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Neuronal excitation-inhibition (E/I) balance is essential for maintaining neuronal 
stability and proper brain functioning. Disruptions in this balance are implicated in 
various neurological disorders, including autism spectrum disorder, schizophrenia 
and epilepsy. The E/I balance is thought to be primarily mediated by intrinsic 
excitability, governed by an array of voltage-gated ion channels, and extrinsic 
excitability, maintained through a counterbalance between excitatory synaptic 
transmission primarily mediated by excitatory transmitter glutamate acting on 
excitatory ion-tropic glutamate receptors and inhibitory synaptic transmissions 
chiefly mediated by GABA or glycine acting on their respective inhibitory ion-
tropic receptors. However, recent studies reveal that neurotransmitters can exhibit 
interactions that extend beyond their traditional targets, leading to a phenomenon 
called neurotransmitter-receptor crosstalk. Examples of such crosstalks include 
earlier discovery of inhibitory glycine functioning as co-transmitter gating on the 
NMDA subtype of excitatory glutamate receptor, and the most recent demonstration 
that shows the excitatory glutamate transmitter binds to the inhibitory GABAA 
receptor, thereby allosterically potentiating its inhibitory function. These studies 
demonstrate structurally and physiologically important crosstalk between excitatory 
and inhibitory synaptic transmission, blurring the distinction between the concepts 
of classic excitatory and inhibitory synaptic transmission. In this article, evidence 
supporting the forms of excitatory and inhibitory crosstalks will be briefly summarized 
and their underlying mechanisms will be discussed. Furthermore, this review will 
discuss the implications of these crosstalks in maintaining the E/I balance, as well 
as their potential involvement in synaptic plasticity and cognition in the context 
of social conditions.
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1 Introduction

The brain relies on neurotransmitters as messengers to enable 
precise and efficient communication between neurons. These 
neurotransmitters are released and bind to receptors, conveying 
signals that regulate processes including neural development, synaptic 
plasticity and excitation-inhibition (E/I) of membrane potentials. 
Disruptions in the E/I balance are believed to be  central to the 
pathogenesis of various neurological disorders, including 
schizophrenia and autism spectrum disorder (ASD) characterized by 
social deficits, as well as epilepsy (Fritschy, 2008; Lee et al., 2017; Liu 
et  al., 2021). The E/I balance is primarily regulated by intrinsic 
excitability, which is controlled by a range of voltage-gated ion 
channels, and by extrinsic excitability, which is maintained through a 
balance between excitatory and inhibitory synaptic transmissions 
(Desai, 2003; Chen L. et al., 2022). In the mammalian central nervous 
system, excitatory synaptic transmission is primarily driven by the 
neurotransmitter glutamate, which acts on excitatory ionotropic 
glutamate receptors, while inhibitory synaptic transmission is 
predominantly mediated by γ-aminobutyric acid (GABA) or glycine, 
which act on inhibitory ionotropic GABAA receptor (GABAAR) or 
glycine receptor (GlyR) respectively (Hyman, 2005). Increasing 
evidence, however, reveals that neurotransmitter could bind to 
receptors outside their conventional pairings as mentioned before 
under certain conditions (Liu et al., 2010; Bianchi et al., 2011; Wen 
et al., 2022; Piot et al., 2023). This phenomenon of neurotransmitter-
receptor crosstalk adds another layer of complexity to the regulation 
of information processing in the brain. It is plausible that 
neurotransmitter-receptor crosstalk disturbance may also contribute 
to E/I imbalance and synaptic plasticity deficit. Therefore, a deeper 
understanding of mechanism of neurotransmitter-receptor crosstalk 
would inform the development of therapeutic strategies for treating 
social disorders related to E/I imbalance.

2 Neurotransmitter-receptor crosstalk

Neurons communicate primarily via chemical synapses. 
Typically, the presynaptic neuron releases neurotransmitters, 
which are stored in vesicles at the axon terminal, transmitting 
signals to ionotropic or metabotropic receptors on the 

postsynaptic neuron to facilitate information transfer. This review 
focus on three types of ionotropic receptors, including the 
N-methyl D-aspartate receptor (NMDAR) which is cationic 
receptor, and GABAAR, GlyR which are anionic receptors 
(Table 1). Each ligand listed in the table could target more than 
one type of ionotropic receptor, and each ionotropic receptor was 
the target of more than two kinds of ligand. It is well-known that 
glycine acts both as an agonist on inhibitory GlyR and as a 
co-agonist of excitatory NMDAR in the spinal cord and brain. 
Surprisingly, recent studies have demonstrated that glutamate, a 
canonical excitatory transmitter, could positively modulate 
inhibitory GABAAR function in heterologous expression system 
and hippocampal slices of mice (Wen et al., 2022). Furthermore, 
one study reported that glutamate could directly activate GlyR as 
a positive allosteric modulator in spinal cord neurons (Liu et al., 
2010), but the other study did not find the direct link (Aubrey 
et  al., 2020). Additionally, other studies have reported that 
histamine, a canonical transmitter of histamine receptors, could 
also potentiate NMDAR in cultured hippocampal neurons or 
recombinant GABAAR in HEK cells (Burban et al., 2010; Bianchi 
et  al., 2011). It should also be  noted that neurotransmitter-
receptor crosstalk could occur with non-ionotropic receptors. For 
example, Piot et al. revealed that GABA, a canonical inhibitory 
transmitter, could enhance glutamate delta-1 receptor (GluD1) 
function and long-term potentiation of inhibitory synaptic 
plasticity in mouse hippocampus (Piot et al., 2023). Overall, as 
shown in Table 1, this type of transmitter-receptor crosstalk is 
therefore not an exception but could be considered as a common 
phenomenon in the nervous system.

3 Molecular mechanisms of 
neurotransmitter-receptor crosstalk

The molecular mechanisms of glycine acting as co-agonist of 
NMDAR have been summarized in other reviews (Hanson et  al., 
2024). Mutations in GluN1, such as D481N, significantly reduce 
glycine binding affinity in recombinant GluN1/GluN2A receptor and 
homozygous Grin1D481N transgenic mice (Wafford et al., 1995; Kew 
et al., 2000). Here, the review will focus on glutamate-GABAAR and 
GABA/glutamate-GlyR.

TABLE 1 Neurotransmitter-receptor crosstalk in animal models.

Receptor Transmitter Effect E/I balance Animal model Brain diseases

NMDAR (Na+, K+, Ca2+)
Glutamate Agonist Excitation↑ Grin1D481N mutant mice Schizophrenia

Glycine Co-agonist Excitation↑ Grin1neo−/− mice ASD

GABAAR (Cl-)

GABA Agonist Inhibition↑ Gabrb3S408/409A KI mice ASD

Glutamate Modulator Inhibition↑
Gabrb3E182G or Gabrb2E181G

KI mice
Epilepsy

GlyR (Cl-)

Glycine Agonist Inhibition↑ Glra2 KO mice ASD

GABA Partial agonist Inhibition↑

Glutamate Modulator Inhibition↑
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3.1 How does glutamate modulate 
GABAAR?

The GABAAR is a heteropentameric ionotropic receptor primarily 
responsible for mediating Cl− /HCO3

− current in the brain. The 
heteropentamer is composed of a combination of 19 homologous 
subunits from eight classes (α1–6, β1–3, γ1–3, δ, ε, θ, π and ρ1–3). 
Most common configuration consisting of two α and three β aligned 
β-α-β-β-α, or two α, two β, and one γ subunits aligned β-α-γ-β-α 
counter-clockwise when viewed from the extracellular side. The 
GABA binding sites are located at the interface between the α and β 
subunits, specifically at the β+/α- interface (Sieghart and Savic, 2018).

Over 30 years ago, it was discovered that the excitatory 
neurotransmitter glutamate potentiated GABAAR current in acutely 
isolated hippocampal neurons (Stelzer and Wong, 1989). A recent 
study identified a novel mechanism through which glutamate can 
directly modulate the inhibitory GABAAR via allosteric potentiation 
(Wen et  al., 2022). By combining electrophysiological recordings, 
radioligand binding assays, molecular modeling and mutational 
analysis, Wen et al. demonstrated that glutamate directly potentiated 
GABA-evoked currents in recombinant α1β2 GABAAR, with an EC50 
of approximately 180 μM, comparable to nearly 1 mM concentration 
of glutamate in the synaptic cleft during neurotransmission (Clements 
et al., 1992). It is noteworthy that this potentiation was also mimicked 
by glutamate analogs, such as AMPA, kainate, and NMDA, as well as 
by the NMDA receptor antagonist AP5  in recombinant α1β2 and 
α1β2γ2 GABAAR, indicating some structural specificity for glutamate-
like molecules. Molecular modeling and mutational analysis identified 
a novel glutamate binding pocket at the α+/β- subunit interface. Key 
residues involved in forming this pocket included K104, E137, and 
K155 on the α1 or α2 subunit, E181 on the β2 subunit and E182 on 
the β3 subunit. The mutations of these sites largely eliminated 
glutamate potentiation without affecting GABA binding affinity 
on GABAAR.

3.2 How does GABA or glutamate 
modulate GlyR?

GlyR is a pentameric receptor that is also permeable to chloride 
ions. In mammals, there are four α subunit isoforms (α1-α4) and one 
β subunit. Functional GlyRs can be either homomeric α or heteromeric 
αβ composition. The EC50 for glycine on recombinant GlyRs generally 
ranges from 25 μM to 280 μM for α1 and from 46 μM to 541 μM for 
α2, a typical value for heteromeric receptors is around 100 μM (De 
Saint Jan et al., 2001; Legendre et al., 2009), which is significantly 
higher than the glycine concentration at NMDAR. The glycine binding 
sites are located at the interfaces between the N-terminal domains of 
neighboring subunits.

De Saint Jan et al. initially reported that GABA could potentiate 
recombinant human α1 and α2 homomeric glycine receptors current with 
an EC50 of 14.4–160 mM and 64–200 mM, respectively (De Saint Jan 
et al., 2001). More recently, GABA was identified as a weak partial agonist 
of GlyR in neurons from the medial nucleus of the trapezoid body 
(MNTB) of rats aged P10-P18 (Lu et  al., 2008). Electrophysiological 
recordings, conducted in the presence of GABA receptors and glutamate 
receptors inhibitors or Zn2+ chelator, revealed that GABA significantly 
accelerated the decay kinetics of glycine-evoked currents. In MNTB 

patches, co-application of 10 mM GABA with 1 mM glycine (at 
physiological concentration) shortened the fast decay time constant and 
reduced the peak amplitude of glycine-evoked currents by about 25%. 
Although GABA may overlap with glycine binding sites, the exact binding 
sites on GlyR remain unclear.

Regarding the interaction between glutamate and GlyR, Liu et al. 
provided compelling evidence for a novel allosteric potentiation of 
GlyR-mediated chloride currents by glutamate [Liu et al., 2010; but 
also see Borghese et al. (2012); Aubrey et al. (2020)]. The glutamate 
binding sites on GlyR need to be determined.

All the cases of neurotransmitter-receptor crosstalk mentioned above 
suggested that neurotransmitters often act synergistically to enhance 
receptor function. This cooperative action of multiple neurotransmitters 
on a single receptor type indicates that neural signaling is highly 
cooperative. Therefore, modulating the non-canonical interactions (e.g., 
glutamate enhancing GABAAR) could provide new avenues for drug 
development that fine-tune synaptic activity without directly 
overstimulating canonical pathways. Investigating the non-canonical 
binding sites and developing compounds that target these sites will 
expand the toolbox for studying the physiological and pathological 
engagement of neurotransmitter-receptor crosstalk in the future.

4 Where and when does 
neurotransmitter-receptor crosstalk 
happen?

Under physiological condition, excitatory and inhibitory nerve 
terminals are traditionally believed to be strictly segregated to ensure 
precise function of neural networks and E/I balance. However, 
accumulating evidence suggested that the E/I balance could also 
be  modulated by mechanisms of heterosynaptic interplay and 
neurotransmitter-receptor crosstalk. Heterosynaptic interplay, particularly 
local dendritic excitatory and inhibitory synaptic crosstalk, has been 
documented both in vitro and in vivo (Chen et al., 2012; Hayama et al., 
2013; Field et al., 2020; Ravasenga et al., 2022). The role of glutamatergic 
and GABAergic interplay in modulating plasticity and E/I balance has 
been discussed in several excellent reviews (Chapman et  al., 2022; 
Cupolillo et al., 2024). Such synaptic interplay highlights the synaptic 
crosstalk occurrence between adjacent synapses within a 3–10 μm space. 
As for neurotransmitter-receptor crosstalk, it is unlikely that glutamate 
released from glutamatergic synapse would diffuse and potentiate 
inhibitory postsynaptic GlyR or GABAAR, given the submillimolar/
millimolar concentration required for most neurotransmitter-receptor 
crosstalks. Here, recent findings suggested two conditions may facilitate 
this crosstalk.

4.1 Co-releasing synapse

Neurotransmitters are synthesized by biosynthetic enzymes in 
neurons. For example, glutamic acid decarboxylase (GAD) catalyzes 
the conversion of glutamate to GABA. After synthesis, 
neurotransmitters are transported and concentrated to reach 
millimolar level in synaptic vesicles (SVs; Edwards, 2007). The uptake 
of neurotransmitters into SVs is governed by specific vesicular 
transporters (VTs). These include vesicular glutamate transporters 
VGLUT1, VGLUT2, and VGLUT3 for glutamate, vesicular GABA 
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transporter/vesicular inhibitory amino acid transporter VGAT/
VIAAT for GABA and glycine (Blakely and Edwards, 2012). Distinct 
VTs in the same SVs are essential for corresponding neurotransmitter 
acting in neurotransmitter-receptor crosstalk. That is, the 
co-localization of VGLUT and VGAT in the same SV is necessary for 
glutamate-GABAAR crosstalk. Neurotransmitters are then released 
through a calcium-dependent SV membrane fusion process triggered 
by presynaptic depolarization. This section focuses on co-expression 
of VGLUT and VGAT in the same SV, a phenomenon which occurs 
more frequently in the brain (Upmanyu et al., 2022).

Regarding the allosteric potentiation of GABAAR by glutamate, 
accumulating evidence supported GABA/glutamate co-release in 
subsets of GABAergic synapses (Figure  1A). (1) Using electron 
microscopic postembedding immunogold, Stensrud et al. revealed 
co-expression of VGLUT3 and VGAT in the same vesicle membrane 
of GABAergic terminals in the hippocampus and cortex of rats and 
mice (Stensrud et al., 2013; Stensrud et al., 2015), indicating GABA/
glutamate co-packaging in same vesicle. Following work by Pelkey 
et al. showed that VGLUT3/VGAT overlapping in cholecystokinin 
(CCK+) expressing hippocampal CA1 and CA3 interneurons was 
minimal in early postnatal days, but gradually increased from the 
juvenile stage to adulthood (Pelkey et al., 2020), suggesting GABA/
glutamate could co-release to pyramidal neurons in adult mice. (2) 
Coexistence of VGLUT2 and VGAT has been found in excitatory 
mossy fiber terminals of hippocampal CA3 region, cerebellar mossy 
fiber terminals and GABAergic basket cells terminals in postnatal day 
5–15 rat but not adult, indicating co-localization of glutamate and 
GABA in same vesicles at these terminals (Zander et  al., 2010). 
Immunogold staining also showed localization of α/β subunits of 
GABAAR in mossy fiber synapses (Bergersen et al., 2003). Subsequent 
functional tests found that activation of mossy fiber boutons attached 
to CA3 neurons could induce GABAergic inhibitory postsynaptic 
currents (IPSCs) in two-week-old rats (Beltrán and Gutiérrez, 2012; 

but also see (Cabezas et al., 2012)). (3) Surprisingly, co-expression of 
GABA and glutamate in mossy fiber terminals was also discovered in 
hippocampi from adolescents with epilepsy (Sandler and Smith, 
1991). In adult rat epilepsy model, a single pentylenetetrazol (PTZ) 
treatment elicited a fast inhibitory postsynaptic potential (IPSP) 
component in mossy fiber of CA3 (Gutierrez, 2000), indicating that 
glutamate and GABA co-release may occur under pathological 
condition. (4) Furthermore, Omiya et al. found VGLUT3-positive 
CCK+ cell terminals and α1-containing GABAAR at invaginating 
synapse in basal amygdala of adult mice (Omiya et al., 2015). (5)
Additionally, one study reported GABA/glutamate co-release from 
individual vesicles at entopeduncular nucleus-lateral habenula 
(EP-LHb) synapses, while the other study provide evidence that 
GABA and glutamate are stored and released from distinct, 
non-overlapping pools of synaptic vesicles at the same synapse. A 
follow-up study implemented a combination of optogenetics, 
electrophysiology and computational modeling determined that 
glutamate and GABA are co-packaged in the same synaptic vesicles in 
EP Sst + neurons projecting to the LHb (Kim et al., 2022).

In terms of GABA-GlyR crosstalk, it is facilitated by the vesicular 
inhibitory amino acid transporter (VIAAT, also known as VGAT), 
which could package both glycine and GABA into the same synaptic 
vesicles (Wojcik et al., 2006). The co-expression of GABA and glycine 
has been observed in rat spinal cord neurons (Ishibashi et al., 2013), 
adult mouse retina amacrine neurons (Pérez-León et  al., 2022), 
P10-P23 rat auditory brain stem nucleus (Lu et al., 2008) and adult 
mouse cerebellum (Milanese et  al., 2014), indicating potential 
crosstalk between GABA and GlyR.

Recent technological advances, such as spatiotemporal omics 
technology (Xu et al., 2022), have enabled brain-wide mapping of the 
spatial distribution of neurotransmitter transporters and synthetic 
enzymes in neurons, providing clearer insights into potential sites for 
co-releasing transmitters. However, it is important to recognize that the 

FIGURE 1

Two possible conditions in which neurotransmitter-receptor crosstalk occurs. (A) At the co-release synapses which two types of transmitters (e.g., 
glutamate and GABA) are co-packaging in the same presynaptic vesicles due to co-localization of two kinds of synaptic vesicular transporter (e.g., 
VGLUT and VGAT). Postsynaptic receptor binds to both transmitters (e.g., glutamate could allosterically potentiate GABA dependent GABAAR current). 
(B) Certain physiological or pathological conditions would cause neurotransmitter spillover, both transmitter A and transmitter B would bind to 
extrasynaptic or presynaptic receptor B (e.g., high frequency activity would induce glutamate and GABA spillover on extrasynaptic or presynaptic 
GABAAR).
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detection of transcripts for neurotransmitter synthetic enzymes does not 
necessarily imply the presence of the enzymes themselves. Therefore, 
functional and protein-level verification about neurotransmitter-receptor 
crosstalk in these neural circuits is warranted.

4.2 Non-postsynaptic locations

Neurotransmitter-receptor interaction could also been observed 
at non-postsynaptic locations, including extrasynaptic and presynaptic 
sites (Figure 1B). Neurotransmitters released at central synapses may 
exceed the capacity for removal by reuptake and degradation, diffuse 
beyond their intended synaptic cleft and activate receptors at adjacent 
synapses or extrasynaptic sites. The concentration of extrasynaptic 
neurotransmitter is at low-micromolar level under physiological 
condition. For instance, the concentration of extrasynaptic glycine and 
glutamate is around 1–2.5 μM in striatum of conscious rats (Harsing 
and Matyus, 2013). But under circumstances such as high synaptic 
activity, or pathological conditions like stroke, epilepsy and transporter 
dysfunctions, the concentration of extrasynaptic neurotransmitter 
spillover could reach to submillimolar level. For example, glutamate 
concentrations can increase to up to 200 μM in the plasma of ischemic 
stroke patients (Castillo et al., 2016). Glutamate spillover has been 
found at ectopic sites or induced by high frequency stimulation from 
parallel fiber synapses in cerebellum and the olfactory bulb of rat 
(Isaacson, 1999; Balakrishnan et al., 2014). Mutations in the glutamate 
transporter GLAST (EAAT1) lead to transporter dysfunction and 
seizures in human (Jen et al., 2005). Genetic knockout of the glutamate 
transporter GLT-1 (EAAT2) in mice leads to severe epilepsy and 
increased extracellular glutamate levels (Tanaka et al., 1997).

Ionotropic receptors at extrasynaptic sites exhibit relatively high 
affinity for neurotransmitter, given the relative low concentration of 
neurotransmitter spillover. In adult hippocampus and cortex, synaptic 
NMDAR are primarily composed of the low affinity GluN2A-
containing subtype for glutamate and glycine, whereas extrasynaptic 
NMDAR are predominantly the high affinity GluN2B-containing 
subtype for both neurotransmitters (Ge and Wang, 2023). Synaptic 
GABAARs typically consist of α1-3, β2-3 and γ2 subunits, which 
exhibit low affinity to GABA and mediate fast phasic currents. In 
contrast, extrasynaptic GABAARs often contain α4-6, β2-3 and/or δ 
subunits, enabling them to respond to low ambient GABA and 
regulate slow tonic currents (Brickley and Mody, 2012; Liu et  al., 
2018). For instance, extrasynaptic α5-containing GABAARs have been 
detected at hippocampal pyramidal cells from P56-P84 mice (Magnin 
et al., 2019). In cultured hippocampal neurons, the glutamate analog 
AP5 potentiated both phasic inhibitory postsynaptic currents and 
tonic currents (Wen et al., 2022), suggesting that allosteric modulation 
occurs at both synaptic and extrasynaptic GABAAR. Also, the 
α6-containing GABAAR could be  activated by GABA spillover at 
cerebellum of 12-day-old rats (Rossi and Hamann, 1998). Similarly, 
glutamate spillover has been reported in cerebellar climbing fiber to 
molecular layer interneurons from P12-P25 mice (Malhotra et al., 
2021). These results suggest potential modulatory effect of glutamate 
on extrasynaptic GABAAR. Interestingly, GABA released from the 
histamine/GABA co-releasing neurons in hypothalamic 
tuberomammillary nucleus (TMN) acts on extrasynaptic GABAAR 
(Yu et al., 2015), though whether histamine could modulate these 
GABAAR needs further investigation. Functional extrasynaptic α2 or 

α3 homomeric GlyRs have been found in hippocampus from 
3-month-old rats (Aroeira et  al., 2011), and in dorsal striatum, 
prefrontal cortex (PFC) and hippocampus from P21–P50 mice 
(McCracken et al., 2017). But the glycine EC50 were reported around 
500 μM in these regions, and the mechanisms by which GABA or 
glutamate spillover modulates extrasynaptic GlyRs remains to 
be elucidated.

Accumulating studies have demonstrated the presence of 
ionotropic receptors at presynaptic sites, acting as autoreceptors. 
Presynaptic GABAARs have been identified at thalamocortical 
glutamatergic terminals of P28-P30 rats (Wang et al., 2019). It has also 
been reported that α2 subunit and δ subunit containing GABAAR are 
positioned at hippocampal mossy fiber boutons, where they could 
co-release GABA and glutamate in 3–12 week-old rats as mentioned 
before (Ruiz et al., 2003; Alle and Geiger, 2007; Ruiz et al., 2010). These 
findings suggest that presynaptic GABAAR could function as 
autoreceptors for the co-released neurotransmitters. Similarly, 
NMDAR composed of GluN2A, GluN2B or GluN3A have also been 
identified as presynaptic autoreceptor in various regions, including rat 
cerebellar parallel fiber-Purkinje cell synapses, the spinal cord dorsal 
horn, hippocampal glutamatergic terminals, and the mice visual 
cortex at different ages (Liu et al., 1994; Charton et al., 1999; Bidoret 
et al., 2009; Larsen et al., 2011; Musante et al., 2011). The activation of 
presynaptic NMDAR is facilitated by the co-release of glycine from 
glutamatergic synapses (Cubelos et  al., 2005; Raiteri et  al., 2005; 
Muller et al., 2013; Cubelos et al., 2014).

Presynaptic homomeric GlyRs have been discovered in rat 
excitatory synapse, including calyx of Held in MNTB, spinal cords and 
ventral tegmental area (VTA) GABAergic neurons during 
development (Colin et al., 1998; Turecek and Trussell, 2001; Ye et al., 
2004; Hruskova et al., 2012). The release of glutamate or GABA in 
these synapses enables the crosstalk with presynaptic GlyR. These 
findings suggest that presynaptic ionotropic receptors, such as 
GABAAR, NMDAR and GlyR, could be modulated by presynaptic 
neurotransmitters co-release or spillover.

5 Functional implications of 
neurotransmitter-receptor crosstalk

Among the neurotransmitter-receptor crosstalks listed in Table 1, 
particularly those involving glycine-NMDAR, glutamate-GABAAR, 
and GABA-GlyR, a common feature is that the cross-matched ligand 
consistently acts in the same direction as the orthosteric 
neurotransmitter. For instance, glycine enhances NMDAR function 
together with glutamate, glutamate potentiates GABAAR with GABA, 
and GABA facilitates GlyR as glycine. This synergistic action observed 
in the crosstalk between different neurotransmitters may have 
important physiological and functional implications for neural 
circuits. E/I balance is the equilibrium between excitatory and 
inhibitory synaptic inputs within neural circuits. This balance is 
essential for maintaining optimal neuronal firing rates and overall 
network stability. Disruption of the E/I balance can contribute to 
pathogenesis of various neurological disorders characterized by 
hyperactivity in neural circuits, including epilepsy, ASD and 
schizophrenia characterized by social deficits.

Activated by the principal excitatory neurotransmitter glutamate, 
NMDAR is one of the major ionotropic glutamate receptors 
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responsible for excitatory synaptic inputs. Missense mutations in the 
GRIN1 gene, which encodes the GluN1 subunit of NMDAR targeting 
by glycine, have been associated with epileptic encephalopathy or 
schizophrenia (Ohba et  al., 2015; Ju and Cui, 2016). Transgenic 
Grin1neo-/- mice exhibited schizophrenic-like phenotypes, including 
hyperlocomotor activity, increased stereotypic movement, impaired 
sensorimotor gating and reduced social interactions (Gandal et al., 
2012). The NMDAR hypoactivity mediated GABAergic inhibitory 
dysfunction was believed associating with pathogenesis of 
schizophrenia (Cohen et al., 2015). The D481N mutation in GluN1 
lead to marked reduction in glycine co-agonist affinity at the 
NMDAR. Homozygous Grin1D481N mice exhibited impairment in 
hippocampal long-term potentiation (LTP), a synaptic plasticity 
mechanism underlying learning and memory (Bliss and Collingridge, 
1993). Furthermore, these mice showed significant deficits in 
hippocampus dependent spatial learning task, such as Morris Water 
Maze, and reduced sensitivity to NMDA-induced seizures (Kew et al., 
2000). Importantly, restoring the expression of wild type GluN1 in 
adult mice with congenital loss-of-function allele of Grin1 could 
rescue most of the behavioral phenotypes (Mielnik et  al., 2021). 
Interestingly, a recent study reported that injection of HA-996, a 
blocker of the glycine-binding site on NMDAR, in periaqueductal 
gray (PAG) of juvenile rat could interfere the social play behavior, 
while blocking of astrocytic glycine transporter 1 (GlyT1) inhibitor 
ALX-5407 could reverse the deficits (Dvorzhak et al., 2024). It should 
be  noted that D-serine or another partial agonist at the glycine-
binding site of NMDAR, D-cycloserine, could enhance hippocampal 
LTP in wild-type rats and alleviate social abnormality in ASD mouse 
models (Yang et  al., 2003; Won et  al., 2012; Li et  al., 2015). In 
conclusion, glycine-NMDAR crosstalk is crucial for maintaining E/I 
balance and facilitating synaptic plasticity, both of which are essential 
for cognitive processes like spatial learning and social interaction.

GABAAR is the main target of treating epilepsy, insomnia, anxiety 
and ASD characterized by E/I imbalance (Ghit et al., 2021; Vien et al., 
2015). As for glutamate-GABAAR crosstalk, although there is no 
available inhibitor specifically blocking the binding of glutamate to 
GABAAR, two lines of transgenic knock-in (KI) mice carrying 
different mutations that impaired the glutamate allosteric potentiation 
on the GABAAR, have been generated in two recent studies (Wen 
et al., 2022; Du et al., 2023). Wen et al. generated KI mice carrying a 
mutation in the β2 subunit of GABAAR (β2E181G). Du et al. generated 
KI mice harboring another mutation in the β3 subunit (β3E182G). These 
two mutations effectively disrupted the allosteric potentiation by 
glutamate without affecting the GABA-mediated activation of 
GABAAR. In β2E181G KI mice, electrophysiological recording in CA1 
neurons of hippocampal slice from these mice confirming the 
impairment of glutamate or glutamate-like AP5 potentiation of 
GABAAR current. Since the GABAAR current was induced by either 
micropressure injection of GABA or electrical theta-burst stimulation, 
indicating a predominant extrasynaptic GABAAR component. The 
β2E181G KI mice exhibited behavioral phenotypes indicative of 
increased neuronal excitability, including heightened sensitivity to 
noxious mechanical and temperature stimuli and a reduced threshold 
for seizure induction by kainate acid. More comprehensive tests were 
conducted on β3E182G KI mice. The β3E182G KI mice also had increased 
susceptibility to seizures induced by kainate acid, and decreased 
thresholds to both pressure and temperature, indicating elevated E/I 
imbalance. Furthermore, β3E182G KI mice exhibited enhanced 

hippocampus-related learning and memory, and impaired social 
interactions. These mice also showed reduced anxiety-like behaviors. 
Importantly, re-expression of wild-type α1β3-containing GABAARs in 
the dorsal hippocampal CA1 was sufficient to rescue the observed 
abnormalities in glutamate potentiation and behavioral deficits, 
supporting the critical role of extrasynaptic glutamate-GABAAR 
crosstalk in maintaining E/I balance and normal brain function.

Glycine-gated GlyR is also an important inhibitory ionotropic 
receptor in mammalian spinal cord and brain. Mutations in α1 
subunit of GlyR have been linked to hyperekplexia characterized by 
exaggerated startle reflex and increased muscle tone. Mutations in the 
α2 subunit are associated with ASD (Pilorge et al., 2016; Chen X. et al., 
2022). As for GABA-GlyR or glutamate-GlyR crosstalk, since the exact 
binding sites are still unknown and there are no specific antagonists 
targeting the binding sites, or transgenic animals with binding site 
mutation, the physiological role of GABA-GlyR or glutamate-GlyR 
crosstalk is largely elusive. In rat MNTB where GABA was 
co-packaging with glycine in same synaptic vesicles, Lu et  al. 
demonstrated that co-releasing GABA could enhance the temporal 
precision of glycine inhibition, which might be important for sound 
localization (Lu et al., 2008). Therefore, the physiological significance 
of GABA or glutamate modulating GlyR requires further investigation.

Under pathological conditions such as ischemia or epilepsy, increased 
glycine and glutamate concentrations due to spillover can lead to excessive 
activation of extrasynaptic GluN2B-dependent NMDAR and downstream 
signaling, potentially contributing to excitotoxicity and neuronal damage 
(Lasley, 1991; Ge et al., 2020; Ge and Wang, 2023) Pathological spillover 
can also result from altered expression or function of neurotransmitter 
transporters, such as the excitatory amino acid transporters (EAATs) for 
glutamate. Dysfunction of these transporters can lead to increased 
extracellular levels of glutamate, excessively promoting receptor activation 
and potentially leading to neurotoxic outcomes. For example, mutations 
and dysfunction of EAAT2 (GLT-1) have been linked to epilepsy and 
schizophrenia (Rakhade and Loeb, 2008; Wang et al., 2022). Animal 
studies demonstrated that EAAT2 dysfunction can lead to increased 
seizure and cortical injury susceptibility due to impaired glutamate 
clearance from synapses (Tanaka et  al., 1997). However, Nong et  al. 
demonstrated that glycine treatment at 100 μM, but not 1 μM, primes the 
NMDAR for clathrin-dependent internalization, a process that requires 
subsequent activation by glutamate (Nong et al., 2003). By regulating the 
surface expression of NMDARs, glycine-NMDAR crosstalk may help 
mitigate excitotoxic damage during conditions like stroke or seizure.

As summarized in Table 1, the consequence of neurotransmitter-
receptor crosstalk disruption have been always linked to pathological 
phenotypes, including social deficits and seizures, in transgenic knock-in 
mice with mutations in cross-matched ligand binding sites. A critical 
question that arises is how to investigate the potential causal relationship 
between neurotransmitter-receptor crosstalk and cognitive functions 
under physiological and psychological conditions during behavior? One 
direct approach is the development of novel antagonists that specifically 
target on the cross-matched ligand binding sites of receptor and 
preventing the potentiation without affecting orthosteric neurotransmitter 
activation. But such antagonists are often lacking, as their development 
requires the knowledge of binding sites based on co-crystallization of the 
ligand and receptor, which is challenging. As mentioned above and 
summarized in Table  1, another approach involves using transgenic 
knock-in mice with mutations in the cross-matched ligand binding site 
of the receptor, leaving the orthosteric neurotransmitter binding 
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unaffected. However, this method has several limitations, including 
potential developmental compensation by other receptors or signaling 
pathways, as well as difficulties in manipulating the system temporally and 
spatially across the whole brain. Given that these neurotransmission 
crosstalks phenomenon occur in various neural circuits and at different 
cellular positions across developmental stages, a more targeted approach 
is necessary. For example, in order to study the role of neurotransmitter-
receptor crosstalk in certain neural circuit in regulating social behaviors, 
one could use transgenic mice with a tamoxifen-inducible system to 
reduce the VGLUT gene, flanked by loxP sites, by injecting a VGAT-Cre-
containing virus into specific neural circuits to inhibit glutamate-
GABAAR crosstalk in a temporally and spatially controlled manner. 
Therefore, a combination of these methods is required to fully understand 
the physiological and pathological role of neurotransmitter-receptor 
crosstalk. It is crucial to develop potential tools for manipulating 
neurotransmitter-receptor crosstalk and observe the impact on network 
dynamics during behavior. Studying of the crosstalk at network level will 
be an important direction for future research, involving the modeling of 
specific networks and sub-networks.

6 Discussion

The review has discussed the concept of neurotransmitter-
receptor crosstalk, focusing on the molecular and cellular mechanisms 
in both physiological and pathological conditions. The review has also 
highlighted the importance of the crosstalk in maintaining the E/I 
balance in the nervous system. Disruption of this balance can 
contribute to neurological disorders such as epilepsy, ASD and 
schizophrenia. To further investigate the functional implications of 
neurotransmitter-receptor crosstalk, the review has discussed the use 
of transgenic mice and other techniques to study the causal link 
between crosstalk and cognitive functions, as well as their implications 
in physiological and psychological conditions.

However, there are still many challenges in studying neurotransmitter-
receptor crosstalk. For example, the specific binding sites for many 
crosstalk interactions are still unknown, and there is a lack of specific tools 
for manipulating crosstalk in  vivo. For the therapeutic significance, 
extension of the current rodent model study to non-human primates or 
human subject is necessary. Future research is needed to address these 
challenges and to further elucidate the functional roles of 
neurotransmitter-receptor crosstalk in health and disease.

To conclude, the study of neurotransmitter-receptor crosstalk has 
already yielded important insights into the complexity of neural 
signaling. Understanding how neurotransmitter-receptor crosstalk 

contributes to E/I balance is critical for developing new therapeutic 
strategies for social disorders in the future.
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