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Artificial intelligence (AI) models, frequently built using deep neural networks

(DNNs), have become integral to many aspects of modern life. However, the

vast amount of data they process is not always secure, posing potential risks to

privacy and safety. Fully Homomorphic Encryption (FHE) enables computations

on encrypted data while preserving its confidentiality, making it a promising

approach for privacy-preserving AI. This study evaluates the performance of FHE

when applied to DNNs and compares it with Spiking Neural Networks (SNNs),

which more closely resemble biological neurons and, under certain conditions,

may achieve superior results. Using the SpyKing framework, we analyze key

challenges in encrypted neural computations, particularly the limitations of

FHE in handling non-linear operations. To ensure a comprehensive evaluation,

we conducted experiments on the MNIST, FashionMNIST, and CIFAR10

datasets while systematically varying encryption parameters to optimize SNN

performance. Our results show that FHE significantly increases computational

costs but remains viable in terms of accuracy and data security. Furthermore,

SNNs achieved up to 35%higher absolute accuracy thanDNNs on encrypted data

with low values of the plaintext modulus t. These findings highlight the potential

of SNNs in privacy-preserving AI and underscore the growing need for secure

yet e�cient neural computing solutions.

KEYWORDS
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1 Introduction

Recent research (Nikfam et al., 2023) has explored the comparison between Deep

Neural Networks (DNNs) and Spiking Neural Networks (SNNs) in the context of

Fully Homomorphic Encryption (FHE), a powerful cryptographic technique that enables

computation on encrypted data without decryption. While encryption is crucial for

privacy-preserving (Barni et al., 2006; Chabanne et al., 2017; Disabato et al., 2020),

FHE introduces a significant computational overhead, making conventional DNNs less

efficient. In this work, we investigate whether SNNs, known for their sparse and energy-

efficient processing, can offer a viable alternative to DNNs under FHE constraints. Given

their event-driven nature, SNNs require fewer operations and may alleviate some of the

computational burden imposed by FHE. Moreover, integrating SNNs with FHE enables

secure neural network inference on sensitive data, with potential applications in healthcare

(e.g., encrypted medical image analysis), finance (e.g., fraud detection on encrypted

transactions), and cybersecurity. By comparing the performance of LeNet5-based SNN
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(von Kügelgen, 2017) and DNN (Schmidhuber, 2015) models

on both encrypted and plaintext data, we aim to highlight the

advantages and limitations of using SNNs for privacy-preserving.

Our findings indicate that while FHE remains computationally

expensive, SNNs (Kim et al., 2022) can, under certain conditions,

outperform DNNs, making them a promising candidate for secure

and efficient encrypted neural computation (Gilad-Bachrach et al.,

2016).

Figure 1 shows a summary diagram of the research work carried

out for SpyKing, from the inputs used to the results obtained.

2 Spiking Neural Network

A SNN (von Kügelgen, 2017; Ponulak and Kasiński, 2011), or

pulse neural network, is a type of neural architecture inspired by the

functioning of biological neurons in the brain. Unlike traditional

neural networks, such as DNNs, SNNs use a communication

model based on pulses or spikes, representing signals sent by

neurons (see Figure 2).

In traditional models, artificial neurons, after receiving input,

apply a transformation using an activation function and produce

a continuous output. In spiking neurons (Izhikevich, 2003),

communication occurs through discrete pulses or spikes (Roy et al.,

2019). Each neuron accumulates input signals (see pointer 1 –

Figure 2) over time and generates a spike when a certain

threshold is exceeded (see pointer 2 –Figure 2). Synapses, the

connections between neurons, are determined by weights that can

change during the learning process, increasing or decreasing the

probability of a neuron firing. The activation of each neuron is

based on both spatial and temporal factors. Each neuron depends

on its position and connections with nearby neurons, and its

activation is influenced by the time of charge before firing, which

typically cannot be less than a certain threshold. When a neuron

releases a spike (see pointer 3 –Figure 2) after its potential reaches

the threshold, its charge is reset, and the neuron enters a passive

waiting phase, the refractory period (see pointer 4 –Figure 2)

before the resting state (see pointer 5 –Figure 2).

This construction allows SNNs to closely mimic the real and

biological functioning of the human brain. Considering the latency

times between spikes due to charge times, SNNs also enable more

energy-efficient models (Paugam-Moisy and Bohté, 2012).

2.1 Leaky Integrate-and-Fire

In the context of SNNs, Leaky Integrate-and-Fire (LIF) is a

specific type of spiking neuron model. To better understand how

it works, here’s an explanation of the acronym LIF:

• Integration–the LIF neuron accumulates input over time. Each

time it receives a spike, its charge increases. This accumulation

of charge represents how the neuron integrates information

over time.

• Firing - when the neuron’s charge reaches a certain threshold,

the neuron fires a spike. This simulates the idea of activation

in the context of neural networks.

• Leak - the leak indicates that, over time, the neuron’s charge

tends to dissipate or lose energy. This process of charge

loss over time is implemented to simulate the dynamic and

adaptive nature of biological neurons.

So, the LIF model is essentially a way to describe how

a spiking neuron accumulates and releases energy over time,

reflecting some features of biological neurons. Its simplicity makes

it computationally efficient, and the addition of the leak component

makes it more adaptable and realistic compared to somemore basic

spiking neuron models.

There are other SNN neuron models, such as Hodgkin-Huxley

(Amirsoleimani et al., 2016), which are based on very complex

differential calculations, making it challenging to construct large

computational models due to lower efficiency. Considering the

trade-off between efficiency and reliability, the LIF neuron model

was chosen for the creation of SpyKing.

2.2 Norse library

Norse (Pehle and Pedersen, 2021) is a Python (Raschka et al.,

2020) library that leverages the advantages of bio-inspired neural

components. Norse extends the PyTorch (Paszke et al., 2019)

library for implementing DNN with primitives for biologically

inspired neural components.

With Norse, it is possible to start with basic PyTorch DNN

models and create their spiking versions. As we will see later in this

work, the Lenet5 model, implemented in PyTorch, was used, and

with the use of Norse, the spiking version, Spiking-Lenet5 (Han and

Roy, 2020; Lee et al., 2016, 2019; Zenke and Ganguli, 2018; Tavanaei

et al., 2019), was created.

2.2.1 LIF parameters
The LIF parameters within Norse are specific configurations

that define the behavior of LIF neurons in SNNs. These parameters

include:

• τ
−1
syn - represents the inverse of the synaptic time constant,

determining how quickly the synaptic input decays over time.

• τ
−1
mem - represents the inverse of the membrane time constant,

influencing the rate of decay of the neuron’s membrane

potential without input.

• vleak - specifies the leak potential of the neuron, indicating the

resting potential of the membrane when there is no synaptic

input or other stimuli.

• vth - defines the threshold potential of the neuron. An action

potential is generated when the membrane potential reaches

or exceeds this threshold.

• vreset - represents the reset potential of the neuron. After firing

an action potential, the membrane potential is reset to this

value.

These parameters play a critical role in determining the

dynamics of the LIF neuron in the SNN. They govern how the

neuron integrates and responds to incoming synaptic input, as well
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FIGURE 1

A summary flowchart of the SpyKing research project.

FIGURE 2

An example of a spiking neuron that activates only after receiving the necessary charge to surpass the threshold, undergoing a refractory period

before returning to a resting state.

as when it generates an action potential. The specific values of

these parameters can be adjusted to achieve the desired behavior,

providing control over the firing rate and responsiveness of the

neuron within the network.

2.2.2 Encoders
SNNs require an encoder to process temporal data represented

as spikes. Since most ML datasets lack an inherent temporal

structure, an encoding phase is essential to introduce the necessary

temporal component. The encoder transforms input data into spike

sequences, which are then processed by the SNN as tensors with

binary values.

In a preliminary study phase (Casaburi et al., 2022), we

compared the Constant Current LIF encoder, Poisson encoder,

and Spike Latency LIF encoder. After conducting several analyses,

we observed that the Constant Current LIF encoder yielded

higher accuracy and, more importantly, allowed us to maintain a

computationally efficient model for subsequent calculations. As a

result, we selected it as the baseline for our experiments.

The Constant Current LIF encoder, implemented in the Norse

library, is an encoding method that converts constant input into

constant voltage spikes. Over a specified time interval, known

as seqlength, spikes are generated based on the input current.

This approach enables Norse to operate on sparse input data as

a sequence of binary tensors, optimizing the SNN’s processing

efficiency. If the potential reaches the required threshold during

seqlength, a spike is emitted.

In our encoding process, the spike threshold is static, meaning

it remains constant throughout the simulations. This threshold,

denoted as vth, defines the membrane potential level that must be

reached for a neuron to emit a spike. Since the encoding phase

relies on temporal sequences, the interplay between vth and seqlength
affects the spike generation rate. A lower vth leads to more frequent

spikes within seqlength, whereas a higher threshold results in sparser

spiking activity. This static threshold approach ensures a controlled

and reproducible encoding process across all experiments.

Simply put, seqlength represents the number of iterations a SNN

needs to biologically simulate the human brain. Consequently,

the seqlength value serves as a temporal multiplier. For example,

if a DNN takes time x to be trained or evaluate data,
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FIGURE 3

A HE scheme with a clear separation between client and server, where the data and results in plaintext are visible only to the client.

the corresponding SNN model will take a time equivalent

to x multiplied by seqlength. This poses a temporal efficiency

challenge intrinsic to SNNs, and this temporal factor that

elongates computation times cannot be eliminated. The only

solution to address this issue is to choose a seqlength value

that is balanced, accurately simulating SNNs without excessively

extending computation times.

3 Homomorphic Encryption

Homomorphic Encryption (HE) (Acar et al., 2018; Orlandi

et al., 2007; Bos et al., 2013; Cammarota, 2022; Cousins

et al., 2023) is an advanced form of cryptography that enables

operations on encrypted data without the need for prior

decryption. This technique is particularly useful when preserving

data privacy (Falcetta and Roveri, 2022) during processing in

environments where security is crucial, such as in cloud computing.

Examining Figure 3 provides a clearer understanding of how HE

works. Initial data is encrypted with a public key (Stehlé et al., 2009;

Paillier, 1999) that anyone can obtain. Once encrypted, the data

is sent to the server where it undergoes manipulation and specific

computations. Finally, the results, still encrypted, are sent back to

the client, who is the only entity capable of decrypting them using

a secret key known only to them. In this manner, the entire data

processing is kept secret, and only the client knows the original data

and the final results.

The security of HE relies on the strength of the encryption

algorithm and the secrecy of the keys. Unfortunately, there are

limitations because computations on encrypted data are much

more time, memory, and energy consuming, and therefore are only

executed when necessary.

The term homomorphic indicates that operations performed

on encrypted data correspond to the same operations executed

on unencrypted data. Homomorphism can take various forms,

including partially HE (Ryu et al., 2023), somewhat HE (Bonnoron

et al., 2017) and fully HE (FHE) (Brakerski and Vaikuntanathan,

2014; Gentry, 2009a,b; Fan and Vercauteren, 2012; Brakerski et al.,

2011). Each of these allows different levels of computation on

encrypted data.

3.1 Fully Homomorphic Encryption

FHE (Brakerski and Vaikuntanathan, 2014; Gentry, 2009a,b;

Fan and Vercauteren, 2012; Brakerski et al., 2011) is the most

comprehensive form of HE, as it enables both addition and

multiplication operations on encrypted data. One of the widely

used schemes in this field is the Brakerski/Fan-Vercauteren

(BFV) scheme, which we utilized in our framework. To better

understand its functioning, equations from Equations 1–

7 illustrate a simplified example of how achieving the

same result is possible even after a transformation. In this

example, the structure of the functions has been designed to

only preserve addition, but in FHE, the same logic applies

to multiplications.

Let’s consider the Equation 1 and apply a homomorphic

transformation (encryption) as depicted in Equation 2. To verify

if the transformation occurred homomorphically, we choose two

random values for x and y, as represented in Equation 3. Adding

our values to Equation 1, we obtain Equation 4, from which, by

performing the calculations, we arrive at Equation 5. At this point,

we introduce the transformation from Equation 2, as mentioned

earlier, resulting in Equation 6. By performing the last simple

calculation, we can observe in Equation 7 that the result is equal

on both sides, despite the transformation in between. Hence,

we can conclude that this transformation was homomorphic

concerning additions.

FHE applies the same logic to encryption with

more complex calculations, making both additions and

multiplications homomorphic. Unfortunately, in the case

of non-linear calculations, FHE is not supported. Data

must be decrypted before proceeding with the computation;
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otherwise, there is a risk of obtaining completely incorrect and

unreadable results.

f (2x+ 3y) = f (2x)+ f (3y) (1)

f (z) = 6z (2)
{

x = −2

y = +4
(3)

f (2 · (−2)+ 3 · (+4)) = f (2 · (−2))+ f (3 · (+4)) (4)

f (+8) = f (−4)+ f (+12) (5)

[6 · (+8)] = [6 · (−4)]+ [6 · (+12)] (6)

+48 = +48 (7)

3.2 Pyfhel library

Pyfhel (Ibarrondo and Viand, 2021) is a Python (Raschka et al.,

2020) library that allows encryption using various schemes and

a wide range of data while maintaining limited computational

capabilities based on the chosen data type. It supports the BFV

scheme and implementation on neural networks. Unfortunately,

it was not designed exclusively for the field of ML. Despite being

usable for neural networks, it has not been optimized for this

purpose and only leverages the CPU, not utilizing the hardware

acceleration possible with the GPU. Considering that encryption

is already inefficient and computationally intensive, the inability to

use the GPUon large datasets, such as those in Artificial Intelligence

(AI), inevitably leads to very long computing processes.

3.2.1 HE parameters
The implementation of the BFV scheme in Pyfhel relies on

three key elements:

• m - represents the degree of the polynomial modulus,

impacting computational capabilities and the security level of

the encryption system.

• t - denotes the plaintext modulus, determining the size and

precision of the ciphertext values for the plaintext.

• q - represents the ciphertext modulus, influencing the size

of the ciphertext values and affecting the security and

computational performance of the encryption scheme.

Balancing security and computational efficiency in FHE

operations becomes possible by selecting appropriate values for

these parameters. Pyfhel provides an easy-to-use interface for

working with the BFV scheme, enabling encryption, computation,

and decryption of data with concise and comprehensible code.

Another crucial element to consider is the Noise Budget (NB),

which denotes the maximum amount of disturbance or error

that can be introduced during the encryption and computation

process without compromising the accuracy of the results. In

operations performed on encrypted data, activities such as addition

and multiplication can accumulate disturbance, putting at risk

the accuracy of the results when decrypted. The NB sets a

limit on how much disturbance can be tolerated before the

TABLE 1 Summary of the main characteristics of the 3 datasets used.

Datasets MNIST FashionMNIST CIFAR10

Total images 70,000 70,000 60,000

Train-set 60,000 60,000 50,000

Test-set 10,000 10,000 10,000

N◦ classes 10 10 10

Dimensions 28× 28 28× 28 32× 32

Colors 1 - Grayscale 1 - Grayscale 3 - RGB

Classes type Number 0-9 Clothes Objects

decrypted results become unreliable. It is imperative to carefully

manage and continuously monitor the NB throughout the entire

computation process to ensure the security and integrity of

cryptographic operations.

4 Datasets

The MNIST (Deng, 2012), FashionMNIST (Xiao et al., 2017),

and CIFAR10 (Krizhevsky et al., 2015) datasets are popular datasets

used in the ML community for training and evaluating algorithms

in computer vision. Table 1 shows the main characteristics of

each dataset.

4.1 MNIST

MNIST (Deng, 2012) is one of the most widely used datasets

in ML. It consists of grayscale images of handwritten digits from

0 to 9. It represents a standard among ML datasets and is often

used for basic testing. Accuracy on this dataset can easily reach

high values close to 100%. In the Supplementary material, there are

examples extracted from the dataset representing all 10 classes. The

images appear pixelated as they are in a very small format, namely

28x28 pixels.

4.2 FashionMNIST

FashionMNIST (Xiao et al., 2017) is a dataset containing images

of clothing items. It was created as a more complex alternative to

the MNIST dataset, as it maintains the same structure but instead

of handwritten digits, it features grayscale images of clothing items.

Similarly, the dataset contains 70,000 images, divided into 60,000

for the training set and 10,000 for the test set, with a size of 28x28

pixels as seen in the examples in the Supplementary material.

4.3 CIFAR10

CIFAR10 (Krizhevsky et al., 2015) is an RGB color image

dataset with dimensions of 32x32 pixels, which are slightly larger

than those in the MNIST group, and consists of 10 classes of

common objects and animals (see the Supplementary material).
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FIGURE 4

LeNet5 model with each layer and matrix size for FashionMNIST and MNIST training.

Among the datasets we used, this is the most complex, and indeed,

the accuracy of various models on this dataset generally falls well

below 90%. In terms of total size, it is slightly smaller than MNIST,

with 50,000 images for the training set, 10,000 for the test set,

totaling 60,000 data points.

5 PyTorch

PyTorch (Paszke et al., 2019) is an open-source library for ML

developed by Facebook. It is designed to provide a flexible and

scalable platform for developing AI models and is fully compatible

with the Python (Raschka et al., 2020) programming language.

One of PyTorch’s key features is its support for automatic

gradient computation, which significantly simplifies the

implementation of algorithms by allowing users to modify

the network structure during program execution.

PyTorch offers various tools such as data loading and

preprocessing, neural network creation, GPU training support, and

integration with third-party libraries, such as Norse, which allows

the creation of SNNs.

The syntax of PyTorch is clear and intuitive, making it a popular

choice among ML developers. PyTorch is widely used in both

academic and industrial settings for various applications, including

image classification, natural language processing, computer vision,

and more. Given its widespread adoption, PyTorch is continuously

growing and evolving.

6 LeNet5 model

LeNet5 is a Convolutional Neural Network (CNN) model

developed by Yann LeCun and his team at Bell Labs in the 1990s

(LeCun et al., 1998). It was one of the first CNN models to

be widely used for image classification and played a crucial role

in the early advances of deep learning. Since then, LeNet5 has

served as a foundational model for the development of more

advanced CNN architectures and has found applications in various

domains, including character recognition, object detection, and

facial recognition.

LeNet5 is composed of convolutional, pooling, and fully

connected layers. The convolutional layers extract features

from the input images using convolutional filters. The pooling

layers reduce the dimensionality of the extracted features

while preserving their essential information. Finally, the fully

connected layers classify the features and produce the output

predictions. During training, the LeNet5 model utilizes error

backpropagation to update the weights of the convolutional

filters and fully connected layers in order to minimize the

loss function (Janocha and Czarnecki, 2017) and improve the

network’s performance.

In the Supplementary material, there is a 3D reconstruction

of LeNet5 for the classification of the FashionMNIST and MNIST

datasets. Each color represents the various layers of the model and

their respective matrix dimensions, from the input image to the

final output classification. In Figures 4, 5, you can see the 2Dmodels

with an explanation of the various steps for the MNIST dataset

family and for CIFAR10.

6.1 Spiking-LeNet5 model

The Spiking-LeNet5 model (Han and Roy, 2020; Lee et al.,

2016, 2019; Zenke and Ganguli, 2018; Tavanaei et al., 2019) was

built based on the standard LeNet5 model. We then integrated the

Norse python library with the PyTorch library to obtain the spiking

version. The LeNet5, which processed each dataset differently, was

modified by replacing the Rectified Linear Unit (ReLu) activation

commands with the LIF activation from the Norse library, and the

entire model was then placed in a timed sequence controlled by

seqlength to allow for neuron firing.

In Figure 6, you can see how an image from the dataset appears

during the spiking temporal sequence with seqlength set to 30, in

this case it is the Ankle Boot, label 9 in the FashionMNIST dataset.

You can observe how the image only appears in certain parts

because only some neurons fire at a time. In Figure 7, there is a

comparison between the original image and the sum of the previous

timed images. The final result is not identical, but it can be noted

that during the temporal sequence, more or less all neurons fire,

allowing the image to still be recognized.
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FIGURE 5

LeNet5 model with each layer and matrix size for CIFAR10 training.

FIGURE 6

In the Spiking-LeNet5 the neurons fire randomly during the seqlength and the result is each time a portion of the total image, in this case it is the Ankle

Boot, label 9 in the FashionMNIST dataset.

7 Training phase

For the training phase, we set the parameters optimally

to increase accuracy. The PyTorch library was chosen for

defining the model, as the Norse library relies on PyTorch,

allowing us to create both the LeNet5 and the Spiking-LeNet5

models based on PyTorch. The selected parameters can be

seen in Table 2, and Figure 8 provides a summary diagram of

the experimental setup for the SpyKing project. The learning

rate was chosen using the learning rate finder technique, while

the number of epochs was selected using early stopping to

prevent overfitting.

In Figure 9, we can observe the accuracy and loss (Janocha

and Czarnecki, 2017) for each epoch during the training on

the FashionMNIST dataset, comparing LeNet5 and Spiking-

LeNet5 (Meftah et al., 2013). Additionally, the dashed lines

illustrate how, for each model, validation has slightly lower

performance compared to training. Furthermore, we can notice

that the spiking model has slightly lower final accuracy compared

to the non-spiking model, which is due to the intrinsic

complexity of the spiking version. Also, the computation

time of the spiking model differs from that of LeNet5; on

average, the spiking model takes the same time as LeNet5

multiplied by the value of seqlength. The respective training

graphs for the MNIST and CIFAR10 datasets are visible in

Supplementary material.

As can be observed, the final accuracy achieved by the standard

LeNet5 model varies across the datasets: it’s around ≈99% for

MNIST, ≈80-90% for FashionMNIST, and ≈60-70% for CIFAR10.

This disparity among the datasets arises from practical reasons;

MNIST, being the simplest dataset, exhibits the highest accuracy.

FashionMNIST is similar toMNIST but with slightly more complex

classes to distinguish. Lastly, CIFAR10 is a dataset with 3 RGB

channels and consequently much more complex than the previous

two, resulting in lowermodel accuracy on this dataset as well. Given

the differences between the datasets and the repeated trials for

all, to avoid overwhelming subsequent paragraphs, the following

discussion will focus more on the FashionMNIST dataset, which

has intermediate complexity, while the results of the other two

datasets can be found in the Supplementary material.
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FIGURE 7

On the left we have the native Ankle Boot (Label 9 in the FashionMNIST dataset) image, while on the right there is the sum of the temporal sequence

seqlength of Figure 6.

TABLE 2 Training phase parameters and LIF values selected after several

tests to achieve the best configuration.

Parameters LeNet5 Spiking-LeNet5

Learning rate 0.001 0.001

Epochs 20 20

Batch size 256 256

Optimizer Adam (Kingma and Ba,

2015)

Adam (Kingma and Ba,

2015)

Loss Cross Entropy (Mao et al.,

2023)

Negative Log-Likelihood

(Zhu et al., 2018)

seqlength - 30

τ
−1
syn - 200

τ
−1
mem - 100

vleak - 0

vth - 0.5

vreset - 0

Encoder - Constant Current LIF

The LIF parameters are similar to the default ones provided by Norse.

7.1 Parameters selection

After training, in order to proceed with encryption, it is

necessary to define the parameters of the BFV scheme: m, t, and

q. The parameter m must be a power of 2 greater than 1024 and

is directly proportional to the NB. Values of m that are too high

would lead to overly complex computational calculations, while low

values would be too insecure. Values of m equal to 2048 or higher

do not significantly alter the results but exponentially increase

computation times. Therefore, we performed these calculations

only on the FashionMNIST dataset, and the results are visible

in Figure 10.

The value of t can also vary, but too low values lead to incorrect

encryption, while too high values degrade the results, making

them unreadable. For the FashionMNIST dataset, we evaluated a

variation of t on 15 values between 10 and 500,000, noting that after

the value of 5,000 there are no significant differences. Consequently,

for the other two datasets, we evaluated the results between 10 and

5,000.

The last parameter is q, but it is related tom in determining the

value of NB and is automatically calculated by the Pyfhel library to

obtain adequate encryption.

The NB also allows for a certain tolerance in operations before

the results degrade too much, and therefore sometimes it needs to

be recharged by decrypting and encrypting again. However, this did

not affect our results because, as we will see later, due to nonlinear

calculations in the models, we were forced to decrypt and encrypt

multiple times. Consequently, the value of NB was replenished each

time, allowing us to perform subsequent encrypted calculations

without issues.

7.2 Encryption

In Table 3, there are comparisons for the computation times for

each dataset. As can be seen, with the hardware available to us and

with a value of m set to 1024, it takes approximately 1 second to

encrypt an image from the FashionMNIST andMNIST datasets for

the LeNet5 model, and about 30 seconds for the Spiking-LeNet5

model. After that, it takes another 30 seconds for evaluating the

image on the encrypted LeNet5 model and about 15 minutes on

the encrypted Spiking-LeNet5 model. The value of 15 minutes is

obtained by multiplying the 30 seconds taken by LeNet5 by the

value of seqlength, which in our case is 30. It can also be noted

that increasing the value of m results in an exponential increase in

computation time, while the variation in the parameter t has no

significant effect.
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FIGURE 8

SpyKing experimental setup.

FIGURE 9

Accuracy and loss during training and validation of LeNet5 and Spiking-LeNet5 for the FashionMNIST dataset. The figure shows accuracy and loss

values across di�erent training epochs.

In Table 4, there is an estimation of the execution time, based

on the same hardware, for other types of models, considering only

the FashionMNIST dataset. As can be seen, the time is proportional

to the number of parameters handled by the model itself, and

even with models slightly more complex than LeNet5, much longer

computation times are obtained.

7.3 Resources

The hardware resources available for conducting the

experiments consisted of a NVIDIA Tesla P100 PCIe 16 GB

GPU, an Intel R© Xeon R© Gold 6134 @ 3.20 GHz CPU, and 100 GB

of RAM.

The code (available at this GitHub address: https://github.

com/farzadnikfam/SpyKing) was entirely written in Python

with the help of various libraries, including PyTorch, Norse,

and Pyfhel.

8 Results

In Figure 10, all the numerical data in percentage of the results

obtained on the FashionMNIST dataset are presented in the form

of a matrix. The simulations were conducted on 15 variations of

t ranging from 10 to 500,000 and with 3 variations of m: 1,024,

2,048, and 4,096. The calculations were performed for both LeNet5

and Spiking-LeNet5 models and were divided based on accuracy

between plaintext and encrypted models. Since, as can be seen, the

results withm set to 4,096 are identical to those withm set to 2,048,

for both the standard and spiking models, the case with m set to

4096 will not be considered from now on.
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FIGURE 10

Comparison matrix for t and m variation for the FashionMNIST dataset on encrypted LeNet5 and Spiking-LeNet5 models.

In Figures 11, 12, the visual representation of the samematrices

can be seen with bar graphs to better understand the results. The

results in matrix form for the FashionMNIST (with m = 2,048),

MNIST and CIFAR10 datasets are in Supplementary material,

and the respective bar graphs have been grouped with those of

FashionMNIST (with m = 1,024) in Supplementary material for

better comparison.

To better understand how to read the matrices and bar graphs,

here is an explanation of the colors:

• Blue (both correct)–represents the percentage of images

classified correctly by both the plaintext and encrypted

models.

• Orange (standard correct)–indicates the percentage of data

classified correctly by the plaintext model but not by the

encrypted one. It can be noticed that by adding the percentages

of blue and orange colors, the same accuracy value is always

obtained, whether changing m or changing t. This data

represents the accuracy value of validation during training,

which in the case of FashionMNIST corresponds to 89.2% for

LeNet5 and 84.3% for Spiking-LeNet5.

• Green (encrypted correct)–this percentage is the inverse

counterpart of the previous one, meaning the images were

classified correctly by the encrypted model but not by the

plaintext model. The percentages are generally low and

almost insignificant, as this occurs because the encrypted
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TABLE 3 Encryption and execution time for each image with respect to the variation of the model and them parameter from 1,024 to 4,096.

Datasets Time (seconds) LeNet5 Spiking-LeNet5

1,024 2,048 4,096 1,024 2,048 4,096

Fashion MNIST Encryption 1 2 8 30 60 240

Plaintext execution 0.03 0.03 0.03 1 1 1

Encrypted execution 30 60 240 900 1,800 7,200

MNIST Encryption 1 2 8 30 60 240

Plaintext execution 0.03 0.03 0.03 1 1 1

Encrypted execution 30 60 240 900 1,800 7,200

CIFAR10 Encryption 2 4 16 60 120 480

Plaintext execution 0.07 0.07 0.07 2 2 2

Encrypted execution 60 120 480 1,800 3,600 14,400

TABLE 4 Prediction time for each image of the FashionMNIST dataset reported in seconds for each model withm = 1,024.

Time (seconds) LeNet5 AlexNet VGG16 ResNet50

Complexity 60 k 60 M 138 M 23 M

Standard Encryption 1 60 140 20

Plaintext execution 0.03 30 70 10

Encrypted execution 30 30 k 70 k 10 k

Spiking Encryption 30 1.8 k 4.2 k 600

Plaintext execution 1 1 k 2.1 k 300

Encrypted execution 900 900 k 2.1 M 300 k

The long processing time of encrypted data are due to the complexity of the encrypted computations and it also depends on the complexity of each model (N◦ of parameters).

model classifies differently from the plaintext model, which is

incorrect, but by pure coincidence chooses the correct label.

Therefore, this small percentage has no statistical value but

is merely coincidental, as the encrypted model should classify

like the plaintext model, even if the latter is wrong.

• Purple (both wrong but equal)–represents the case where the

encrypted model and the plaintext model coincide but have

not classified the correct label. This data is important because

it shows how the encrypted model has functioned correctly by

mimicking the plaintext model, even if the initial classification

was incorrect.

• Red (both wrong and different)–this last situation shows the

case where both the encrypted and plaintext models have

made mistakes and are different from each other. So, the

label has not been correctly classified by either of the two

models, and furthermore, the encrypted one has not copied

the plaintext one. This percentage represents the worst-case

scenario where nothing has worked as it should.

9 Discussion

To better discuss the results obtained in the previous section,

we can refer to Figure 13, where the most relevant data has been

presented in the form of graphs. Specifically, we compared, varying

t, the accuracy of the LeNet5 and Spiking-LeNet5 models in both

plaintext and encrypted versions, with the parameterm set to 1,024

and 2048. To simplify, we essentially graphically represented the

accuracy previously marked in Blue–both correct, i.e., when the

encrypted model achieved the same results as the plaintext model

and both coincided with the correct labels.

As we can see, both the standard and spiking versions reach

approximately maximum accuracy, that is, the validation accuracy

during training, with t values ranging from 200 to 1,000. From this

value onwards, the models with m set to 1,024 show results that

degrade quickly, while models with m set to or higher than 2048

maintain maximum accuracy. Apart from this difference between

m set to 1,024 and higher values, there are no other differences in

the initial part, but especially high values of t are not so relevant

because they indicate a high level of encryption that can increase

computational costs or degrade data. The most important part is

the part of the graph representing the lower t values, those below

200, where we can see how the spikingmodel performs significantly

better than the standard model. Of course, these results are limited

by the fact that the final accuracy of the validation of the spiking

model is lower than that of the LeNet5 even in the plaintext version,

which is why we created the graph in Figure 14.

In Figure 14, we no longer compare only the Blue - both

correct percentages, but we add these to those of Purple -

both wrong but equal. In practice, we added all the cases

where the encrypted model correctly provided the same result

as the plaintext model, whether the latter was correct or
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FIGURE 11

FashionMNIST accuracy on encrypted LeNet5 for t variation with m set to 1,024.

FIGURE 12

FashionMNIST accuracy on encrypted Spiking-LeNet5 for t variation with m set to 1,024.

not. In fact, the goal of this research was not only to

demonstrate the feasibility of encrypted models but also their

reliability, and considering that with certain combinations of

t and m, values close to 100% correctness between the

encrypted and plaintext models can be achieved, I would

say that the result has been achieved. Specifically, we can

see that in Figure 14, both the standard and spiking models

in the encrypted versions reach 100% accuracy in emulating
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FIGURE 13

Comparison of FashionMNIST accuracy between plaintext and encrypted versions of LeNet5 and Spiking-LeNet5 for t variations when both plaintext

and encrypted versions classified correctly.

FIGURE 14

Comparison of FashionMNIST accuracy between plaintext and encrypted versions of LeNet5 and Spiking-LeNet5 for t variations when both plaintext

and encrypted versions coincide in both correct and incorrect classification.

the plaintext versions, maintaining approximately the same

shape as Figure 13. This means that even in this case, for

low t values, the Spiking-LeNet5 model performs better than

the LeNet5.

In conclusion, SNNs react better to encryption than

DNNs, making them more secure for data encryption.

However, they still have some criticalities: first of all, they

have an intrinsic latency time, the seqlength parameter, that

significantly lengthens computation times, and secondly, they

generally have lower validation accuracy. The same results

can also be viewed for the MNIST and CIFAR10 datasets in

Supplementary material.

9.1 Models encryption

One of the main problems of FHE is that it can only work

with linear calculations of addition and multiplication. The LeNet5

model, as we have implemented it in Figure 4, also includes

non-linear calculations: ReLu activations. Currently, this part of

calculations cannot be achieved with the encrypted model, so every

data pass through the activation layer must be decrypted first and

then re-encrypted. Obviously, these steps lead to a model that is

not fully encrypted and to data vulnerability during the activation

phase. In fact, this research aspect falls within future projects to

improve the model.
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FIGURE 15

Inside the LeNet5 we need to decrypt and encrypt again four times

because the activation function ReLu is not a linear calculation.

In Figure 15, we can see how the encrypted model actually

behaves. The steps are the same for both the standard and the

spiking model and apply to all datasets. The color codes used are

the same as those used in Figure 4 for better understanding. As

can be seen, the data must be decrypted and re-encrypted 4 times

during the entire process, in addition to the initial encryption and

final decryption. Considering that the computation times of an

encrypted model are up to 1000 times slower than plaintext, both

in the standard and spiking cases, one can imagine how impactful

these encryption steps due to activations are.

9.1.1 Noise Budget values
However, these continuous encryptions also have a positive

aspect. As mentioned in the Section 3.2.1, the NB degrades every

time linear calculations are performed, and if it reaches zero, the

data would become unreadable. The continuous encryption during

the process allows the NB to be recharged each time, enabling

encrypted calculations without repercussions on the final accuracy.

In Figure 16, we can qualitatively see the amount of NB during

the various layers, and it can be observed how it reloads after

each activation due to the new encryption. In Figure 17, we can

see qualitatively how the NB value is not independent of t, but

rather, for high values of t, i.e., high encryption, the initial NB value

is lower, and therefore fewer calculations can be absorbed, while

with low values of t, the NB is higher with greater manipulation

possibilities. Figures 16, 17 were extrapolated from the overall

graph shown in Supplementary material, where all numerical data

are reported, and it can be noted that NB does not depend solely

on t but also on m. In fact, higher values of m lead to higher NB

values, allowing more calculations, but at the same time, drastically

increasing computation time.

9.2 Confusion matrices

In Figure 18, the confusion matrices of both the standard and

spiking models for the FashionMNIST dataset are depicted. It can

be observed that in both cases, the matrix is fairly orderly between

predicted classes and correct labels. The only class that creates slight

confusion for the models is class number 6, representing the Shirt.

Now, looking at Figure 19, we can see all the confusionmatrices

of the LeNet5 and Spiking-LeNet5 models in the encrypted case,

with all variations of t and m. It is easy to notice that for m

values equal to 1,024, the results degrade quickly with values of

t that are too high, mostly resulting in random results equivalent

to overly encrypted and no longer readable data. On the other

hand, with m values equal to 2,048 or higher, the results remain

constant and unchanged, but obviously the excessive complexity of

encryption makes calculations slower and more difficult. Instead,

for low t values, the results are confusing but less random and tend

to accumulate on certain classes, especially on the Shirt class, as in

the plaintext case. Moreover, it can be noticed that they perform

better in the spiking version since the matrices stabilize for lower

values of t. Obviously, the classes on which the results accumulate

depend on the shape and object represented by the class itself. In the

case of FashionMNIST, it can be easily inferred that the Shirt class

is the most confusing for the model, as it can be easily assimilated

to other classes.

In Supplementary material, the plaintext and encrypted

confusion matrices for the MNIST and CIFAR10 datasets are

displayed. In this case, it is evident how for MNIST, the most

confusing class is class 8, which is visually more complex than

all the other numbers and therefore more easily misleads the

models, being able to resemble any other number. It should

also be noted that all these confusion matrices reflect the graphs

shown in Figures 10–14, showing the correspondence of various

accuracies and the different behavior for different values ofm and t.

9.3 Layer errors

In the matrices of Figure 20, the normalized layer-by-layer

errors are represented. Normalization was performed with values

ranging from 0 to 1 for each individual matrix. Naturally, for low

and high values of t, errors are much higher, even in the order of

tens of times, compared to central t values, but normalizing each

matrix separately served to show the differences between individual

layers and especially between LeNet5 and Spiking-LeNet5. This

way, it is better appreciated which model performs better and

which layers accumulate more errors. Total normalization across

all t values would not have allowed to notice the differences, given

the huge difference between the central t values and the most

extreme ones.
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FIGURE 16

NB qualitative variation during the process across the layers.

FIGURE 17

NB qualitative variation for each t variation.
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FIGURE 18

Plaintext confusion matrix for FashionMNIST. The Shirt class is the one that misleads the model the most.

Observing the matrices, we can notice that errors mainly

accumulate in the final layers, especially in the linearization layers,

precisely because there are more calculations for reducing large

matrices to the final linear array of 10 classes. It can also be noted

that there are not many errors in the activation layers because

during activations, the models are decrypted and there is a lower

accumulation of errors. Furthermore, it is noted that there are no

significant differences between the various classes and more or less

all have the same error values in the various layers, with a greater

accumulation in the final linearizations.

To better understand Figure 20, here is an explanation of the

strips:

• in the first strip (the Red one) there are the errors produced by

the encrypted LeNet5.

• in the second strip (the Blue one) there are the errors produced

by the encrypted Spiking-LeNet5.

• in the third strip, the difference between the errors of the

standard model and the spiking model was calculated, the

normalization in this case was performed after the calculation

of the difference. The Red parts show that there was a greater

error in LeNet5, vice versa the Blue parts show that Spiking-

LeNet5 made more mistakes.

Looking at the third strip of Figure 20, it can be noticed that it is

mainly Red, whichmeans that generally Spiking-LeNet5 performed

better.

The sporadic squares much denser than those of other classes

or layers generally show those classes that mislead the models the

most under certain conditions. For FashionMNIST (see Figure 20),

for example, a dense square can be seen in the Shirt class with m

equal to 1,024 and t equal to 1,000.

10 Conclusion

In this work, we aimed to provide a comparison between

classical models like DNNs and the less commonly used and

less known SNNs, additionally leveraging FHE to assess their

effectiveness and practicality in realistic scenarios. The final

outcome demonstrated how, under certain conditions, SNNs are

indeed more efficient than DNNs, and how FHE can enable the

manipulation of sensitive data without the risk of intrusions.

However, this work needs to be further developed to address some

of its most glaring limitations:

• the inability to use encrypted data in the nonlinear phases of a

model (Marchisio et al., 2020).

• the slowness attributed to encryption, particularly

pronounced in this specific case since the Pyfhel library

operates solely on CPU.

• the latency of SNNs, which precludes the application of these

studies to real-time cases.

Therefore, the next steps in this field involve developing

accelerated encryption models using GPUs and conducting in-

depth research to overcome the issue of nonlinear computations.

Furthermore, SNNs are still in their infancy, and undoubtedly,

there will be more opportunities for their utilization in the
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FIGURE 19

Encrypted confusion matrix for FashionMNIST with t and m variation. It can be noticed that for low values of t, the results tend to concentrate on

labels that resemble each other the most. Spiking-LeNet5 is less random than LeNet5 for low values of t.
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FIGURE 20

Errors layer-by-layer with FashionMNIST and m = 1,024. The top Red strip represents the errors in the layers of the LeNet5, the Blue strip in the

middle represents the errors in the layers of the Spiking-LeNet5. The last strip at the bottom represents the di�erence between the errors in the layers

of LeNet-5 and Spiking-LeNet5. It can be noticed that the third strip is predominantly Red, indicating that Spiking-LeNet5 generally performs better.
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future, especially when latency becomes less of a factor due to

advancements in computing power.
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