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Gamma transcranial alternating current stimulation (gamma-tACS) represents a 
novel neuromodulation technique with promising therapeutic applications across 
neurodegenerative diseases. This mini-review consolidates recent preclinical and 
clinical findings, examining the mechanisms by which gamma-tACS influences 
neural oscillations, enhances synaptic plasticity, and modulates neuroimmune 
responses. Preclinical studies have demonstrated the capacity of gamma-tACS to 
synchronize neuronal firing, support long-term neuroplasticity, and reduce markers 
of neuroinflammation, suggesting its potential to counteract neurodegenerative 
processes. Early clinical studies indicate that gamma-tACS may improve cognitive 
functions and network connectivity, underscoring its ability to restore disrupted 
oscillatory patterns central to cognitive performance. Given the intricate and 
multifactorial nature of gamma oscillations, the development of tailored, optimized 
tACS protocols informed by extensive animal research is crucial. Overall, gamma-
tACS presents a promising avenue for advancing treatments that support cognitive 
resilience in a range of neurodegenerative conditions.
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Introduction

Transcranial electrical stimulation (tES) is a non-invasive technique that modulates brain 
activity by applying low-intensity electrical currents to the scalp through strategically placed 
electrodes, positioned according to the specific brain area targeted in each application. 
Low-intensity stimulation, typically ranging from 1 to 2 mA, is chosen for its safety and 
effectiveness in modulating cortical excitability without discomfort or adverse effects, while 
staying below the threshold for direct neuronal firing. These currents can alter cortical 
excitability with both immediate and lasting effects (Nitsche and Paulus, 2000; Woods et al., 
2016). The primary forms of tES are transcranial direct current stimulation (tDCS), 
transcranial alternating current stimulation (tACS), and transcranial random noise stimulation 
(tRNS). tACS uses oscillating currents to synchronize neuronal activity at specific frequencies, 
aligning with brain rhythms associated with cognitive and behavioral functions (Herrmann 
et al., 2013). This frequency-specific entrainment allows tACS to target conditions such as 
schizophrenia, epilepsy, and Alzheimer’s disease (AD) by modulating neural connectivity 
(Antal and Paulus, 2013; Kasten et  al., 2016). Gamma oscillations span a wide range of 
frequencies (30–80 Hz), with evidence showing that slow-gamma (usually slower than 40 Hz) 
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are primarily involved in memory consolidation and synaptic 
plasticity, and fast-gamma (usually faster than 40 Hz) more closely 
associated with attentional processes and perceptual binding, 
facilitating communication across brain networks (Buzsáki and Wang, 
2012; Fries, 2015; Murty et al., 2020). Gamma-band activity has been 
linked to key cognitive domains, including working memory (Tallon-
Baudry et al., 1999), sensory processing (Gray and Singer, 1989), and 
motor control (Cheyne and Ferrari, 2013). These oscillations are 
fundamental to cognitive flexibility and neural computation, as they 
facilitate long-range communication between distant cortical and 
subcortical structures (Roux and Uhlhaas, 2014). Dysregulation of 
gamma rhythms is associated with cognitive deficits in 
neurodegenerative diseases like AD, where reduced gamma power 
and coherence are linked to pathological markers, including amyloid-
beta (Aβ) and tau aggregation (Stam, 2010; Uhlhaas and Singer, 2010). 
In Parkinson’s disease (PD), while beta-band abnormalities have been 
more extensively studied, gamma-band activity has also been 
implicated in motor functions, with studies hypothesizing that 
reduced gamma oscillations may correlate with bradykinesia and 
motor rigidity (Muthuraman et al., 2021), and suggesting that they 
could contribute to movement initiation and execution (Lofredi et al., 
2018). Given this background, gamma-tACS has shown promise in 
enhancing neural synchrony, synaptic plasticity, and microglial 
responses, with animal studies demonstrating neuroprotective effects 
and reduced Aβ accumulation (Martorell et al., 2019; Adaikkan and 
Tsai, 2020). Clinical trials further report improvements in cognitive 
functions, evidenced by increased hippocampal perfusion and 
memory gains in AD patients (Sprugnoli et al., 2021; Dhaynaut et al., 
2022). These findings underscore the therapeutic potential of gamma-
tACS for addressing oscillatory dysfunctions in neurodegenerative 
and psychiatric disorders (Herrmann et al., 2016; Polanía et al., 2018). 
This mini-review synthesizes preclinical and clinical evidence on the 
therapeutic potential of gamma-tACS for neurodegenerative diseases, 
focusing on AD and PD. Key gaps in understanding gamma-tACS 
mechanisms are highlighted, together with insights from animal 
studies informing clinical applications and providing a framework to 
advance gamma-tACS research to enhance cognitive outcomes.

Physiological mechanisms of 
gamma-tACS

The therapeutic effects of tACS rely on its capacity to synchronize 
neural activity and modulate network dynamics. Understanding its 
impact on neuronal entrainment, neuroplasticity, and glial interactions 
is crucial for exploring its clinical potential in neurodegenerative 
diseases. The following sections will examine these mechanisms, 
detailing how tACS influences neural oscillations, specific neuronal 
and glial responses, and promotes lasting neuroplasticity.

Mechanistic insights into neuronal 
entrainment by tACS

Neuronal entrainment, or synchronized neuronal firing, is a 
primary effect of tACS, which uses sub-threshold electric fields to 
modulate membrane potentials and timing of neuronal firing without 
directly inducing action potentials (Herrmann et  al., 2013, 2016; 

Romei et al., 2016; Vosskuhl et al., 2016). Preclinical studies in animal 
models demonstrate that oscillatory cycles of depolarization and 
hyperpolarization during tACS phase-lock neuronal firing to the 
stimulation, with the strongest effect occurring when the tACS 
frequency matches the natural frequency of the circuit, a resonance 
phenomenon that enhances entrainment (Figure 1A) (Chan et al., 
1988; Deans et  al., 2007; Radman et  al., 2007; Fröhlich and 
McCormick, 2010; Ozen et al., 2010; Reato et al., 2010; Herrmann 
et al., 2013, 2016; Krause et al., 2019, 2022; Zhao et al., 2024). This 
modulation affects firing patterns and network organization, 
potentially supporting long-term effects on circuits (Radman et al., 
2007, 2009; Reato et al., 2010; Helfrich et al., 2014), enabling tACS to 
restore regular oscillatory patterns in dysfunctional networks (Antal 
and Paulus, 2013; Herrmann et  al., 2016; Zhao et  al., 2024). 
Computational models have further explored these mechanisms, 
showing how tACS effects depend on intensity and network resonance 
properties (Zhao et al., 2024). Frequency and intensity parameters are 
crucial for effective tACS entrainment. Frequencies close to intrinsic 
oscillations of neural groups produce robust entrainment, a principle 
often modeled by “Arnold tongues” (Arnol, 1963), where increased 
intensity widens the range of entrainable frequencies (Figure  1A) 
(Helfrich et al., 2014; Herrmann et al., 2016; Krause et al., 2022; Zhao 
et  al., 2024). Lower intensities align with neurons at matched 
frequencies, enhancing synchrony in narrow subsets (Schmidt et al., 
2014; Krause et al., 2019), while higher intensities expand the affected 
range, enabling “reentrainment” of neurons that otherwise do not 
match the tACS frequency (Schmidt et al., 2014; Vöröslakos et al., 
2018; Asan et  al., 2020), though stability may decrease at high 
intensities, potentially disrupting coherence (Moliadze et al., 2012; 
Schmidt et al., 2014). Balancing frequency and intensity parameters 
could optimize tACS synchronization effects while preserving 
network stability.

tACS and neuroplasticity

A key factor in applying tACS clinically is determining if its effects 
outlast stimulation, enabling lasting network changes and synaptic 
plasticity. While immediate phase-locking effects are known, studies 
suggest tACS may induce enduring synaptic strength changes through 
spike-timing-dependent plasticity (STDP), which modulates 
connectivity via timing of pre- and post-synaptic spikes, resulting in 
long-term potentiation (LTP) or depression (LTD) (Zaehle et al., 2010; 
Vossen et  al., 2015; Wischnewski et  al., 2019; Vogeti et  al., 2022; 
Nissim et al., 2023).

Different tACS frequencies have been linked to distinct plasticity-
related effects. For instance, Zaehle et al. (2010) found that alpha-tACS 
increased alpha power, a result they attributed to phase-locking of 
neural activity, which could potentially involve mechanisms such as 
spike-timing-dependent plasticity (STDP). This interpretation is 
supported by subsequent studies suggesting that tACS effects on 
neural oscillations and plasticity may rely on STDP-related processes, 
as suggested by Vossen et al. (2015) through computational modeling, 
and by Wischnewski et al. (2019), who showed that NMDA receptor 
antagonists can block tACS-induced plasticity. While STDP may play 
a role, the precise contributions of this mechanism remain under 
investigation (Herrmann et  al., 2016). Beta-tACS may enhance 
neuroplasticity by upregulating brain-derived neurotrophic factor 
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(BDNF), which supports synaptic stability and potentiation, relevant 
for memory (Lu and Figurov, 1997; Kojima and Mizui, 2017; 
Wischnewski et al., 2019; Riddle et al., 2020). BDNF exerts its effects 

primarily through activation of the tropomyosin receptor kinase B 
(TrkB), which triggers intracellular signaling cascades that enhance 
synaptic plasticity and long-term potentiation (LTP) (Lu et al., 2014). 

FIGURE 1

Mechanisms of tACS-induced neural modulation. (A) Neuronal entrainment: a sine wave representing tACS is shown alongside neuronal firing 
patterns. Neurons can synchronize their action potentials to the tACS signal (entrainment, upper panel) or remain unsynchronized (lower panel). 
The relationship between tACS intensity and frequency is depicted, with a triangular region indicating the frequencies and intensities that 
promote neuronal entrainment (an Arnold tongue). Warmer colors within the triangle represent stronger entrainment. Superimposed sine waves 
of tACS at three different frequencies illustrate how neuronal firing synchronizes only within the entrainment region (red triangle). (B) Plasticity 
mechanisms: tACS influences synaptic plasticity through spike-timing-dependent plasticity (STDP) and increased BDNF release from microglia, 
leading to long-term potentiation (LTP). Enhanced synaptic strength is represented by greater neurotransmitter release and increased receptor 
density at the postsynaptic membrane. (C) Microglial modulation: tACS promotes a transition from pro-inflammatory, amoeboid microglia to an 
anti-inflammatory, ramified state, highlighting its potential effects on neuroinflammation. Together, these mechanisms illustrate how tACS drives 
neural synchronization, enhances plasticity, and modulates glial activity to support therapeutic outcomes. (Some images were created and 
obtained from BioRender website: https://www.biorender.com/).

https://doi.org/10.3389/fnins.2025.1549230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.biorender.com/


Sánchez-Garrido Campos et al. 10.3389/fnins.2025.1549230

Frontiers in Neuroscience 04 frontiersin.org

Given the role of TrkB in mediating activity-dependent synaptic 
strengthening, its involvement may be a crucial component of the 
plasticity effects observed with tACS, though further research is 
needed to establish this link. Gamma-tACS has been increasingly 
associated with excitatory plasticity, particularly LTP-like mechanisms. 
Guerra et al. (2018) demonstrated in humans that combining gamma-
tACS with intermittent TMS-induced theta burst stimulation (iTBS) 
enhanced and prolonged LTP-like plasticity effects in the motor 
cortex, suggesting that gamma oscillations facilitate synaptic 
potentiation. Complementarily, Guerra et  al. (2019) showed that 
gamma-tACS can reverse LTD-like plasticity in the primary motor 
cortex, indicating that gamma oscillations may play a broader 
regulatory role in synaptic plasticity by counteracting synaptic 
depression. These findings suggest that gamma-tACS may bias 
plasticity towards LTP by both enhancing potentiation and mitigating 
LTD, though the precise conditions under which these effects emerge 
require further study. Gamma-tACS has also been linked to 
neurotransmitter modulation, particularly dopamine and glutamate, 
which are essential for synaptic efficacy in memory-related networks 
(Wischnewski et al., 2019; Jeong et al., 2021). In AD models, gamma-
tACS improved neuronal synchrony and reduced amyloid burden, 
possibly by upregulating these neurotransmitters in key memory 
circuits (Jeong et al., 2021). Despite these promising findings, the 
long-term effects of gamma-tACS remain variable. In healthy subjects, 
Kasten et al. (2016) found that alpha-tACS produced stronger network 
synchrony aftereffects, while gamma-tACS showed more variability, 
indicating that higher frequencies may yield less consistent plasticity 
(Wischnewski and Schutter, 2017). This aligns with the larger spatial 
coherence of alpha rhythms compared to gamma, which are more 
localized and dependent on specific stimuli, making alpha rhythms 
better suited to the low spatial resolution of tACS (Pascual-Marqui et 
al., 1995; Buffalo et  al., 2010; Jia et  al., 2011). This variability 
underscores the fact that while tACS can facilitate neuroplasticity, the 
outcomes are influenced by a range of frequencies and individual 
differences, highlighting the need for further research to establish 
optimal parameters. This variability is evident not only in gamma 
frequency stimulation (Tseng et al., 2016; Wessel et al., 2023) but also 
across other frequencies (Tseng et al., 2018), affecting both healthy 
subjects and patient populations (Wang et al., 2024). In summary, 
tACS influences neuroplasticity through STDP, BDNF modulation, 
and neurotransmitter release (Figure 1B). While immediate synchrony 
effects are well-documented, sustained plasticity depends on 
frequency, intensity, and individual neurophysiological factors, 
making parameter optimization essential for therapeutic use.

tACS entrainment across neuronal 
subtypes: morphology and network 
dynamics

Following the exploration of how tACS entrains neural networks, 
it is important to consider how neuronal subtypes may respond 
differently to tACS. Initial theories suggested that tACS may selectively 
target specific neurons based on their morphology. Pyramidal cells, 
with elongated morphology and alignment within cortical layers, were 
thought to be more susceptible to tACS-induced electric fields, while 
interneurons, with their compact morphology, were believed to be less 
affected (Radman et al., 2009; Ruffini et al., 2013, 2014; Aberra et al., 

2018; Galan-Gadea et al., 2023; Mercadal et al., 2023). However, recent 
findings challenge this morphology-based assumption. While 
morphology is likely to play a role at the single cell level, studies indicate 
that neuronal response to tACS is shaped primarily by network 
dynamics. In animal models, ‘network dynamics’ often refers to local 
microcircuits, where interneurons and pyramidal cells interact via 
inhibitory and excitatory connections at a mesoscale level (Huang et al., 
2021; Krause et al., 2022). Additionally, computational models have 
been used to explore how network interactions shape neuronal 
responses to tACS, providing insights into the mechanisms underlying 
oscillatory entrainment (Clusella et al., 2023). Network interactions may 
amplify tACS effects on interneurons, which can subsequently influence 
pyramidal cells. In contrast, human studies generally assess network 
effects in terms of large-scale functional connectivity, measured through 
electroencephalography (EEG), magnetoencephalography (MEG), or 
functional magnetic resonance imaging (fMRI), reflecting oscillatory 
coupling across distant brain regions (Zhao et al., 2024). This network-
centered perspective suggests that functional roles within the network, 
rather than individual cellular morphology alone, are critical in 
determining tACS effects. This shift toward a network-centric view 
emphasizes that understanding tACS-induced modulation requires 
bridging findings from local circuit interactions in animal models to 
large-scale connectivity patterns in humans, highlighting the complexity 
of tACS-induced modulation within neural circuits.

Gamma tACS and glial activity

Recent research highlights the unique, frequency-specific effects of 
gamma-tACS on neuronal and glial activity, showing promise for 
modulating neuroinflammatory processes. Studies indicate that 
gamma-tACS can reduce pathological markers in neurodegenerative 
diseases by influencing glial responses. Dhaynaut et al. (2022) observed 
reduced tau accumulation and lower microglial activation in AD 
patients receiving gamma-tACS, suggesting anti-inflammatory benefits. 
Similarly, Wu et al. (2022) reported that prolonged gamma tACS in 
animal models decreased Aβ levels in the hippocampus, associated with 
shifts in microglial morphology toward a less reactive state (Figure 1C), 
increased gamma oscillatory power, and spatial memory improvements. 
However, while reductions in Aβ and tau have been reported following 
gamma-tACS (Wu et al., 2022; Dhaynaut et al., 2022), these effects do 
not necessarily equate to decreased neuroinflammation. Rather, the 
relationship between pathology clearance and neuroinflammation is 
complex, as microglial activation states can be both a consequence and 
a modulator of disease pathology (Lull and Block, 2010; Hansen et al., 
2018). These findings position gamma-tACS as a promising approach 
for neuroinflammation, through an impact on neuronal and glial 
pathways. Exploring these complementary effects may enhance 
gamma-tACS’s therapeutic efficacy.

Therapeutic potential of tACS in 
neurodegenerative diseases: evidence 
from animal models to clinical 
applications

Research on neuroplasticity demonstrates tACS’s ability to induce 
lasting changes in synaptic strength and network connectivity (Zaehle 
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et  al., 2010; Kasten et  al., 2016; Wischnewski and Schutter, 2017; 
Guerra et  al., 2019; Wischnewski et  al., 2019; Riddle et  al., 2020; 
Giustiniani et al., 2021; Jeong et al., 2021). Studies in animal models 
and clinical populations show that specific frequencies can modulate 
neuropathology in neurodegenerative diseases like AD and PD (see 
Table 1). Animal models provide controlled settings to examine the 
impact of tACS on neuroinflammatory and neuroplastic processes, 
offering insights into how targeted frequencies influence disease 
markers. Clinical studies build on these findings, demonstrating 
frequency-specific therapeutic effects that address motor and cognitive 
symptoms. These studies form a translational framework for using 
frequency-specific tACS to target neuropathological mechanisms 
behind motor and cognitive impairments in neurodegenerative diseases.

Animal models of AD and preclinical 
insights

Animal models are essential in AD research for replicating key 
pathological features, like amyloidosis, tauopathy, neuroinflammation, 
and synaptic loss, though they do not fully capture the complexity of 
human AD due to lifespan and physiological differences (Palop et al., 
2007; Jucker, 2010; Drummond and Wisniewski, 2017; Esquerda-
Canals et al., 2017). These models, however, remain crucial for testing 
experimental interventions like gamma-tACS across various 
pathological aspects before clinical use. APP and APP/PS1 mice are 
commonly used amyloidosis models due to their rapid Aβ plaque 
accumulation, though they lack significant neurodegeneration and tau 
pathology (Radde et al., 2006; Serneels et al., 2020). Similarly, 5XFAD 
model, which exhibits rapid amyloid deposition and memory deficits, 
is suitable for studying neuroinflammation but lacks tauopathy (Oakley 
et al., 2006; Jawhar et al., 2012; Richard et al., 2015). For tauopathy, the 
A152T tau model allows the study of both aggregate (Decker et al., 
2016; Sydow et al., 2016) and soluble (Maeda et al., 2016) tau effects on 
synaptic activity. The APOE knock-in model offers insights into the 
role of APOE isoforms in Aβ deposition and neuroinflammatory 
responses, relevant to late-onset AD (Huynh et al., 2019). The 3xTg-AD 
model combines mutations in APP, PS1, and tau, exhibiting both 
amyloidosis and tauopathy, though it does not fully replicate human 
AD neurodegeneration or microglial/inflammatory responses (Oddo 
et al., 2003). Although no model fully replicates human AD, diverse 
models enable researchers to study specific pathological mechanisms, 
being essential for evaluating experimental treatments like gamma-
tACS. In recent studies, Wu et al. (2022, 2023) showed how gamma-
tACS in the APP/PS1 model improved cognitive function, modulated 
microglial activity, and reduced amyloid burden, indicating its potential 
to affect neuroinflammation and connectivity. Similarly, Jeong et al. 
(2021) found that 40 Hz gamma-tACS enhanced hippocampal LTP in 
5XFAD mice, improving memory and plasticity without impacting 
markers like BDNF or CREB. These findings suggest gamma-tACS as 
a promising method to strengthen synaptic connectivity and memory, 
potentially addressing cognitive deficits in AD models.

Clinical studies of tACS in AD

Numerous clinical studies have explored multisession gamma-
tACS protocols in AD patients, showing potential cognitive and 

neural benefits consistent with preclinical findings that gamma 
oscillations may reduce Aβ deposits and enhance memory pathways 
through neural entrainment and neuroplasticity. Sprugnoli et  al. 
(2021), Altomare et al. (2023) and Cappon et al. (2023) demonstrated 
cognitive improvements with 40 Hz-tACS over multi-week 
interventions. Sprugnoli et al. (2021) applied 40 Hz-tACS to temporal 
regions, increasing hippocampal perfusion and episodic memory. 
Altomare et al. (2023) targeted the precuneus with home-based tACS 
over 16 weeks, using EEG and Positron Emission Tomography (PET) 
to show connectivity-linked cognitive gains, while Cappon et  al. 
(2023) observed episodic memory improvements with angular gyrus 
stimulation over 14 weeks. Furthermore, Liu et al. (2023) combined 
sound with 40 Hz-tACS, finding enhanced memory and connectivity, 
suggesting that multisensory stimulation could amplify gamma-tACS 
effects. Additionally, Benussi et al. (2021) evaluated the impact of 
gamma-tACS in early stages of AD, finding significant cognitive 
improvements. Naro et al. (2016) suggested that increases in gamma-
band oscillations could indicate progression risk, as patients displaying 
them together with cognitive improvements were less likely to 
progress to AD over a two-year period. These studies underscore 
gamma-tACS’s potential as a non-invasive intervention to enhance 
episodic memory and connectivity in AD. Consistent cognitive 
improvements across extended gamma-tACS protocols support its 
utility for cognitive network modulation, while long-term studies are 
needed to confirm the durability of these effects.

Animal models of PD and preclinical 
insights

PD research relies on animal models to replicate key pathological 
features like dopaminergic neurodegeneration, alpha-synuclein 
aggregation, and neuroinflammation (Hunt et al., 2022). Common 
models include the toxin-induced MPTP and 6-OHDA, selectively 
damaging nigrostriatal dopaminergic neurons to mimic PD motor 
symptoms, though they lack α-synuclein pathology and disease 
progression (Ungerstedt, 1968; Ovadia et  al., 1995). To model 
α-synuclein aggregation, transgenic and viral vector models allow for 
human α-synuclein overexpression, leading to progressive 
dopaminergic deficits and neuroinflammatory responses, as 
demonstrated in the viral vector model by Decressac et al. (2012). 
Genetic models, targeting LRRK2 and GBA1, offer insights into PD risk 
factors; LRRK2 models affect mitochondrial function and autophagy 
(Tsika et al., 2014), while GBA1 models demonstrate glucocerebrosidase 
deficiency and moderate α-synuclein buildup, aiding the study of 
lysosomal dysfunction in PD pathology and therapies (Polinski et al., 
2021). Although limited, these diverse models provide essential insights 
into dopaminergic loss, protein aggregation, and neuroinflammation, 
advancing PD pathology understanding and therapeutic research. 
Preclinical studies on tACS in PD are sparse. Although tACS has shown 
benefits for motor and cognitive symptoms in clinical PD studies, little 
research explores its mechanisms and therapeutic potential in PD 
models. This gap highlights the need for foundational studies to 
determine how frequency-specific tACS could modulate dopaminergic 
circuits, plasticity, and neuroinflammation. A starting point is Lee et al. 
(2022), who examined tACS effects in an MPTP model, finding that 
beta-tACS improved motor performance, likely due to its resonance 
with basal ganglia oscillations, while gamma-tACS did not show 
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TABLE 1 Summary of clinical and preclinical studies investigating the effects of tACS on AD and PD.

Alzheimer’s 
disease

Publication Patient/Animal 
model

Stimulation 
parameters

Targeted area Results

Preclinical studies Jeong et al. (2021) AD (5XFAD mice 

model)

40 Hz tACS

200 μA

Current density: Not 

Reported

20 min/2 weeks

Bilateral frontal lobe Enhancement of synaptic plasticity (field 

excitatory postsynaptic potential)

Increased LTP in the hippocampal CA1 

region

Wu et al. (2022) AD (APP/PS1 mice 

model)

40 Hz tACS

130 μA

Current density: Not 

Reported

20 min/7, 14, 21 and 

28 days

Right hippocampus Cognitive improvement

Increase in spontaneous gamma Power 

and gamma-theta cross-frequency 

coupling between the right hippocampus 

and the prefrontal cortex

Microglial activation and reduction of 

hippocampal Aβ plaques

Wu et al. (2023) AD (APP/PS1 mice 

model)

40 Hz tACS

135 μA

Current density: Not 

Reported

20 min/21 days

Right hippocampus Cognitive improvement

Increase in spontaneous gamma Power 

and gamma-theta cross-frequency 

coupling between the right hippocampus 

and the prefrontal cortex

Clinical studies Naro et al. (2016) MCI-AD patients Gamma tACS

1 mA

Current density: 0.04 mA/

cm2

10 min

Multiple cortical areas, 

including motor and 

prefrontal cortices

MCI patients showed increased gamma 

band oscillations and neurophysiological 

improvement after gamma tACS

AD patients showed no significant 

changes

MCI individuals lacking gamma band 

enhancement after tACS were more 

likely to progress to AD within 2 years, 

suggesting potential diagnostic and 

prognostic value

Sprugnoli et al. 

(2021)

AD patients 40 Hz tACS

4 mA

Current density: 0.64 mA/

cm2

1 h/2–4 weeks

Bilateral temporal 

lobes, focused on 

hippocampal regions

Increased cerebral blood flow in bilateral 

temporal lobes

Improvement in episodic memory

Increase in gamma band power

Benussi et al. (2021) MCI-AD patients 40 Hz tACS

3 mA

Current density: 0.09 mA/

cm2

60 min

Medial parietal cortex, 

aimed to focus the 

precuneus

Improvement in episodic memory

Enhanced cholinergic transmission

Dhaynaut et al. 

(2022)

AD patients 40 Hz tACS

2 mA

Current density: Not 

reported

1 h/4 weeks

Bilateral temporal 

lobes

Trend for an increase in gamma 

oscillations after tACS

Decrease of p-Tau burden in temporal 

lobe regions in 3/4 patients

Significant decrease in microglial 

activation in 1/4 patients

No changes regarding Aβ burden or 

cognitive outcomes

Cappon et al. (2023) AD patients 40 Hz tACS

< 2 mA

Current density: 0.64 mA/

cm2

20 min/5 days

Left angular gyrus Improvement in episodic memory

Decreased theta/gamma power ratio in 

the left angular gyrus

(Continued)
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similar benefits. Further research is needed to identify optimal tACS 
parameters in PD models to inform future clinical applications.

Clinical studies of tACS in PD patients

Although preclinical studies on tACS in PD models are limited, 
substantial clinical research has examined tACS at various frequencies 
in PD patients, revealing its therapeutic potential, particularly for 
motor and cognitive symptoms. Studies highlight the effects of 
gamma-tACS, especially at 70 Hz, in enhancing cortical plasticity and 
motor function. Guerra et al. (2020) demonstrated that 70 Hz-tACS 
with intermittent theta burst stimulation (iTBS) over the motor cortex 
(M1) restored LTP-like plasticity in PD patients, particularly those 

with shorter disease duration, suggesting gamma oscillations may 
compensate for plasticity deficits. Furthermore, Guerra et al. (2023a) 
found that gamma-tACS combined with iTBS increased motor-
evoked potential (MEP) facilitation and GABA-Aergic function in 
M1, with similar effects regardless of patients’ dopaminergic state, 
indicating that gamma-tACS may work synergistically with 
dopaminergic therapies. In studies on motor impairments, Guerra 
et al. (2022) found that gamma-tACS at 70 Hz increased movement 
amplitude, while beta-tACS (20 Hz) improved movement speed, 
suggesting that both oscillations may address different aspects of 
motor control. Guerra et  al. (2023b) also showed that beta-tACS 
combined with repetitive transcranial magnetic stimulation (rTMS) 
restored short-term plasticity (STP) in PD patients, reducing 
bradykinesia severity by modulating GABA-A circuits, independently 

TABLE 1 (Continued)

Parkinson’s 
disease

Publication Patient/Animal 
model

Stimulation 
parameters

Targeted Area Results

Preclinical studies Lee et al. (2022) PD (MPTP-induced 

mice model)

20 Hz tACS

Current density: 8.91 mA/

cm2

20 min/5 days

Primary motor cortex Improvement of motor 

performance

Neuroprotection of 

dopaminergic neurons in the 

substantia nigra

Increased GDNF production in 

striatal PV+ interneurons

Clinical studies Del Felice et al. (2019) PD patients 4 Hz tACS and 30 Hz tACS

1–2 mA

Current density: 0.02–

0.06 mA/cm2

30 min/2 weeks

Scalp area with 

pathological oscillation 

+ ipsilateral mastoid

Theta-tACS (4 Hz) reduced 

beta-band excess and improved 

bradykinesia

Beta-tACS (30 Hz) showed no 

significant effects

Cognitive function improved at 

follow-up, suggesting long-term 

plasticity

No significant improvement in 

gait/posture

Guerra et al. (2020) PD patients 70 Hz gamma tACS + iTBS

1.5 mA

Current density: 0.04 mA/

cm2

20 min

Primary motor cortex Restoration of LTP-like plasticity

Enhanced GABA-A-ergic 

function

Beta tACS improved movement 

speed

Gamma tACS enhanced 

movement amplitudeGuerra et al. (2022) PD patients 20 Hz and 70 Hz tACS

1.5 mA

Current density: 0.04 mA/

cm2

20 min

Primary motor cortex

Guerra et al. (2023a) PD patients 70 Hz tACS + iTBS

1.5 mA

Current density: 0.04 mA/

cm2

20 min

Primary motor cortex Enhancement of MEPs

Improvement in GABA-A-ergic 

function by increased SICI

Similar effects regardless of 

L-dopa states

Guerra et al. (2023b) PD patients with 

bradykinesia 

symptoms

20 Hz tACS

1.5 mA

Current density: 0.04 mA/

cm2

20 min

Primary motor cortex Improvement of STP

Reduction of bradykinesia 

symptoms, particularly 

improvement in movement 

speed and amplitude
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of medication. These clinical findings emphasize tACS’s potential for 
targeting PD motor symptoms with frequency-specific effects, from 
movement amplitude to coordination. However, discrepancies 
between human and preclinical results underscore the need for more 
animal research to clarify tACS mechanisms across species, refining 
protocols for optimal translational applications in PD treatment.

Preclinical tACS research: addressing 
complexities for clinical translation

Although various neurological conditions are associated with 
alterations in gamma oscillations, it is critical to acknowledge that these 
alterations are driven by multiple factors. This complexity suggests that 
attributing them to a single cause oversimplifies the nuanced nature of 
neural function (Buzsáki and Wang, 2012; Fries, 2015). It is also 
important to recognize that gamma stimulation can induce multiple 
effects that extend beyond merely imposing the gamma frequency on 
the affected neuronal populations. Thus, in exploring tACS, it is essential 
to address the intricate nature of gamma oscillations and the challenge 
of identifying a singular causative mechanism for their anomalies 
(Uhlhaas and Singer, 2010). This multifactorial nature underscores the 
necessity for a comprehensive understanding of the effects of tACS 
across different biological levels—from molecular to systemic—before 
its application can be effectively translated to clinical settings. Such an 
understanding involves a meticulous exploration of how tACS 
influences neuronal and network behavior in animal models, which 
may pave the way for targeted interventions in human subjects 
(Herrmann et al., 2013; Polanía et al., 2018). By expanding our grasp on 
these mechanisms, we  enhance the foundational knowledge in 
preclinical tACS research, which is crucial for the successful design of 
tACS protocols tailored to address specific neurological deficits. This 
approach not only maximizes therapeutic outcomes but also minimizes 
assumptions about the direct translatability of frequency-specific 
interventions, promoting a more nuanced and effective application of 
tACS in clinical practice (Reato et al., 2010; Vossen et al., 2015). Animal 
models provide an essential controlled environment to investigate how 
anatomical and physiological factors influence the outcomes of tACS 
(Huang et al., 2017; Vöröslakos et al., 2018). These models are crucial 
for optimizing electrode placement and stimulation parameters to 
accommodate structural differences (Huang et  al., 2021), and they 
facilitate high-resolution intracranial recordings that help identify ideal 
stimulation frequencies and intensities (Reato et al., 2010; Farahani 
et al., 2024). However, notable differences in factors such as skull density 
and experimental procedures like open-head stimulation in these 
models often amplify the observed effects of tACS (Jackson et al., 2016). 
These discrepancies highlight the challenges in directly extrapolating 
results to humans, underscoring the need for rigorous translational 
research to adapt findings from animal studies to clinical applications 
effectively (Sánchez-León et al., 2018).

Conclusion

Gamma-tACS holds promise as a neuromodulation tool for 
neurodegenerative diseases, especially AD. Preclinical studies 
indicate its ability to modulate neural oscillations, enhance cognitive 

function, and provide neuroprotective effects, like reducing Aβ 
deposits and influencing microglial activity. Clinical trials in AD 
patients suggest that gamma-tACS can improve episodic memory 
and connectivity, complementing similar studies with sensory 
stimulation at gamma frequencies and supporting its role as a 
non-invasive treatment for cognitive decline. However, more 
preclinical studies in PD are needed to explore its impact on 
dopaminergic circuits, motor symptoms, and neuroinflammation. 
Insights from animal models could refine personalized protocols, 
optimizing stimulation parameters for individual differences. 
Bridging preclinical and clinical insights, gamma-tACS could 
enhance cognitive resilience and slow disease progression across 
neurodegenerative conditions.
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