by introducing a temporal

pruning component that adaptively removes redundant timesteps

based on KL-divergence, a technique not present in traditional

ANN pruning. Additionally, while ANN pruning typically

applies fixed pruning rates across layers, our method dynamically

adjusts pruning based on inter-layer weight distributions

using LAMPS, ensuring that critical layers retain sufficient

connectivity. By integrating both static and dynamic sparsity

mechanisms, our spatio-temporal pruning algorithm effectively

reduces the parameter space and computational cost of SNNs

without compromising accuracy, thus bridging the gap between

biologically inspired principles and efficient artificial neural

network design.

2.2 Layer-adaptive magnitude-based
pruning score

Following the insights on global and hierarchical pruning scales

for SNNs (Kim et al., 2022), we choose to employ global pruning.

However, our approach differs from direct global pruning, in that

it first evaluates the significance of connections within layers before

introducing inter-layer information.We introduce the LAMPS (Lee

et al., 2020) technique from ANNs into SNNs to score the synaptic

weights. For a feed-forward network with depth d, the synaptic

weights can be denoted as W(1), · · · ,W(i), · · · ,W(d). We unfold

each layer in the d-layer network into a one-dimensional tensor

and sort them in ascending order. For each synaptic weight in these

layers, LAMPS is applied as follows:

score(u(i)) : =
(W(i)[u(i)])2

∑

v(i)≥u(i) (W
(i)[v(i)])

2
(1)

where u(i) and v(i) represent the weights of two connections

after flattening the i-th layer, with v(i) > u(i). W(i)[v(i)]

denotes the v(i)-th weight in the sorted list of W(i). To prune

a global p% of connections, we can obtain the threshold for

each layer and prune the parts where LAMPS score is below

this threshold. Overall, this is still a global pruning strategy, but

its scoring calculation incorporates intra-layer weight magnitude

information. In layers with fewer connections and already strong

representational capability (where a smaller number of connections

leads to a smaller denominator), the LAMPS score will be higher,

preventing further pruning of that layer.

2.3 Event camera-based datasets

The DVS128-Gesture (Li et al., 2017) dataset consists of various

hand gestures in different lighting conditions and subjects captured

using an event camera. The CIFAR10-DVS (Amir et al., 2017)

dataset is created by capturing the CIFAR-10 dataset with an event

camera, through repeated closed-loop smooth (RCLS) motion,

generating rich local intensity changes. A common method for

processing DVS datasets at present is to integrate events over fixed

time intervals, transforming the original event stream into frame-

based data (Fang et al., 2023). Firstly, we denote the Event data

as E(xi, yi, ti, pi) and divide it evenly into T segments. A given

frame in the integrated frame data is denoted as F(j). The value

at the position (p, x, y) is F(j, p, x, y). The frame F(j) is obtained

by integrating the events in the event stream with indices ranging

between jl and jr , where

jl =

⌊

N

T

⌋

· j (2)
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jr =

{

⌊

N
T

⌋

· (j+ 1), if j < T − 1

N, if j = T − 1
(3)

F(j, p, x, y) =

jr−1
∑

i=jl

Ip,x,y(pi, xi, yi) (4)

where ⌊.⌋ is downward rounding. Ip,x,y(pi, xi, yi) is the indicator

function, when (p, x, y) = (pi, xi, yi) takes the value 1.

3 Method

In this section, we demonstrate the specific implementation

process and theoretical basis of the proposed spatio-temporal

pruning scheme for SNNs. Firstly, we introduce the SNNs

and the adopted Leaky Integrate-and-Fire (LIF) neuron model.

Subsequently, we describe the framework of the proposed spatio-

temporal pruning scheme. Following that, we design a unique

pruning method for SNNs, with optimization functions and

constraints specifically designed for it. Lastly, we present an

evaluation design for the pruning algorithm, considering both the

output and the variations in network parameters.

3.1 Spiking neural network

SNNs serve as a simulation network for the spatio-temporal

dynamic behavior of biological neural circuits, distinguishing

themselves from traditional ANNs primarily through neuron

designs inspired by biological mechanisms (Hu et al., 2023) and

their inherent capacity for temporal information representation. In

this study, we focus on the LIF neuron (Hunsberger and Eliasmith,

2015), which is not only the most commonly used model in SNNs

but also represents a compromise between biological complexity

and computational feasibility, making it suitable for large-scale

SNN simulations (Fang et al., 2023). The behavior of the classic LIF

model can be modeled as follows:

τ
du

dt
= −(u− urest)+ R · I(t), u < Vth (5)

where τ and R are the time constant and resistance, I(t) are

the input current from the pre-synaptic membrane potential. Vth

represents the neuron membrane potential firing threshold, and

urest represents the resting potential membrane potential. If the

membrane potential u exceeds Vth, a spike is fired and u is reset

to urest . For numerical simulations of LIF neurons, we need to

consider a discrete version of the parameter dynamics. Assuming

urest is 0 (Fang et al., 2023; Li et al., 2021), the spike firing function

and hard reset can be expressed as:

a(t + 1) = 2(u(t + 1)− Vth),

u(t + 1)← u(t + 1) · (1− a(t + 1))
(6)

where2(·) denotes the Heaviside step function, which emits a spike

when u(t + 1) exceeds the threshold function. The output spike

a(t + 1) acts as a messenger for information propagation between

network layers and affect the subsequent layer.

3.2 Overall architecture

The overall process of the proposed spatiotemporal

pruning framework is illustrated in Figure 1. Given a

sequential dataset such as the DVS dataset, it is initially

integrated into frame-level representations using a standard

event data integration operation. The frame sequence can

be represented as D ∈ R
T×2×W×H , where T denotes the

number of frames. The frame sequence D is then fed into an

SNN for classification, and the output layer of the network

is monitored.

To determine the optimal decision timestep, we analyze the

model’s classification confidence across different time lengths.

Specifically, we extract sequences of various lengths D1∼t and

compute the accumulated spike responses from the output layer. To

quantify the similarity between themodel output and the true labels

over time, we compute the KL-divergence between the predicted

class probabilities and the ground-truth distribution:

KL(p(y1 : t|x1 : t , θ)||p(y
∗)) =

∑

c

p(yc,1 : t|x1 : t , θ) log
p(yc,1 : t|x1 : t , θ)

p(y∗c )

(7)

where p(y1 : t|x1 : t , θ) represents the model’s predicted probability

distribution over classes up to timestep t, and p(y∗) denotes the one-

hot encoded ground-truth label distribution. The KL divergence

measures the discrepancy between these two distributions,

providing an indication of the model’s decision stability

over time.

To facilitate threshold-based pruning, the sequence of

computed KL divergences is subjected to min-max normalization:

NormKLt =
KL(p(y1 : t|x1 : t , θ)||p(y

∗))− KLmin

KLmax − KLmin
(8)

where KLmin and KLmax are the minimum and maximum KL

divergence values observed in the sequence. We then compare

this normalized KL divergence with a predefined threshold λ to

determine the decision timestep t′:

t′ = min{t | NormKLt < λ} (9)

This means that we select the earliest timestep where the

KL divergence stabilizes below the threshold, ensuring that the

model has accumulated sufficient information for a reliable

classification decision. Applying this decision timestep in the

temporal dimension to the sequence data D yields a new sequence

D1∼t′ .

After completing the pruning in the temporal dimension, we

proceed to sparsify the network weights in the spatial dimension.

Since the relative importance of weights varies across layers, we

leverage the LAMPS to compute the weight significance of each

layer in the SNN. The synaptic weights are ranked globally,

and at each pruning iteration, the least important p% of the

weights are pruned while maintaining a balanced pruning ratio

across layers. The iterative pruning process ensures that the

network achieves high sparsity while preserving performance.

The impact of our pruning strategy compared to the IMP
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FIGURE 1

The framework of the spatio-temporal pruning algorithm. By calculating the KL-divergence of T di�erent decision timesteps, the decision timestep is

selected for adaptive temporal dynamics and spatial dimension pruning is performed through I iterations of fine-tuning.

(Kim et al., 2022) method is illustrated in Figure 2. Compared to

IMP, which prunes connections based solely on weight magnitudes

in an iterative manner, our proposed spatio-temporal pruning

algorithm additionally considers inter-layer weight distribution

and temporal redundancy, leading to a more balanced and efficient

pruning strategy.

The full pruning procedure is detailed in Algorithm 1. The

TrainSNN function utilizes the widely adopted Spatio-Temporal

Backpropagation (STBP) algorithm for training, incorporating

the Atan function as a surrogate gradient to handle the

non-differentiability of spikes (Wu et al., 2018). The network

architectures and hyperparameters used follow the configurations

provided in SpikingJelly for each corresponding dataset (Fang et al.,

2023).

3.3 Optimization for sparsity

In general, the pruning methods for SNNs are constrained

by the conditions of actual deployment, aiming to increase

the sparsity of the network while minimizing accuracy

degradation. In this section, we analyze the problem from

two perspectives: the sparsity of weights in the spatial dimension

and the necessity of timesteps in the temporal dimension. The

pruning constraint optimization problem for SNNs is formulated

as follows:

argmin
θ ,t

L(θ , t)

s.t. ℓ0(θ) ≤ ℓ0(θ
+)

t ≤ Tmax

(10)

where L(·) represents the loss function of the model. θ and t

respectively denote the optimization parameters of SNNs and the

timesteps required by the model. ℓ0(θ
+) represents the L0-norm

of the model parameters that meet the deployment constraints,

implying that the actual deployment model parameters θ should be

more sparse than θ+. The constraint ℓ0(θ) ≤ ℓ0(θ
+) ensures that

the number of nonzero parameters remains within the permissible

range for hardware deployment, considering factors such as limited

memory bandwidth, energy efficiency, and real-time inference

constraints. Tmax represents the maximum allowable timesteps,

ensuring that the computation cost remains feasible.

3.4 Adaptive temporal dynamics

In Algorithm 1, selecting the decision timestep (line 8-14)

is a crucial step in temporal pruning. This section elaborates

on how to determine the optimal classification timestep by

leveraging KL-divergence. Considering the output of SNNs in

specific tasks, the optimal classification should occur as early as
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FIGURE 2

The distinction in connection selection by pruning methods. (a) The IMP method selects weights for pruning solely based on magnitude. (b) The

proposed spatio-temporal pruning algorithm considers the size relationship between layers to avoid pruning layers that already have fewer

parameters.

possible while ensuring correctness. The optimization objective

function is formulated as:

argmin
θ ,t

KL
[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

(11)

where θ∗ represents the globally optimized network parameters

that yield the best classification performance. x1 : t represents

the input data from timestep 1 to t, and y1 : t represents the

corresponding model output. It is worth noting that this can be

regarded as two random variables. The probability function p(·)

encodes the model’s confidence in different classes.

To determine the optimal decision timestep, we normalize the

KL-divergence sequence across different timesteps using min-max

normalization:

NormKLt =
KL

[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

− KLmin

KLmax − KLmin
(12)

where KLmax and KLmin denote the maximum and minimum

KL-divergence values observed across all timesteps.

We define a threshold λ for selecting the decision timestep:

t′ = min{t | NormKLt < λ} (13)

This ensures that we select the earliest timestep where the

normalized KL-divergence falls below the threshold, indicating that

the model has accumulated sufficient information for a reliable

classification decision.

Given these constraints, the final optimization problem is

formulated as:

argmin
θ ,t

KL
[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

s.t. ℓ0(θ) ≤ ℓ0(θ
+)

t ≤ Tmax

NormKLt < λ

(14)

3.5 Dynamics from the information
perspective

The Fisher InformationMatrix (FIM) is widely used to quantify

the information content of model parameters. In our case, it

helps assess how much information changes across timesteps.

To approximate the KL-divergence function around the optimal

parameters θ∗, we apply a second-order Taylor expansion:

KL
[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

≈ KL
[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

θ∗=θ

+∇θ∗KL
[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]T
θ∗=θ

(θ∗ − θ)

+
1

2
(θ∗ − θ)T∇2θ∗KL

[

p(y1 : t | x1 : t , θ); p(y1 : t | x1 : t , θ
∗)

]

θ∗=θ
(θ∗ − θ)

=
1

2
(θ∗ − θ)TFt(θ

∗ − θ)

(15)

where the first and second terms vanish, leaving only the Fisher

Information Matrix Ft in the final term. This demonstrates that

the KL-divergence is directly related to the FIM, reinforcing

the intuition that pruning based on KL-divergence preserves

informative parameters.
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Input: Model SNN;Training data D; Original

timestep T; Data labels L; Threshold λ for

normalized KL-divergence; Pruning ratio p%

per round; Number of pruning rounds R;

Number of training epochs E per round;

Rewind epoch Erewind

Output: Pruned SNN model

1 SNN ← TrainSNN(SNN, D, E) // Train for E epochs

2 KLList← [ ]

3 for t← 1 to T do

4 KLList.append(KLDivergence(SNN(D1 :t),L1 :t)) //

Compute the KL-divergence and add it to the

list.
5 end

6 NormKLList← Normalize(KLList)

7 DecisionTimestep← T // Default value in case

threshold λ is not met

8 // Compute the decision timestep (see Equation 9)

9 for t← 1 to T do

10 if NormKLList[t− 1] < λ then

11 DecisionTimestep← t

12 break

13 end

14 end

15 for r← 1 to R do

16 TrainSNN(SNN, D1 :DecisionTimestep, E− Erewind)

17 [P1,P2, · · · ,Plen(SNN)] ← Flattening SNN by layers

18 LAMPS← [ ]

19 // Compute LAMPS for each layer based on

parameter ranking and cumulative sum (see

Equation 1)

20 for j← 1 to len(SNN) do

21 RankedPj ← RankParameters(Pj)

22 CumRankedPj ← CumulativeSum(RankedP2j)

23 LAMPS.append(RankedP2j/CumRankedPj)

24 end

25 SNN ← PruneSNN(SNN, p, LAMPS) // Prune

parameters with lowest p% LAMPS

26 end

27 return SNN

Algorithm 1. Two-stage pruning framework.

The FIM is essential for understanding the sensitivity of

network parameters. However, directly computing the true FIM

is computationally intractable due to its high dimensionality and

dependence on the full dataset. In practice, the empirical FIM is

used to approximate the true FIM (Singh and Alistarh, 2020; Kim

et al., 2023; Kunstner et al., 2019):

F̂t =
1

N

N
∑

n=1

‖∇θ log p(y1 : t|x1 : t , θ)‖
2 (16)

where N is the batch size, and ∇θ represents the gradient

computed during training. Since the optimization process relies

on minimizing the divergence between predicted and true outputs,

the empirical FIM provides a meaningful measure of parameter

importance.

This establishes a direct relationship between KL-divergence-

based Adaptive Temporal Dynamics and changes in model

parameters, allowing for an efficient pruning strategy that

dynamically adapts to both spatial and temporal constraints. This

theoretical foundation justifies the decision timestep selection

process in Algorithm 1 (line 8–14), ensuring that pruning decisions

are made based on a principled optimization framework.

4 Experiments

The proposed method is evaluated on static image classification

benchmarks (CIFAR-10 and CIFAR-100) as well as DVS

data benchmarks (DVS128 Gesture and CIFAR10-DVS). The

implementation of the pruning is based on the open-source SNN

framework SpikingJelly (Fang et al., 2023). Firstly, we explain the

detailed settings and experimental environment. Then, we conduct

ablation experiments on the temporal and spatial modules of

the proposed spatio-temporal pruning algorithm, calculating the

performance of the ablated modules and some evaluation metrics.

Finally, we perform experimental statistics on the neuron firing

rates and the model’s synaptic weight connections before and after

the use of the spatio-temporal pruning algorithm.

4.1 Settings

We use four datasets in our experiments: CIFAR10/100,

DVS128-Gesture, and CIFAR10-DVS. The basic information of

each dataset and the network architectures used are shown in

Table 1. The experiments are conducted on an Ubuntu 20.04 LTS

system with two NVIDIA RTX 4090 GPUs. The specific parameters

and training pipeline settings are as follows:

4.1.1 CIFAR-10/100
For the CIFAR-10 dataset, we use the ResNet19 network.

For the CIFAR-100 dataset, we use both the VGG16 and

ResNet19 networks, following previous work (Kim et al., 2022).

The first convolutional layer converts static images into spike

form. Data augmentation techniques such as RandomCrop,

RandomHorizontalFlip, Cutout, and Normalize are applied (Kim

et al., 2022). We set the batch size to 128 and the timestep to 5. The

models are trained using the SGD optimizer with a learning rate

of 0.3, momentum of 0.9, and weight decay of 0.0005. The cosine

learning rate scheduling strategy is adopted.

4.1.2 DVS128-Gesture
For the DVS128Gesture dataset, we use the official

implementation from SpikingJelly (Fang et al., 2023). The

batch size is set to 8 and the timestep to 20. The Adam optimizer is

used with a learning rate of 0.001. The surrogate gradient function

is the Atan function with a parameter α of 2.0. The hyperparameter

λ is set to 0.01, and the cosine learning rate scheduling strategy

is used.
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TABLE 1 The basic information of the datasets and the corresponding structures.

Dataset Image Training samples Testing samples Category Structure Surrogate function

CIFAR10 32×32×3 50,000 1,000 10 ResNet19 ATan

CIFAR100 32×32×3 50,000 10,000 100 VGG16 & ResNet19 ATan

DVS128-Gesture 128×128×2 1,176 288 11 5Conv, 2FC ATan

CIFAR10-DVS 128×128×2 10,000 1,000 10 4Conv, 2FC & VGGSNN ATan

TABLE 2 Comparison with other algorithms on static datasets.

Dataset Pruning method Structure Base acc(%) Sparsity(%) Param. (M) 1Accuracy(%)

CIFAR10 SCCD-SNN (Meng et al., 2023) ResNet20 92.14 70.00 1.30 −2.78

Deep R (Bellec et al., 2017) ResNet19 93.22 94.25 0.73 −1.31

97.56 0.31 −2.10

Grad R (Chen et al., 2021) 6 Conv, 2 FC 92.84 97.65 0.86 −1.47

99.27 0.26 −3.52

IMP (Kim et al., 2022) ResNet19 93.22 97.54 0.31 −0.04

98.13 0.23 −0.79

Ours ResNet19 92.40 96.75 0.41 0.42

97.54 0.31 0.34

98.13 0.23 −0.18

CIFAR100 Grad R (Chen et al., 2021) ResNet19 71.34 94.92 0.64 −3.87

97.65 0.30 −4.03

IMP (Kim et al., 2022) VGG16 69.19 96.75 0.48 −1.84

97.54 0.36 −2.31

98.13 0.27 −3.34

ResNet19 71.34 95.69 0.55 −0.89

97.54 0.31 −2.29

98.13 0.24 −3.99

Ours VGG16 69.19 96.75 0.48 −1.12

97.54 0.36 −1.65

98.13 0.27 −2.86

ResNet19 71.58 95.69 0.55 −0.68

97.54 0.31 −2.01

98.13 0.24 −2.86

Bold values indicate cases where the parameter count is relatively low or the accuracy degradation is minimal, demonstrating efficient pruning results.

4.1.3 CIFAR10-DVS
We adopt the official implementation from SpikingJelly (Fang

et al., 2023) with a 4Conv, 2FC network. Under this network

architecture, the batch size is set to 16. Additionally, we implement

the VGGSNN network (Shi et al., 2024a), where we follow the same

TET loss (Deng et al., 2022) and data augmentation (Li et al., 2022;

Shi et al., 2024a) strategies as in Shi et al. (2024a), with the batch

size set to 64. In both network architectures, the timestep is set to

10. The model is trained using the Adam optimizer with a learning

rate of 0.001. Similar to the DVS128Gesture dataset, the surrogate

gradient function is Atan with α = 2.0, and the hyperparameter

λ is set to 0.01. The cosine learning rate scheduling strategy

is applied.

4.2 Performance

Table 2 demonstrates the performance variations of our spatial

pruning algorithm on static images at different levels of sparsity. It

is evident that our method can maintain good performance while

achieving higher sparsity. On the CIFAR10 dataset, when sparsity

reaches 98.13%, it can still maintain a high accuracy rate (with a

reduction of about 0.18%). On the larger CIFAR100 dataset, we

compared two network architectures. Our method outperforms the

comparison methods at higher levels of sparsity. On ResNet19,

when the sparsity rate reaches 98.13%, our method exhibits very

little loss in accuracy, which is a significant improvement (greater

than 1%) compared to the comparison algorithm (Kim et al., 2022).

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2025.1545583
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gou et al. 10.3389/fnins.2025.1545583

TABLE 3 Comparison with other algorithms on the DVS datasets.

Dataset Pruning method Structure Base acc
(%)

Sparsity
(%)

Param.
(M)

Accuracy
(%)

1Accuracy
(%)

DVS128-Gesture STDS (Chen et al., 2022) 5Conv, 2FC 95.83 94.50 0.094 94.44 −1.39

96.90 0.053 92.36 −3.47

97.30 0.046 83.68 −12.15

IMP (Kim et al., 2022) 5Conv, 2FC 95.83 96.72 0.056 91.32 −4.51

97.51 0.042 86.11 −9.72

98.11 0.032 78.47 −17.36

SCCD-SNN (Meng et al., 2023) 8Conv, 1FC 94.44 20.00 0.136 94.44 0.00

50.00 0.085 91.67 −2.77

90.00 0.017 75.35 −19.09

Our(+S) 5Conv, 2FC 95.83 96.72 0.056 95.83 0.00

97.51 0.042 96.18 0.35

98.11 0.032 95.13 −0.70

Our(+S+T 10/20) 5Conv, 2FC 95.83 96.72 0.056 95.83 0.00

97.51 0.042 96.18 0.35

98.11 0.032 96.52 0.69

CIFAR10-DVS STDS (Chen et al., 2022) 4Conv, 2FC 71.70 84.12 0.745 71.37 −0.33

95.29 0.221 69.05 −2.65

96.20 0.178 64.92 −6.78

IMP (Kim et al., 2022) 4Conv, 2FC 71.70 96.80 0.150 70.70 −1.00

97.59 0.113 68.00 −3.70

98.18 0.085 63.30 −8.40

SCCD-SNN (Meng et al., 2023) 8Conv, 1FC 72.60 20.00 0.952 73.60 1.00

50.00 0.595 71.04 −1.56

90.00 0.119 66.64 −5.96

TEE-SNN (Shi et al., 2024a) VGGSNN 82.50 93.20 0.658 81.90 -0.5

95.54 0.432 81.00 −1.40

98.73 0.123 79.00 −3.40

Our(+S) 4Conv, 2FC 71.70 96.8 0.150 72.48 0.78

97.59 0.113 72.78 1.08

98.18 0.085 72.28 0.58

Our(+S+T 8/10) 4Conv, 2FC 71.70 96.80 0.150 72.88 1.18

97.59 0.113 72.58 0.88

98.18 0.085 71.98 0.28

Our(+S+T 8/10) VGGSNN 82.50 94.31 0.551 83.7 1.20

95.72 0.414 83.20 0.70

98.61 0.135 81.50 −1.00

Bold values indicate cases where the parameter count is relatively low or the accuracy degradation is minimal, demonstrating efficient pruning results.

The performance of our model under different levels of

sparsity on the DVS dataset and the numerical values of accuracy

degradation are shown in Table 3. The “+S” indicates the results

after applying spatial pruning strategies, and “+T” represents the

outcomes after incorporating the Adaptive Temporal Dynamics

strategy. “*/*” represents the decision timestep and total timestep

of Adaptive Temporal Dynamics. For example, “10/20” indicates

that the model originally needs to calculate 20 timesteps, but the

decision timestep is set to 10. After performing spatial pruning on

the DVS128-Gesture dataset, our model was able to achieve good

performance at higher sparsity levels. The performance started to

decline when the Pruning rate exceeded 98%. Surprisingly, after
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TABLE 4 Ablation experiments on di�erent datasets using temporal and spatial pruning algorithms.

Dataset Spatial Temporal Accuracy (%) Sparsity (%) Decision timestep Param. (M) SOPs (M)

DVS128-Gesture 95.83 0 20 1.70 601.52

X 95.83 98.11 20 0.03 30.62

X 96.18 0 10 1.70 348.82

X X 96.52 98.11 10 0.03 15.41

CIFAR10-DVS 71.70 0 10 4.69 579.08

X 72.28 98.18 10 0.08 62.57

X 71.88 0 8 4.69 479.54

X X 71.98 98.18 8 0.08 53.93

adding Adaptive Temporal Dynamics, by training and inferring in

the temporal dimension with a reduced decision timestep from 20

to 10 (which directly halves the synaptic operations), the model’s

performance improved. On the CIFAR10-DVS dataset, our model

still maintained good performance at high sparsity levels (greater

than 98%) after spatial pruning. With the introduction of Adaptive

Temporal Dynamics, the decision timestep used for training and

inference in the temporal dimension was reduced from 10 to 8, and

the model still achieved excellent performance.

In comparison with other methods, our spatial strategy

exhibited lower performance degradation under high sparsity

conditions in both static datasets, as shown in Table 2. Our

spatiotemporal strategy was successful in the DVS dataset,

achieving outstanding results in the CIFAR10-DVS dataset derived

from static data (Li et al., 2017). In the DVS128-Gesture dataset,

which contains richer temporal information captured by DVS

cameras (Shi et al., 2024b; Anumasa et al., 2024), our strategy

achieved remarkable performance improvements compared to

other methods, as illustrated in Table 3.

4.3 Ablation study

We conduct ablation experiments on spatio-temporal pruning

algorithms on two DVS datasets as shown in Table 4. The

network architectures used were still 5Conv, 2FC and 4Conv,

2FC, respectively. The variables were the presence or absence

of spatial and temporal strategies. We compared the model on

five metrics: number of parameters, sparsity, synaptic operations

(SOPs), accuracy, and decision timestep. SOPs is the number of

spike-based AC operations (Chen G. et al., 2023; Zhou et al., 2023).

SOPs =
∑

i sici denotes the total number of synaptic operations.

For each presynaptic neuron i in an SNN, si denotes the number of

spikes fired by this neuron, and ci denotes the number of synaptic

connections from this presynaptic neuron.

The ablation study in Table 4 revealed that our spatio-temporal

pruning scheme could reduce synaptic operations when using

either the temporal or spatial strategies alone. For the spatial

strategy, higher sparsity levels often directly dictate the change in

the number of parameters, thereby reducing model computations.

For the temporal strategy, the computed decision timestep can

decrease the number of steps required for the model to make

a decision, thus reducing the model’s synaptic operations. The

changes in accuracy indicate that both temporal and spatial

strategies achieved good performance and low synaptic operations

separately. Combining the temporal and spatial strategies often

yields a model with even lower synaptic operations while

maintaining good performance.

4.4 Firing rate and connectivity

In the DVS128 Gesture and CIFAR10-DVS datasets, we analyze

the connectivity and firing rates of different layers under the

spatiotemporal pruning strategy, spatial pruning strategy, and

Vanilla IMP strategy. As shown in Figures 3, 4, our proposed

spatiotemporal pruning method tends to maintain a higher

connectivity rate in shallower layers while reducing the number

of connections in deeper layers. This facilitates feature extraction,

as the connectivity in shallow layers often plays a more decisive

role in network performance, and the feature extraction capability

of shallow layers typically determines that of deeper layers.

Additionally, since fully connected layers account for a significant

proportion of the network parameters, our method tends to apply a

more aggressive pruning strategy to them. Specifically, as shown in

Figure 3, the spatiotemporal pruning strategy applies more targeted

pruning to the FC1 layer, which has a higher proportion of total

connections, while retaining more connections in the Conv1 layer,

which has fewer total connections but plays a more crucial role.

This benefit stems from the pruning strategy’s ability to better

estimate the remaining connection ratio for each layer. As shown

in Figure 4, it can also be observed that fewer connections generally

correspond to a higher neuronal firing rate, compensating for the

representational capacity loss caused by weight pruning.

5 Analysis and discussion

In this section, we analyze the proposed spatio-temporal

pruning algorithm. Firstly, we conduct a parameter analysis on

the hyperparameters proposed by the model. Secondly, we analyze

the experimental results brought about by Adaptive Temporal

Dynamics. Then, we examine the impact of the model’s total

timesteps on the pruning algorithm. Finally, we conduct a statistical

analysis of the magnitude of the model parameters and analyze the

limitations of the algorithm.
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FIGURE 3

Statistics on the connection rate distribution across di�erent layers under the Vanilla IMP strategy, spatial pruning strategy, and spatiotemporal

pruning strategy on di�erent datasets (DVS128 Gesture on the left, CIFAR10-DVS on the right).

FIGURE 4

Statistics on the neuron firing rate distribution across di�erent layers under the Vanilla IMP strategy, spatial pruning strategy, and spatiotemporal

pruning strategy on di�erent datasets (DVS128 Gesture on the left, CIFAR10-DVS on the right).

FIGURE 5

Impact of di�erent λ values on decision timestep and accuracy across datasets.

5.1 Parameter analysis

We conducted an experimental analysis on the hyperparameter

λ used in this paper, as shown in Figure 5. The hyperparameter

λ serves as a threshold for the normalized KL-divergence,

controlling the decision timestep in Adaptive Temporal Dynamics.

A higher λ leads to a shorter inference time, as the decision

timestep is reduced, allowing the model to make earlier

classification decisions. Conversely, a lower λ results in a longer

inference time, as the model waits for more timesteps to
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FIGURE 6

On di�erent datasets (DVS128 Gesture on the left, CIFAR10-DVS on the right), the changes in Norm-KL and empirical FIM with the selection of

di�erent decision timesteps.

TABLE 5 Experimental results on the impact of di�erent timesteps on the pruning algorithm.

TimeStep Temporal Spatial Decision timestep Sparsity(%) Accuracy(%)

10 10 0 94.09

X 8 0 94.44

X X 8 98.11 92.01

15 15 0 95.48

X 9 0 95.83

X X 9 98.11 95.48

20 20 0 95.83

X 10 0 96.18

X X 10 98.11 96.52

25 25 0 95.48

X 10 0 95.83

X X 10 98.11 95.48

accumulate information before making a final decision, which may

improve accuracy.

To explore this trade-off, we evaluated different values of λ on

the DVS128 Gesture and CIFAR10-DVS datasets, analyzing their

impact on both decision timestep and accuracy. As illustrated in

Figure 5, increasing λ generally decreases the decision timestep,

reducing computational cost. However, beyond a certain threshold

(e.g., λ = 0.01), the accuracy gain becomes marginal, indicating

diminishing returns from allowing additional timesteps.

Based on these observations, we select λ = 0.01 as the

default threshold, as it provides a balance between maintaining

high accuracy and reducing inference time. This choice ensures

that the model reaches a stable classification decision while

avoiding unnecessary computations. By tuning λ, different trade-

offs between accuracy and efficiency can be achieved depending on

application requirements.

5.2 Analysis of the results of adaptive
temporal dynamics

From Table 3, it is evident that by applying Adaptive Temporal

Dynamics, the obtained decision timestep on the DVS128 Gesture

and CIFAR10-DVS datasets is 10 and 8, respectively. This

result enables us to achieve decision timesteps that are 50%

and 80% of the original ones, effectively saving about 50%

and 20% of computation on the temporal dimension. After

spatial pruning, the resulting sparse network performance on

both datasets is comparable to that of the unpruned network.

This indicates that our spatiotemporal pruning scheme can

achieve higher sparsity and maintain accuracy while reducing

synaptic operations.

After training the model until convergence without any

pruning, we employed the KL-divergence between the output

layer’s response at different timesteps after feeding in the training

set and the true labels as an intuitive metric. Subsequently, we

computed the normalized KL-divergence for different timesteps

through min-max normalization. To demonstrate the efficacy of

this normalized KL-divergence in representing the information

content across the temporal dimension, we calculated the

information encapsulated by the model at different decision

timesteps, which corresponds to the values of the empirical Fisher

Information Matrix (FIM). We compared the trends of these two

metrics, as shown in Figure 6, and found that their variations are

almost identical. This indicates that the trend of changes in the

model’s outputs aligns with the trend of changes in the model

parameters during the learning process. This further suggests that
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Adaptive Temporal Dynamics is meaningful for the selection of

decision timestep.

5.3 Analysis of the total timestep

We also analyzed the time step used for the employed SNNs,

setting the total timesteps to 10, 15, 20, and 25 respectively

for parameter experiments on the DVS128 Gesture dataset. The

performance of the baseline model, as well as themodels employing

Adaptive Temporal Dynamics and spatiotemporal pruning at

different timesteps, is compared and presented in Table 5. As can

be observed, our pruning method maintains stability under various

time step conditions and often achieves an earlier decision timestep,

thereby saving a relatively larger amount of time when more steps

are used. In terms of temporal consumption, our method directly

saved 20%, 40%, 50%, and 60% of the time when the timesteps were

set to 10, 15, 20, and 25, respectively. This further illustrates that for

the classification of DVS datasets, it is not necessary to complete the

computation of all time dimensions. Correct classification results

can be obtained through a portion of the input, which is also due

to the information partition problem caused by the integration

mechanism of DVS.

5.4 Statistical analysis of model parameter
magnitudes

We further conducted a statistical analysis of the amplitude

of model parameters. This analysis was performed on models

using the DVS128 Gesture and CIFAR10-DVS datasets, focusing

on both the unpruned baseline models and the sparse models after

spatiotemporal pruning. The results, as illustrated in Figures 7, 8,

indicate that our spatiotemporal pruning algorithm tends to

remove weights that have a minimal impact on the output.

Consequently, the overall amplitude of the weights in the sparse

model is relatively larger compared to those in the unpruned

baseline model.

5.5 Discussion of limitations

When developing pruning algorithms for SNNs, it is crucial

to consider strategies that address temporal information more

thoroughly than for ANNs. Our spatio-temporal pruning algorithm

is particularly effective for datasets with rich temporal information,

especially those captured by raw DVS cameras. The temporal

information in SNNs depends on the accumulation of membrane

potential and spike generation, which is less pronounced in static

datasets compared to temporal datasets. Therefore, our strategy

is more suited for temporal data, emphasizing an important

characteristic where SNNs focus more on neuron dynamics

compared to ANNs. Future work can explore hardware-aware

pruning techniques to further minimize overhead. Additionally,

while our method is designed for classification tasks, extending it to

detection or generative tasks is worth exploring. These tasks involve

FIGURE 7

The distribution of model parameter magnitudes without pruning

and after spatiotemporal pruning on DVS128 gesture.

FIGURE 8

The distribution of model parameter magnitudes without pruning

and after spatiotemporal pruning on CIFAR10-DVS.

more complex temporal dependencies, whichmay require adapting

our pruning strategy.

Beyond algorithmic considerations, our pruning approach

could offer potential benefits for neuromorphic processors such

as Speck (Richter et al., 2023) and Loihi (Davies et al., 2018).

The Speck Development Kit, which utilizes an Address Event

Representation protocol, naturally benefits from the unstructured

sparsity generated by ourmethod, reducingmemory access without

requiring additional hardware modifications. Additionally, the

adaptive temporal pruning lowers the number of SOPs, making

it highly efficient for low-power, always-on edge AI applications

(Yao et al., 2024). Similarly, Loihi’s event-driven architecture can
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leverage the reduction in redundant spikes and synaptic activations,

further optimizing computational efficiency.

6 Conclusion

Given the inherent spatio-temporal information processing

capabilities of SNNs and the resource constraints of neuromorphic

hardware, efficient pruning across both the spatial and temporal

dimensions of SNNs is a critical issue. In this paper, we present

a spatio-temporal pruning algorithm framework tailored for the

information dimensions of SNNs. For the spatial dimension, we

perform a global assessment of connections by combining inter-

layer weight information of SNNs, ensuring that pruning of a

particular layer is not excessive. In the temporal dimension, we

choose the decision timestep by comparing the model’s output

with the labels. We propose a pruning scheme for the temporal

dimension of SNNs and link it with the Fisher Information Matrix,

allowing us to evaluate the temporal pruning scheme from both the

perspectives of the network’s output and the network parameters’

information. Our method has achieved commendable performance

on several datasets tested. Especially, we have demonstrated the

potential for compression in the temporal characteristics of SNNs.

However, scalability to more complex datasets and larger SNN

architectures remains an open challenge. A key direction for future

work is to refine the quantification of both weight importance and

timestep significance to ensure balanced sparsity across different

network structures. Additionally, better integration of spatial and

temporal pruning is necessary to prevent undesired trade-offs, such

as excessive weight pruning leading to unstable temporal dynamics.

Moreover, while our approach adopts a frame-based strategy, fully

asynchronous event-triggered processing remains a challenge due

to current hardware constraints and is an important direction for

future research.
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