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Neurobiological intersections of
stress and substance use
disorders

Vitor Augusto Laurino Juliano†, Kairo Alan Albernaz-Mariano†,
Luiza Helena Halas Covre, Paloma Marinho Jucá,
Robbert Mota Pereira, Amadeu Shigeo-de-Almeida,
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Substance use has been intertwined with human history for millennia.
Throughout the ages, people have consumed various substances for medicinal,
spiritual, and recreational reasons, although occasional use di�ers significantly
from substance use disorders (SUDs). Exposure to lifetime stressors constitutes
a significant risk factor for both psychiatric disorders and SUD development
and relapse. Indeed, hypothalamic–pituitary–adrenal (HPA) axis modulation,
alterations in neuroanatomical and neurotransmitter systems, as well as
neuroinflammation are common features of stress-related mood disorders and
SUDs. In this mini-review, we will explore how stress exposure influences
the SUDs’ neurobiological basis on di�erent scales—from large neural
circuitries to specific molecular mechanisms—and discuss novel targets for
potential treatments.
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1 Introduction

SUDs are defined as brain diseases characterized by compulsion for drug seeking and

intake despite severe negative consequences related to the loss of control and emergence of

a negative emotional state (Liu and Li, 2018). According to the 5th Edition of theDiagnostic

and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013),

SUDs can be classified as mild, moderate or severe. The recently published data from The

World Health Organization and the United Nations Office on Drugs and Crime showed

that 64 million people worldwide were suffering from SUDs in 2022, which accounts for

an increase of 3% over 5 years (Drugs and Crime, 2024), while the global prevalence of

mental disorders was 13.0% (Castaldelli-Maia and Bhugra, 2022). Interestingly, the SUD

prevalence among individuals with major depressive disorder was 25% (Hunt et al., 2020)

and 33% among people with bipolar disorder (Hunt et al., 2016). Also, there is strong

evidence of comorbidity of SUD with generalized anxiety disorder (Alegria et al., 2010)

and posttraumatic stress disorder (PTSD; McCauley et al., 2012).

Stress is a natural and adaptive response required to sustain life that can be

interpreted as any stimulus that changes physiological and/or psychological states
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(Schneiderman et al., 2005; Le Moal, 2007). Neurons located in

the dorsomedial parvocellular subdivision of the paraventricular

nucleus of the hypothalamus release corticotropin-releasing factor

(CRF) in the hypophyseal portal system in response to stressors,

which binds to CRH receptor type 1 (CRHR1) in hypophysis and

leads to adrenocorticotropic hormone secretion in the systemic

circulation, culminating in glucocorticoids (GCs) release [cortisol

in humans and corticosterone (CORT) in rodents]. The GC

hormones have genomic (slow) and non-genomic (fast) actions

through the mineralocorticoid (MR) or glucocorticoid (GR)

receptors. The cytosolic GC-MR/GR complex translocates to the

cell nucleus and modulates gene expression by binding to the

DNA’s glucocorticoid-responsive element (GRE) regions (Beato

and Sanchez-Pacheco, 1996) for long-lasting genomic effects. The

CORT acts through classical MR and GR inserted in or attached to

the plasma membrane for rapid non-genomic action, facilitating or

inhibiting ion channels, receptors, and neurotransmitter signaling

(Groeneweg et al., 2011). As a crucial stress mediator, GCs

play an important role in arousal, cognition, mood, immunity,

inflammatory reactions (Oster et al., 2017), and SUD (Mantsch

and Gasser, 2015). According to allostasis, depending on the

stress nature, intensity, and chronicity, the energy demand may be

higher than the organism’s resource (allostatic overload), leading

to maladaptive responses (McEwen and Wingfield, 2003). Indeed,

stress can be a significant risk factor for the development of both

psychiatric disorders and SUDs (McGrath and Briand, 2019).

Some limbic regions, such as the ventral tegmental area

(VTA), nucleus accumbens (NAc), prefrontal cortex (PFC),

amygdala, and bed nucleus of the stria terminalis (BNST), are

crucial for governing stress response and different drug use

stages. For example, the VTA dopaminergic neurons release

dopamine (DA) to other regions responsible for reward processing,

such as the NAc and the PFC (Kielbinski et al., 2019). In

contrast, the VTA inhibitory interneurons mediate reward-

seeking reduction via NAc communication in stressed animals

(Lowes et al., 2021). The amygdala is involved in emotional

processing, highly responsive to stressors, and strongly related

to the withdrawal period, playing a significant role in symptoms

such as anxiety, irritability, and unease symptoms present in

patients experiencing withdrawal (Stamatakis et al., 2014; Gilpin

et al., 2015). More recent data showed that stress disruption of

reward responses depends on the amygdala-NAc pathway (Madur

et al., 2023). Indeed, the SUD implications in reward and stress

(“anti-reward”) systems have long been stated (Volkow et al.,

2016).

Given the association between stress and SUD (Nikbakhtzadeh

et al., 2023), it is fundamental to clarify what is currently

known about the cellular, molecular, and genetic mechanisms

governing the relationship between stress and drug use responses

to identify new therapeutic targets. We will first address the

shared anatomical and neuroendocrine basis of SUD and stress.

Then, despite several research models of stress that differ in

neurobiological and behavioral effects from each other, we will give

a special focus to early life stress (ELS) and cellular stress (i.e.,

oxidative stress and neuroinflammation) on SUD. Finally, we will

explore genetic hallmarks of stress and HPA-axis regulation related

to SUD.

1.1 Anatomical and neuroendocrine
features of stress and SUD

A three-stage model—including binge/intoxication,

withdrawal/negative effects, and preoccupation/anticipation—has

been used to explain the transition from drug use to SUD (Koob

and Volkow, 2010; Figure 1A). The drug-induced activation of the

D1 dopamine receptor in the mesolimbic pathway (from VTA to

NAc) and inhibition of D2 receptors in the striatocortical pathway

(from the cerebral cortex to striatum) are classically associated with

reinforcing, positive drug effects present during binge stage—even

though µ-opioid receptors and endocannabinoid systems are also

involved (Volkow and Morales, 2015). However, sustained drug

intake leads to a dynamic readjustment of physiological parameters,

including long-term brain changes that result in increased SUD

risk and relapse. This process is referred to as the allostatic theory

of addiction (Koob and Le Moal, 1997, 2001), which ultimately

leads to withdrawal/negative effects. Indeed, the increase in reward

threshold due to dopaminergic system downregulation is an

early hallmark of drug-induced neuroadaptations, leading to the

deficit in natural reward experience called anhedonia (Volkow

et al., 2009). In addition to the dopaminergic system, CRF,

dynorphin, and hypocretin are also modulated by chronic drug

intake and related to the withdrawal/negative feelings stage. The

CRF system is responsible for HPA-axis dysregulation followed by

alterations in the extended amygdala, an extra-hypothalamic area

composed of the central amygdala (CeA), BNST, and a transition

zone in the posterior part of the medial NAc (Koob, 2008).

The dynorphin-κ opioid system also modulates the extended

amygdala. At the same time, hypocretin (derived exclusively

from the lateral hypothalamus) interacts with noradrenergic,

cholinergic, serotonergic, histaminergic, and dopaminergic

systems, in addition to its role in HPA axis regulation (Koob,

2008). Regarding the preoccupation/anticipation stage, prefrontal

cortex (PFC) dysfunction has been associated with the loss

of control and compulsive drug-taking characteristic of this

stage because of its role in decision-making and self-regulation

(Figure 1A). Transcranial direct current stimulation (tDCS)

over the dorsolateral prefrontal cortex (DLPFC) reduced craving

immediately after the session and 1 month later in individuals with

methamphetamine-use disorder (Alizadehgoradel et al., 2020).

Moreover, individuals with SUD showed decreased left dorsal

anterior cingulate cortex (dACC) and right middle frontal gyrus

(MFG) activation compared to healthy controls (Le et al., 2021).

Notably, the neuroanatomical and neurotransmitter systems

governing SUD substantially overlap with stress response. In

this regard, ethanol intake was prevented by prior GR (but

not MR) antagonism (Koenig and Olive, 2004). Both stress and

GCs increase DA synthesis (Baik, 2020) and reduce its clearance

(Parnaudeau et al., 2014), which influences the sensitization to

psychomotor stimulants, increases substance-induced conditioned

place preference and self-administration of cocaine, amphetamine,

heroin, and relapse to cocaine seeking (Yap and Miczek,

2008). Given that contextual memory retrieval depends on the

hippocampal GR (Roozendaal et al., 2003), it could be part of the

mechanism governing the intense craving and anxiety reported by

SUD patients in response to stress and drug-cue exposure (Smith
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FIGURE 1

Brain regions and molecular e�ects involved in substance use and addiction. The three main domains of addiction neurocircuitry correspond to
distinct functional areas, including binge/intoxication, associated with reward and incentive salience (activation of D1 dopamine receptor in the
VTA-NAc pathway and D2 receptor inhibition in the striatum-cortex pathway—NMDAR are also involved in D2R response); withdrawal/negative
a�ect, linked to negative emotional states and stress (brain reward systems downregulation and stress circuitry sensitization—dopaminergic, CRF,
opioid, GABA, and dynorphin systems are involved); and preoccupation/anticipation, related to craving, impulsivity, and executive function; decision
making and behavioral control are impaired in consequence of, but not restricted to, mPFC dysfunction (A). Drugs of abuse increase oxidative stress

(Continued)
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FIGURE 1 (Continued)

levels in the brain, initiating a continuous cycle that sustains neuroinflammation. The oxidative stress caused by substance use can compromise
mitochondrial function, resulting in increased generation of free radicals. Increased oxidative stress contributes to the nuclear translocation and
activation of NF-κB in microglial cells and induces the NLRP3 inflammasome activation. In addition, the drug use activates TLR4, which also triggers
the activation of microglial NF-κB. Once in the nucleus, NF-κB promotes the increased expression of NOX and iNOS enzymes and pro-inflammatory
cytokines, such as TNF-α and IL-1β. The increase in oxidative stress, pro-inflammatory cytokines and NLRP3 ultimately intensifies microglial and
astrocytic activation, leading to a cycle of inflammation and oxidative stress in the brain (B).

et al., 2023). Also, stress and stimulants causemaladaptive decision-

making through epigenetic changes in the dorsal striatum (Murphy

and Heller, 2022). Therefore, stress influences many substance use

aspects, from consumption maintenance through neurotransmitter

systems modulation to a contextual association that elicits drug use

resumption (Nazeri et al., 2017; Goldfarb and Sinha, 2018;Mukhara

et al., 2018).

1.2 The early-life stress implications for
SUD

The ELS is among the major risk factors for psychiatric

disorders development—for example, substance use, mood,

anxiety, and posttraumatic stress disorders are clinical outcomes of

severe ELS (Berhe et al., 2022). Neglect, trauma, family dysfunction,

or abuse in general has about 3.6 million annual reports, and

∼702,000 children are confirmed victims of abuse or neglect

(Forster et al., 2018). ELS has been associated with a higher risk

of mood disorders (Forster et al., 2018; Andersen, 2019) and SUD

(Goodwin et al., 2004; Kirsch and Lippard, 2022). Substance abuse

can emerge to alleviate suffering, anxiety, and childhood trauma,

resulting in substance dependence to manage their emotional

experiences, establishing a vicious cycle (Bushnell et al., 2019).

The proper development of the CNS requires essential cellular

processes and must be fine-tuned to ensure its adequate formation

(Andersen, 2003). It is known that substance use alters the structure

and function of serotonergic and dopaminergic neurons during

adolescence, making the developing brain highly susceptible to

the neurotoxic effects of drug exposure (Squeglia et al., 2012;

Pfefferbaum et al., 2018). For example, neural activation and

volume of cortical areas in adolescents predict alcohol consumption

and alcohol-related problems (Norman et al., 2011; Cheetham et al.,

2014). On the other hand, ELS can affect neurons and glial cells

during neurodevelopment (Schafer and Stevens, 2015; Allen and

Lyons, 2018; Johnson and Kaffman, 2018; Li and Barres, 2018),

including structures and components of the reward system (Lukkes

et al., 2009; Hanson et al., 2021; Moustafa et al., 2021). Indeed, there

is an important link between ELS and SUD development through

adolescent substance use (Kirsch and Lippard, 2022). Rodent

models show that different stressors during adolescence or the

corresponding pre-adolescence period increase drug consumption

during adulthood (Kosten et al., 2000, 2004; Baarendse et al.,

2014; Garcia-Pardo et al., 2015). Maternal separation (MS), an ELS

closer to the time of birth, has also been shown to increase self-

administered alcohol drinking and morphine preference during

adulthood (Jaworski et al., 2005; Vazquez et al., 2005; Michaels

and Holtzman, 2008; Gondre-Lewis et al., 2016; Lewis et al., 2016).

Previous studies reported arginine vasopressin gene expression

changes and HPA axis activation after MS (Murgatroyd and

Spengler, 2011; de Almeida Magalhaes et al., 2018). The HPA axis’s

ability to influence substance use seems to be so important that it

has been placed as a potential target to assess the probability of

relapse in cocaine-dependent individuals (Sinha et al., 2006). The

ELS occurring in a range fromweaning to early adulthood can affect

substance use (McCool and Chappell, 2009; Lopez et al., 2011),

suggesting that any period during early life is sensitive to stress

effects with crucial implications for SUD development.

1.3 SUD and stress at cellular level

Stress occurs not only at psychological and physiological

levels but also at a cellular level, e.g., oxidative stress and

neuroinflammation. Recent findings highlight oxidative stress and

inflammation as pivotal factors in drug-induced disruption of brain

homeostasis (Berrios-Carcamo et al., 2020). For example, research

in mice has demonstrated that the administration of indomethacin,

a potent anti-inflammatory agent, reduced methamphetamine-

induced neuroinflammation (Goncalves et al., 2008) and prolonged

use of various addictive substances elevates inflammatory responses

in the periphery and central nervous system (CNS; Cahill and

Taylor, 2017; Leclercq et al., 2017; Hofford et al., 2019; Kohno

et al., 2019). This situation could initiate an inflammatory response

through increased microglial and astrocytic reactivity (Kraft and

Harry, 2011; Clark et al., 2013; Colombo and Farina, 2016).

Moreover, increased microglial and astrocytic reactivity has been

observed in response to amphetamines (Zhang et al., 2015), cocaine

(Periyasamy et al., 2018), ethanol, nicotine (Alfonso-Loeches et al.,

2010; Quintanilla et al., 2018, 2019), opioids (Wang et al., 2012),

and cannabinoids (Cutando et al., 2013; Zamberletti et al., 2015).

These cells can sense cellular environmental alterations and trigger

inflammatory responses through pattern recognition receptors,

including Toll-like receptors (TLRs; Kraft and Harry, 2011; Fischer

and Maier, 2015). Microglia respond to pro-inflammatory signals

by altering their reactivity and gene expression, leading to elevated

production of oxidative enzymes like NADPH oxidase (NOX) and

inducible nitric oxide synthase (iNOS). This response increases the

generation of reactive oxygen species (ROS) and reactive nitrogen

species (RNS; Block et al., 2007). Cocaine and opioids induce

TNF-α, IL-1β, and IL-6 release through microglial and astrocytic

TLR4 activation, and IL-1β, IL-6, IL-18, IL-33, MCP-1, and TNF-

α production via NF-κB and NLRP3 inflammasome pathways

(Hutchinson et al., 2010; Crews et al., 2013; Northcutt et al., 2015;

Pan et al., 2016; Bayazit et al., 2017; Eidson et al., 2017; Berrios-

Carcamo et al., 2020; Figure 1B).

Studies in animal models have shown that chronic alcohol

use increases pro-inflammatory cytokines, inhibits neurogenesis,
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FIGURE 2

The influence of DNA epigenetics on vulnerability to SUD. Individual di�erences (e.g., environment, habits, life history, genetic background), as well as
stress and/or drug exposure may lead to epigenetic alterations in di�erent life stages. The single nucleotide polymorphisms and post-translational
modifications of HPA-axis genes or mediators can sustain maladaptive behavior and substance use disorder.

and induces long-term behavioral changes (Nixon and Crews,

2002; Pascual et al., 2007). Furthermore, excessive DA released

in response to methamphetamine undergoes oxidation, leading to

the formation of toxic quinones. This process triggers oxidative

stress, causes mitochondrial dysfunction, and damages presynaptic

membranes by generating free radicals like superoxide and

hydrogen peroxide (Shah et al., 2012). The cause of oxidative

stress in the brain may be due to excessive production of free

radicals, decreased activity of antioxidant enzymes, or decreased

concentration of reducing factors (Lin and Beal, 2006; Kaminski

et al., 2024), where ROS and RNS, for example, exert toxic effects

on the CNS cellular components, resulting in neuronal death (Berg

et al., 2004). Several studies showed that SUDs and oxidative stress

are linked since the presence of one correlates with the other’s

development (Cunha-Oliveira et al., 2010; Zahmatkesh et al.,

2017; Kaminski et al., 2024). Cannabis smoke exposure increases

oxidative stress, like tobacco’s effect (Aguiar et al., 2019), leading to

increased ceruloplasmin and lipid hydroperoxides and decreased

free thiol (Bayazit et al., 2020). Indeed, tetrahydrocannabinol

(THC), a psychoactive substance found in cannabis, increases

lipoperoxidation and reduces superoxide dismutase (SOD) enzyme

activity in brain tissue (Kopjar et al., 2019). Exposure to

amphetamines damages the mitochondrial membrane and oxidates

lipids and proteins through increased ROS production (Brown and

Yamamoto, 2003; Fitzmaurice et al., 2006; Perfeito et al., 2013;

Basmadjian et al., 2021). Cocaine depletes reduced glutathione

(GSH) in the heart and liver (Graziani et al., 2016), decreases

catalase activity in the striatum and mPFC (Macedo et al.,

2005), and glutathione peroxidase and GSH reduction in HPC

(Mahoney, 2019). Finally, studies indicate that heroin increases

ROS production and oxidative damage to proteins and lipids in

the brain and liver (Graziani et al., 2016), decreases SOD, CAT,

and GPx activity, and GSH/glutathione disulfide ratio reduction

(Cemek et al., 2011; Zahmatkesh et al., 2017; Salarian et al., 2018;

Tomek et al., 2019).

1.4 Genetic hallmarks of SUD

Some fundamental questions, such as “Why are some

individuals more vulnerable to SUDs than others?” and “Does
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stress influence individual vulnerability?” remain unanswered. A

possible mechanism for individual vulnerability to stress-induced

substance use is through epigenetic modulation (Figure 2).

There is substantial evidence for ELS-induced epigenetic changes

influencing substance use in adulthood (Provencal and Binder,

2015). Also, ELS seems to induce dense DNA methylation of the

GR gene (NR3C1), which correlates with major depressive disorder

(Holmes et al., 2019). Interestingly, substance use also induces

epigenetic changes, such as post-translational modifications,

acetylation, methylation, phosphorylation, ubiquitination,

SUMOylation, crotonylation, citrullination, and ADP-ribosylation,

as well as methylation of the DNA itself (Nestler, 2014; Walker and

Nestler, 2018). Several miRNAs are regulated after drug exposure

(Doura and Unterwald, 2016), with the expression of some in

striatum neurons altering drug-related behaviors (Hollander et al.,

2010; Chandrasekar and Dreyer, 2011; Quinn et al., 2015).

Additionally, it is well known that minor genetic variations

between the population correlate with variations in disorder

development risk. Single nucleotide polymorphisms (SNPs) in

genes associated with the HPA axis can modify the risk for

drug abuse and abstinence symptoms. For example, the NR3C2

gene located in the 4q31.1v chromosome encodes the MR. The

rs1040288 SNP results in a displacement of G to C nucleotide in

an intronic region of the gene and has been identified as a risk

factor for cocaine and heroin abuse in a non-population-specific

manner (Levran et al., 2014). Regarding ELS, there is an association

between childhood physical neglect and the SNP rs5522-Val allele

modulating crack/cocaine abuse (Rovaris et al., 2015). The rs5522

SNP consists of an A/G transition in an exonic region of the gene,

which results in a substitution of isoleucine to a valine.

On the other hand, GR is encoded by the NR3C1 gene located

at the 5q31-32 chromosome. Atypical GR sensitivity underpins

the pathophysiology of drug abuse, continuation, and relapse. The

rs41423247 SNP consists of a displacement of G to C nucleotide

in an intronic region of the gene. This SNP homozygous mutation

has been associated with depression (Peng et al., 2018). Its minor

allele C is a risk factor for higher depressive symptoms during

early abstinence from crack/cocaine abuse, while the CC genotype

appears to correlate with late abstinence (Rovaris et al., 2016). The

rs41423247 minor allele C and rs10052957 minor allele G (an SNP

that results in displacement of A to G) have been associated with an

increased risk for cocaine abuse and a higher burden of depression

when combined in a haplotype (Schote et al., 2019).

2 Discussion and conclusions

This mini-review explores how substance use alters brain

circuits involved in reward processing and stress response (the

“anti-reward” system), linking these changes to the three-stage

model of SUD and their anatomical and endocrine features. It

integrates cellular stress, which is closely tied to SUD. Depending

on its nature, intensity, and duration, stress impacts HPA axis

modulation, brain plasticity, and cellular processes (Albernaz-

Mariano et al., 2025). Thus, ELS was highlighted due to its

strong translational body of evidence and association with

blunted stress responses and increased SUD risk (initiation,

maintenance, relapse), mediated by ELS-induced reward and stress

pathways changes. Finally, individual vulnerability to SUD was

examined through (epi)genetics, emphasizing how drug use and

life experiences can alter gene expression and increase SUD risk in

susceptible individuals.

In conclusion, substance use can disrupt major brain circuits

and neuroendocrine systems, resulting in altered behavioral

responses to reward and stress. Furthermore, exposure to stress,

particularly early-life stress (ELS), may increase susceptibility to

substance use disorder (SUD) during adolescence and adulthood.

Cellular stress induced by either stress or SUD plays a significant

role in this process, offering potential therapeutic targets.

Additionally, genetic factors may provide a means to identify at-

risk individuals, enabling early intervention and prevention of

SUD development.
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