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Background: Gastrointestinal (GI) comorbidities are common among those 
with Autism Spectrum Disorder (ASD), but their etiology is not well understood. 
This study aimed to characterize gastrointestinal morphology and function in 
Shank3B mutant mice, a common genetic model of ASD, to identify potential 
alterations to the GI tract that could underlie ASD-associated GI comorbidities.

Methods: GI and enteric nervous system morphology was characterized using 
Hematoxylin and Eosin staining and immunohistochemistry. GI permeability 
was measured using the FITC-Dextran paracellular permeability assay. Whole-
GI tract motility time was measured in vivo using the carmine dye motility assay. 
Colonic contractions were characterized by tracking motility using an ex vivo 
motility assay.

Results: Homozygous knock-out (KO) Shank3B−/− mice exhibit significantly 
altered epithelial morphology and increased GI permeability. An increased 
myenteric plexus density and a higher number of HuC/D-expressing neurons 
in myenteric ganglia are observed in the colon of Shank3B−/− mice. These mice 
exhibit slowed whole-GI tract transit and reduced velocity and propagation 
length of colonic contractions. Compared to Shank3B−/− mice, heterozygous 
Shank3B+/− mice exhibit milder epithelial, neuronal, and functional alterations.

Conclusion: Shank3B−/− mice exhibit altered GI morphology and function, while 
Shank3B+/− mice exhibit a partial phenotype. These results indicate that Shank3, 
whose mutation is associated with ASD, is critical for function of the GI tract and 
its mutation may contribute to the etiology of GI comorbidities.
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1 Introduction

Autism Spectrum Disorders (ASD) are a group of heterogeneous 
neurodevelopmental disorders characterized by repetitive behaviors, 
hypersensitivity, and difficulty with communication (Leigh and Du, 
2015; Balasco et  al., 2020; Maenner, 2021). In the United  States, 
approximately 1 in 36 children have been diagnosed with ASD; up to 
80% of those diagnosed also experience gastrointestinal (GI) 
comorbidities including constipation and diarrhea (Adams et  al., 
2011; Bjørklund et al., 2020; Maenner, 2021; Deng et al., 2022). These 
comorbidities decrease quality of life and may exacerbate behavioral 
differences. The severity of GI symptoms is strongly correlated with 
the severity of behavioral challenges in ASD (Prosperi et al., 2017). 
Despite the prevalence of GI comorbidities, the relationship between 
ASD risk factors and altered GI function has not been fully elucidated.

GI function is locally regulated by the enteric nervous system 
(ENS), consisting of the submucosal plexus and myenteric plexus, that 
broadly control sensory and secretory or motility functions, 
respectively. In addition, the GI tract is extensively innervated by the 
efferent and afferent fibers that transduce motor and sensory signals 
from/to the central nervous system (CNS) (Rao and Gershon, 2016). 
In murine models, many ASD-linked genetic mutations have been 
shown to contribute to behavioral differences by altering central 
nervous system (CNS) development, but whether structural or 
functional changes in the GI tract and ENS are also present in these 
models is still being explored. Recent studies have found that 
ASD-linked mutations in genes including Foxp, Cntnap2, Nlgn3, and 
SLC6A4 impact distinct aspects of myenteric plexus organization and 
function. Notably, distinct functional differences are observed even 
between models in which the same gene is mutated (Margolis et al., 
2016; Fröhlich et al., 2019; Hosie et al., 2019; Leembruggen et al., 2020; 
Park et al., 2023; Robinson et al., 2023). These results suggest that the 
heterogeneous presentation of GI comorbidities in the ASD 
community is also represented in murine models, and that different 
ASD-linked mutations alter the ENS via distinct pathways. However, 
it is still unclear whether GI dysfunction associated with other 
ASD-linked mutations is in part due to altered GI tract development 
or secondary behavioral causes, such as altered diet and eating 
patterns (Hung and Margolis, 2023).

Haploinsufficiency of the Shank3 gene manifests in Phelan-
McDermid Syndrome (PMS), a monogenetic form of ASD (Phelan 
and McDermid, 2011; Tavassoli et al., 2021). Individuals with PMS 
present heterogeneously with developmental delay and intellectual 
disability, and some aspects of this heterogeneity have been linked to 
deletion size (Wilson, 2003). PMS is also associated with aberrations 
in GI secretions and motility (Malara et al., 2022; Matuleviciene et al., 
2023). Gastroesophageal reflux is present in >40% of those with PMS, 
while chronic constipation and/or diarrhea is present in 26–57% of 
individuals with PMS (Soorya et  al., 2013; Kolevzon et  al., 2014; 
Sarasua et al., 2014; Matuleviciene et al., 2023). It is unknown whether 
the presence of GI comorbidities in PMS is also related to deletion size 
or variant. Due to the prevalence of GI symptoms in PMS, the impact 
of Shank3 mutations on the intestinal microbiome, alongside 
histological characterization of the small intestine, has previously been 
studied in murine knockout (KO) models (Tabouy et al., 2018; Sauer 
et al., 2019; Delling and Boeckers, 2021; Wong et al., 2021).

In the CNS, SHANK3 is a postsynaptic density scaffolding 
protein that assists in dendritic spine formation in glutamatergic 

synapses (Schuetz et al., 2004; Raab et al., 2010; PubChem, 2024). 
SHANK3 has also been detected in neuronal cell bodies and nuclei, 
where it may impact protein transcription in response to synaptic 
activity (Grabrucker et  al., 2014). SHANK3 is also found in GI 
epithelium, where it regulates tight junctions and zinc absorption 
(Raab et al., 2010; Pfaender et al., 2017; Sauer et al., 2019). Shank3ΔC 
KO (Δex21) mice exhibit more permeable intestinal barriers, a 
phenotype attributed to the role of Shank3 as a regulator of tight 
junction protein ZO-1 expression (Wei et  al., 2017). Altered 
epithelial morphology in the small intestine was observed alongside 
increased expression of ZO-1 and unaltered expression of tight 
junction protein Claudin3  in a different KO model, Shank3αβ 
(Δex11) (Sauer et al., 2019). While increased ZO-1 expression has 
been proposed as a marker for increased intestinal barrier 
permeability, intestinal barrier function remains to be  directly 
measured in  vivo in any Shank3 KO model. Alterations in GI 
function have also been reported in zebrafish, where loss of Shank3 
led to decreased GI motility and lower numbers of serotonin-
secreting enteroendocrine cells (James et al., 2019).

While these studies suggest that Shank3 mutation could result in 
altered microbiome profiles and small intestine morphology, the 
impact of Shank3 mutation on other aspects of GI organization or 
function remained to be  reported. For instance, it was unknown 
whether Shank3 mutation could lead to altered ENS organization, 
colon morphology, or GI motility in murine models. Furthermore, 
prior evaluations of intestinal barrier function in Shank3 KO models 
relied on ex vivo assays that may disrupt tissue integrity and remove 
the contributions of extrinsic innervations, or did not directly 
measure paracellular permeability in GI tract. Overall, potential 
alterations in ENS organization, GI permeability, morphology, or 
motility within a given Shank3 ASD murine model remain to 
be characterized.

Thus, in this study we sought to characterize the impact of Shank3 
mutation on ENS and GI tract morphology in the Shank3B (Δex13-
16) mouse model, in which the homozygous KO (Shank3B−/−) exhibits 
more significant behavioral alterations compared to the heterozygous 
KO (Shank3B+/−) (Peça et al., 2011; Tzanoulinou et al., 2022). In the 
Shank3B model, exons 13–16 are deleted, resulting in the loss of the 
PDZ domain, which otherwise facilitates localization of postsynaptic 
density proteins (Monteiro and Feng, 2017). This deletion results in 
the complete loss of SHANK3α and SHANK3β isoforms, while some 
SHANK3γ isoforms remain. Since humans with PMS are heterozygous 
for Shank3 mutations (De Rubeis et  al., 2018), in this study 
we characterize both homozygous and heterozygous KO mice.

Here, we first validate that the SHANK3 protein is present in the 
myenteric plexus, and that expression of SHANK3 is decreased in 
Shank3B−/− mice. We find that Shank3B−/− mice have significantly 
altered epithelial morphology and GI permeability. Furthermore, 
we find that adult Shank3B−/− mice exhibit increased myenteric plexus 
density in the distal colon as well as an increased number of neuron 
cell bodies in colonic myenteric ganglia. Whole-GI tract transit 
velocity is reduced in these mice. Further investigation via an ex vivo 
colonic motility assay reveals differences in contraction propagation 
distance and velocity. Heterozygous Shank3B+/− mice exhibit more 
mild phenotypic changes compared to Shank3B−/− mice, suggesting 
that this model is suitable for investigating severe and moderate GI 
dysfunction in ASD as well as for evaluating future 
therapeutic interventions.
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2 Materials and methods

2.1 Animals

All experimental procedures were reviewed and approved by the 
MIT Committee on Animal Care (under protocol #2306000538). 
B6.129-Shank3tm2Gfng/J (RRID:IMSR_JAX:017688; JAX Strain #: 
017688) mice (Shank3B+/− mice) were gifted by Dr. Guoping Feng 
(MIT) or obtained from the Jackson Laboratory and bred to obtain 
Shank3B−/−, Shank3B+/− and Shank3B+/+ mice (Peça et al., 2011). Mice 
were kept in a 12:12 reverse light cycle and provided standard food 
and water ad libitum. Functional assays were performed during the 
dark cycle and at the same time of day (approximately zeitgeber time 
ZT15-16) to account for possible circadian influences on GI function 
(Paulose et  al., 2019). Mice were housed by genotype following 
weaning to account for the possibility of behavioral differences 
impacting feeding behavior. Up to 5 adult mice were housed per cage. 
Mice were aged 8–12 weeks during experiments, and Shank3B+/+ 
littermates were used as controls. Similar numbers of male and female 
mice were used in each experiment.

2.2 Histology

2.2.1 Tissue preparation
To prepare intestinal cross-sections for Hematoxylin and Eosin 

(H&E) staining, mice were anesthetized under isoflurane and 
euthanized via cervical dissection (Bialkowska et al., 2016). The small 
intestine and colon were immediately removed, and luminal contents 
were flushed out with cold 4% PFA. The small intestine was cut into 
three equal segments (from proximal to distal: the duodenum, 
jejunum, and ileum) while the colon was kept intact. Mesenteric fat 
was removed from each segment; afterwards, each segment was cut 
open along the mesenteric border and pinned down mucosa-side up 
onto a dental wax-lined petri dish under light tension (CELLTREAT, 
Pepperell, MA, USA). Tissues were fixed with 4% PFA for 24 h at 
4°C. After fixation, each segment was rolled into a “swiss roll” kept 
intact with an insect pin and stored in PBS at 4°C for at least 24 h 
before being processed to paraffin (Moolenbeek and Ruitenberg, 
1981). Tissues were paraffin processed and embedded at the Koch 
Histology Core at MIT. For morphological analysis, tissue was sliced 
into 5 μm thick paraffin sections and stained with Hematoxylin and 
Eosin using an auto-stainer (Tissue-Tek Prisma, Sakura Finetek, 
USA). An Aperio Digital Slide scanner was used to obtain brightfield 
images (at 20X magnification) of tissue sections. Morphological 
measurements (including villi height and crypt depth) were obtained 
using the ImageScope x64 software (Leica Biosystems, Nussloch, 
Germary). Investigators were blinded to the genotype.

To prepare whole-mount tissue for immunohistochemistry, mice 
were deeply anesthetized with pentobarbital sodium (Fatal-Plus, 
Vortech Pharmaceuticals, Dearbon, MI, USA) and transcardially 
perfused with ice-cold PBS followed by ice-cold 4% PFA. The small 
intestine and colon were dissected, and images were taken to measure 
intestinal length. Colon length was manually measured using ImageJ/
Fiji (Schindelin et al., 2012). Following the same process reported for 
swiss-roll processing, the tissue segments were cleaned, cut, and 
pinned. Tissues were fixed for 1 h in 4% PFA at 4°C followed by 
storage in PBS at 4°C. Tissues were stored while pinned under light 

tension. Prior to staining, 2–3 cm long samples were cut, and the 
muscle layer (containing the myenteric plexus) was peeled away from 
the mucosa using two pairs of tweezers.

2.2.2 Immunohistochemistry
For whole-mount immunohistochemistry, samples were stained 

in a 24-well plate (CELLTREAT, Pepperell, MA, USA). All steps at 
room temperature were performed on a shaker. Samples were washed 
three times in PBS, then permeabilized in 1% PBS-T for 1 h followed 
by blocking in 3% donkey buffer serum (DBS) in 1% PBS-Triton 
(PBS-T) for 2 h. Samples were stained with unconjugated primary 
antibodies (Anti-Shank3: 1:250, Novus Biologicals, NBP1-46768) 
diluted in 5% DBS in 0.1% PBS-T overnight at 4°C then washed three 
times with 3% DBS in 0.1% PBS for 30 min each. Samples were stained 
with secondary antibodies (anti-rabbit IgG (H + L), Alexa Fluor 568: 
1:1000, Invitrogen, A10042) for 2 h at room temperature, then washed 
three times with 3% DBS in 0.1% PBS-T for 30 min each. Next, 
samples were stained with conjugated primary antibodies (Anti-
PGP  9.5 Alexa Fluor 488: 1:500, Abcam, ab302578; Anti-HuC/D 
Alexa Fluor 647: 1:500, Abcam, ab237235) overnight at 4°C followed 
by washing. Samples were subsequently stained with DAPI (1:20000, 
Invitrogen, D1306) for 30 min at room temperature, washed, then 
placed on a slide with an attached 0.5 mm spacer. Samples were then 
flattened with a miniature paintbrush and mounted with 
Fluoromount-G mounting medium (Invitrogen, Cat. No. 
00–4,958-02).

2.3 Quantification

2.3.1 Image acquisition
A Leica DMi8 confocal microscope (Leica Microsystems, Wetzlar, 

Germany) was used to obtain fluorescent images. Images were 
collected using a 20X objective (for plexus morphology and ganglionic 
cell count) or a 63X oil-immersion objective (for SHANK3 
expression), resulting in total magnification of 200X or 630X, 
respectively. Z-stacks (up to approximately 50 μm thick) were acquired 
to capture the entire ganglionic structure in the image, and for larger 
areas of interest, tiled images were stitched together using the LASX 
software (Leica Microsystems, Wetzlar, Germany). Z-stacks were 
combined using maximum projection prior to analysis.

2.3.2 Image analysis

2.3.2.1 SHANK3 expression
Average SHANK3 fluorescence signal intensity per ganglionic 

region (as marked by PGP 9.5 expression) was found using Aivia 
Software 14 (Leica Microsystems, Wetzlar, Germany) and normalized 
to PGP 9.5 expression. ROIs were manually drawn around ganglia, 
after which the ganglionic area within the ROI was identified using 
the Cell Count function, and the fluorescent intensity associated with 
PGP 9.5 and SHANK3 in each ganglion was determined using the 
fluorescent intensity measurement tool. SHANK3 expression was 
measured in multiple ganglia per mouse, and the mean is reported.

2.3.2.2 Plexus morphology
1,200 μm × 1,200 μm images of the myenteric plexus were taken 

for plexus density measurements. Images were analyzed using the 
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REAVER MATLAB program (Corliss et al., 2020). Briefly, the image 
was blurred with an averaging filter to estimate background 
illumination, which was subsequently subtracted from the image. The 
background-subtracted image was lightly blurred, converted to 
grayscale, and thresholded to obtain an initial segmentation. Borders 
of the initial segmentation were then cleaned using an averaging filter, 
followed by a series of morphological operations to close holes. Given 
that connected regions of the plexus were generally >1,200 pixels in 
area, segmented regions less than this value were removed, as were 
regions with a segment diameter <8 pixels. The initial segmentation 
was checked by the user, and if necessary, manually edited for 
accuracy. Plexus density was calculated by dividing the number of 
pixels in the plexus segmentation by the total amount of pixels in 
the image.

Neuronal cell body count per ganglion was quantified using the 
Aivia Pixel Classifier. First, example neuron cell bodies, as marked by 
HuC/D expression, were manually segmented. This training set was 
used to train the pixel classifier, which was subsequentially used to 
segment and count the number of neurons per ganglia. ROIs were 
manually drawn around each ganglion, and pixel classification was 
performed in each ROI.

2.4 Functional assays

2.4.1 Whole-GI transit
Whole GI transit time was determined using the previously 

described carmine dye assay (Koester et al., 2021). Mice were fasted 
for 1 h prior to the study. Briefly, at zeitgeber time ZT15-16, mice were 
orally gavaged with 150 μL of 6% carmine dye in 0.5% methyl cellulose 
solution in dH2O in a red-light illuminated room, then placed in 
individual cages with access to water and chow. Every 10 min, cages 
were checked for the presence of a dyed fecal pellet.

2.4.2 Ex-vivo colonic motility assay
Mice were anesthetized under isoflurane and euthanized via 

cervical dissection. The entire length of the colon was dissected out. 
The colon was placed in ice-cold (4°C) Krebs buffer saturated with 
carbogen, (95% O2/5% CO2), the mesentery was carefully removed, 
and the luminal contents were flushed with a blunt needle and 5 mL 
syringe. The colon was then placed in an organ bath with a constant 
flow of warm Krebs solution (35°C, 3.5 mL/min) aerated with 
carbogen. Each colon was acclimated to the bath for 30 min prior to 
video recordings. Motility videos were recorded for 15 min. From 
these videos, spatiotemporal maps of colonic motility were created 
using the Gastrointestinal Motility Monitor (GIMM; Catamount 
Research and Development, St. Albans, VT, USA) (Hoffman 
et al., 2010).

Spatiotemporal maps were analyzed using a custom Matlab (The 
MathWorks Inc., Natick, MA, USA) program. Spatiotemporal map 
matrices (in which each column in the matrix corresponds to a point 
in time, and each row in the matrix represents a location along the 
colon) were imported into Matlab. Each row was normalized by the 
mean pixel intensity of the row to remove banding artifacts 
corresponding baseline differences in colon diameter. Next, the matrix 
was averaged using a gaussian filter (h = 8, sigma = 3) to smooth the 
contractile pattern. To find the number of initiated contractions, the 
absolute value of intensity profiles across time from approximately the 

first 5% of the proximal colon were plotted, where peaks in the 
intensity profile represented contraction events. Peaks were identified 
using findpeaks() function, and contraction events that were not 
completed by the end of the recording were discarded. Similar 
intensity peak profiles were utilized to find the spatiotemporal map 
coordinates that corresponded to the beginning and end of each 
contraction. Intensity profiles were generated for approximately every 
10% of the intensity map. These profiles, and whether peaks associated 
with contractions could be detected within them, were used to localize 
the manual selection of the start and end time and position of each 
contraction. From these coordinates, the velocity and duration of each 
contraction was calculated, as was the inter-contraction interval.

2.4.3 FITC-Dextran permeability assay
The FITC-Dextran permeability assay was conducted as 

previously described (Volynets et al., 2016; Woting and Blaut, 2018). 
Briefly, mice were fasted for 6 h (beginning at zeitgeber time ZT12), 
then gavaged with a PBS solution containing 80 mg/mL FITC-
Dextran 4,000 kDa at a dose of 600 mg/kg body weight. FTIC-Dextran 
solutions were kept in the dark, on ice, prior to gavage. After 45 min, 
blood was collected from the submandibular bundle in heparinized 
tubes. To separate plasma, collected blood was centrifuged at 
6000 rpm for 10 min at 5°C. Plasma was then collected and diluted 1:7 
with PBS. Plasma fluorescence was measured using a SpectraMax M2 
Microplate Reader (Molecular Devices) with an excitation wavelength 
of 485 nm and an emission wavelength of 515 nm. Sample fluorescence 
was measured three times per well, and the average is reported. 
Plasma fluorescence was determined by comparing measured values 
to a standard curve (FITC-Dextran dissolved in PBS).

2.5 Statistical analysis

Statistical analysis was performed in GraphPad Prism (version 
10.2.0, for Windows, GraphPad Software, Boston, MA, USA, www.
graphpad.com). Either a one-way ANOVA or a two-way ANOVA in 
combination with Tukey’s multiple comparisons tests (threshold p 
values = 0.05) was used to identify significant differences between 
genotypes and intestinal regions. Significant p value results from these 
tests are displayed on their respective graphs. Data are reported as 
mean ± SEM (standard error of the mean).

3 Results

SHANK3 protein has previously been detected in GI epithelium 
lysate, and single-cell RNA sequencing has identified Shank3 
transcripts in some enteric neurons (Sauer et al., 2019; Drokhlyansky 
et  al., 2020). To assess Shank3 expression in enteric neurons, 
we  employed immunostaining for SHANK3 protein in myenteric 
plexus ganglia in the duodenum, proximal colon, and distal colon. 
We found that SHANK3 is indeed expressed in the soma and axonal 
projections of myenteric neurons, and that SHANK3 expression is 
significantly reduced in the duodenum and proximal colon of 
Shank3B+/− and Shank3B−/− mice, as well as the distal colon of 
Shank3B−/− mice. In the distal colon of Shank3B+/− mice the expression 
of SHANK3 trended lower compared to Shank3B+/+ mice, but this 
effect was not statistically significant (Figures 1A–D).
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The absorptive and digestive functions of the GI tract depend on 
the integrity of the GI mucosa, and altered GI morphology has 
previously been observed in individuals with inflammatory bowel 
disease as well as in other murine models of ASD (Erben et al., 2014; 
Langner et  al., 2014; Wang et  al., 2023). Given that SHANK3 is 
expressed in GI epithelium and mucosa, we asked whether loss of 
Shank3 leads to alterations in gross GI tract morphology and tissue 
organization (Drokhlyansky et al., 2020). To determine whether tissue 
organization was altered, features including villi length, crypt depth, 
and muscle thickness were measured in sections of the small intestine 
and colon (Figures 2A–E). While gross organization remained intact 
between Shank3B+/+, Shank3B+/−, and Shank3B−/− mice, villi length was 
shorter in the proximal small intestine (duodenum) of Shank3B−/− 
mice (−/−: 418 ± 15 μm, n = 6; +/−: 504 ± 18 μm, n = 6; +/+: 543 ± 20 μm, 
n = 7) (Figure 2B). Shank3B−/− mice were also found to have larger 
crypts in the colon (Figure 2C). To test whether this difference in villi 
length was simply due to Shank3B−/− mice exhibiting shorter 
intestines, villi:crypt ratio was compared, and Shank3B−/− mice were 
found to have a significantly lower villi:crypt ratio compared to 
Shank3B+/+ and Shank3B+/− mice (Figure 2D). Notably, heterozygous 
Shank3B+/− mice were also found to have a lower villi:crypt ratio than 

Shank3B+/+ mice. Finally, Shank3B−/− mice exhibited a thicker muscle 
layer in the proximal colon (Figure 2E). Shank3B−/− mice were also 
found to possess shorter colon length as compared to Shank3B+/+ and 
Shank3B+/− mice (−/−: 7.20 ± 0.33 cm, n = 10; +/−: 7.75 ± 0.30 cm, n = 7; 
+/+: 8.79 ± 0.52 cm, n = 6) (Figures 2F,G).

Given these alterations in epithelial organization and that Shank3 
modulates the expression of tight junction proteins in GI epithelium 
(Wei et al., 2017), we next evaluated whether loss of Shank3 impacts 
intestinal barrier function. Epithelial barrier integrity is important for 
absorption regulation and blocks inflammatory luminal antigens from 
entering the body (Chelakkot et al., 2018). Increased epithelial barrier 
permeability has previously been reported in individuals with ASD, 
and is hypothesized to contribute to increased inflammation as well 
as pathological changes in metabolism (Arrieta et  al., 2006; de 
Magistris et  al., 2014). To assess epithelial barrier permeability, 
we orally gavaged fasted mice with a fluorescent solution of FITC-
Dextran 4,000 kDa, and then quantified FITC-Dextran fluorescence 
in blood serum. We found a significantly higher concentration of 
FITC-Dextran in the blood serum of Shank3B−/− mice as compared to 
Shank3B+/+ and Shank3B+/− littermates 45 min after gavage, indicative 
of higher epithelial barrier permeability (−/−: 7.03 ± 0.87 μg/mL, 

FIGURE 1

(A) Myenteric plexus SHANK3 expression in regions of the GI tract in Shank3B+/+, Shank3B+/−, and Shank3B−/− mice. Myenteric neurons exhibit punctate 
expression of SHANK3 (yellow) in cell bodies (HuC/D – red) and projections (PGP 9.5 – cyan). SHANK3 expression is diminished in Shank3B+/− and 
Shank3B−/− mice. Scale bars indicate 40 μm. (B–D) Quantification of SHANK3 expression in myenteric ganglia in the duodenum (B), proximal colon (C), 
and distal colon (D) normalized by PGP 9.5 expression (n = 8). One-way ANOVA with Tukey’s multiple comparison test.
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FIGURE 2

(A) Representative H&E cross-sections. Scale bars indicate 200 μm. (B–E) Morphological analysis of H&E cross-sections (n = 6–7). 10 measurements 
were taken per animal, and data reported as mean ± SEM, with individual data points representing the mean value from each animal. Two-way ANOVA 
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https://doi.org/10.3389/fnins.2025.1552369
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Eberly et al. 10.3389/fnins.2025.1552369

Frontiers in Neuroscience 07 frontiersin.org

n = 12; +/−: 4.75 ± 0.31 μg/mL, n = 14; +/+: 4.15 ± 0.39 μg/mL, n = 9) 
(Figure 2H). This change in intestinal permeability, as well as the 
decreased surface area of the small intestine due to smaller villi, did 
not impact the weight of adult mice (Supplementary Figure S1).

Alterations in ENS organization (including decreased number of 
enteric neurons, and increased density of the myenteric plexus) have 
been linked to alterations in GI motility and have previously been 
reported in other murine models of ASD (Niesler et al., 2021; Wang 
et al., 2023). We found that myenteric plexus density was increased in 
the distal colon of Shank3B−/− mice (−/−: 28.9% ± 1.75%, n = 5; +/−: 
20.87 ± 2.49%, n = 5; +/+: 16.49 ± 2.09%, n = 5; Figures 3A,B), which 
was also correlated with an increase in number of enteric neurons (as 
marked as HuC/D+) per ganglion in the proximal (−/−: 41.47 ± 2.35 
cells, n = 6; +/−: 32.30 ± 4.42 cells, n = 6; +/+: 19.04 ± 2.74 cells, n = 6; 
Figure  3C) and distal colon (−/−: 38.47 ± 3.12 cells, n = 6; +/−: 
26.81 ± 5.65 cells, n = 6; +/+: 20.8 ± 3.02 cells, n = 6; Figure  3C). 
Shank3B+/− mice also exhibited an increased number of enteric 
neurons per ganglion in the distal colon, but this did not correspond 
to an increase in myenteric plexus density (Figures  3A–C). No 
significant alterations were observed in the small intestine 
(Figures 3A–C, Supplementary Figure S2).

Enteric neurons regulate GI motility via innervation of GI smooth 
muscle, and both diarrhea and constipation are common among those 
with ASD (Bjørklund et al., 2020; Fung and Vanden Berghe, 2020). To 
assess global changes in GI motility, we gavaged mice with carmine 
dye and recorded the amount of time before mice defecated a dyed 
fecal pellet. Shank3B−/− and Shank3B+/− mice took longer to pass a 
dyed fecal pellet, indicative of slower whole-GI motility (−/−: 
188.8 ± 17.5 min, n = 15; +/−: 189.4 ± 17.3 min, n = 13; +/+: 125.3 ± 8.8, 
n = 9; Figure 3D).

While the carmine dye assay revealed that Shank3 deletion leads 
to slowed whole-GI motility, it remained unclear whether this slowed 
motility stemmed from altered extrinsic innervation or differences 
in  local ENS activity (Browning et  al., 2017). Since our 
immunofluorescence staining revealed alterations in the organization 
of colonic myenteric plexus, we employed an ex vivo motility assay to 
further assess intrinsic colonic motility (Swaminathan et al., 2016). 
Using spatiotemporal maps, we  characterized specific features of 
colonic moving contraction (CMC) events (Figure 4A). While the 
number of contractions initiated in the proximal colon was not 
significantly different across genotypes (−/−: 8 ± 2, n = 6; +/−: 
10.2 ± 2.8%, n = 6; +/+: 7.7 ± 1.8, n = 5; Figure 4B), in Shank3B−/− mice, 
the average percentage of colon length that was involved in each CMC 
was lower (−/−: 68 ± 4.3%, n = 6; +/−: 94 ± 2.0%, n = 6; +/+: 86 ± 4.5%, 
n = 5; Figure  4C). Based on the average percentage of colon 
involvement in the CMCs of Shank3B+/+ mice, CMCs were considered 
to reach the distal colon if they propagated >80% along the length of 
the colon. The number of CMCs that completed propagation to the 
distal colon was lower in Shank3B−/− mice (−/−: 68 ± 5.8%, n = 6; +/−: 
98 ± 1.7%, n = 6; +/+: 93 ± 4.9%, n = 5; Figure  4D). Furthermore, 
individual CMC velocity was reduced in Shank3B−/− and 

Shank3B+/− mice, with Shank3B+/− mice showing a partial phenotype 
(−/−: 0.62 ± 0.10 mm/s, n = 6; +/−: 1.13 ± 0.11 mm/s, n = 6; +/+: 
1.29 ± 0.17 mm/s, n = 5; Figure  4E). There were no significant 
differences in CMC duration or inter-CMC interval between 
Shank3B−/−, Shank3B+/–, and Shank3B+/+ mice (Figures 4F,G).

4 Discussion

GI comorbidities are common among individuals with ASD, but 
their pathophysiology is not well understood (Bjørklund et al., 2020). 
In this study, we asked whether mutation of the ASD-linked gene 
Shank3, linked to Phelan-McDermid Syndrome (PMS) in humans, 
leads to alterations in ENS and GI tract structure and function that 
may manifest as GI comorbidities. In humans, mutations in one copy 
of Shank3 lead to PMS; thus we examined whether GI functional 
differences are recapitulated in Shank3B+/− mice as well as Shank3B−/− 
mice. First, we  found that SHANK3 expression was significantly 
decreased in Shank3B−/− mice. In heterozygous Shank3B+/− mice, 
SHANK3 expression was significantly decreased in the duodenum 
and proximal colon, but not in the distal colon, where expression 
trended lower, but was not statistically significant.

We found that knock out of SHANK3 Δex13-16 results in altered 
intestinal morphology not only in the duodenum but also in the colon. 
Shank3B−/− mice possessed shorter duodenal villi as well as shorter 
colons with thicker muscular walls. This knockout also increased 
paracellular permeability in small intestine mucosa. Myenteric plexus 
innervation was denser in the distal colon of Shank3B−/− mice, and 
enteric neuron count was higher. Shank3B−/− mice had longer 
whole-GI transit times. In ex vivo colon preparations, individual CMC 
velocity was slowed, and a lower proportion of CMCs involved the 
distal colon in Shank3B−/− mice. Despite these alterations in GI 
morphology and function, the weight of Shank3B−/− mice did not 
significantly differ from Shank3B+/+ mice. To our knowledge, this 
study is the first to show that knockout of SHANK3 Δex13-16 results 
in slowed whole GI motility and disrupted CMC patterns, and that 
these alterations in GI motility are accompanied by ENS hyperplasia 
in the distal colon.

The severity of these alterations differed in a gene-copy dependent 
manner. In assays where Shank3B−/− mice were found to 
be  significantly different from Shank3B+/+ mice, heterozygous 
Shank3B+/− mice exhibited an intermediate but not always significant 
phenotype. Shank3B+/− mice exhibited a modestly but significantly 
reduced villi:crypt ratio, increased plexus density in the distal colon, 
and decreased whole-GI tract transit speed. The mild GI phenotypes 
in Shank3B+/− mice suggest an opportunity to use this model to 
identify environmental factors or biological pathways that exacerbate 
GI symptoms in mice with genetic vulnerability to ASD.

The results from the in vivo permeability assay, which evaluates 
mucosal permeability with extrinsic innervation to the mucosa still 
intact, corroborate previous histochemical markers of increased 

with Tukey’s multiple comparison test. (B) Villi length. (C) Crypt depth. (D) Villi:crypt ratio. (E) Muscle thickness (longitudinal and circular). (F) Shank3B−/− 
mice have shorter colons (n = 7–10). (G) Quantification of F. One-way ANOVA with Tukey’s multiple comparison test. (H) FITC-Dextran concentration 
in plasma is increased in Shank3B−/− mice, indicative of higher GI epithelial permeability (n = 9–14). One-way ANOVA with Tukey’s multiple comparison 
test. Colon (P): Proximal colon. Colon (D): Distal colon.
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FIGURE 3

(A) Representative images of myenteric plexus morphology in regions of the GI tract in Shank3B+/+, Shank3B+/−, and Shank3B−/− mice. Scale bars 
indicate 200 μm. Neuronal bodies indicated by HuC/D (red) and projections indicated by PGP 9.5 (cyan). (B) Plexus density is increased in the distal 
colon of Shank3B−/− mice (n = 5–6). Two-way ANOVA with Tukey’s multiple comparison test. (C) Number of neurons per ganglia are decreased in the 
duodenum, and increased in the colon, as marked by HuC/D+ cells. Ganglia grouped by genotype (n = 5–6). (D) GI transit time is increased in 
Shank3B−/− mice (n = 9–15). One-way ANOVA with Tukey’s multiple comparison test. Colon (P): Proximal colon. Colon (D): Distal colon.
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intestinal permeability in other Shank3 KO models, Shank3ΔC KO 
(Δex21) (Wei et al., 2017) and Shank3αβ (Δex11) (Sauer et al., 2019). 
Although each Shank3 KO model knocks out different exons, resulting 
in disruption of different protein domains, increased intestinal 
permeability is observed in each model. These convergent findings 
inspire future studies aimed at further characterization of tight 
junction structure and the proteins that interact with SHANK3 within 
intestinal epithelial cells.

scRNA-seq data of the ENS in mouse ileum and colon has also 
indicated that Shank3 is expressed in subsets of excitatory and 
inhibitory motor neurons, as well as in some interneurons, 
secretomotor neurons, and sensory neurons (Drokhlyansky et al., 
2020). Immunofluorescence data from this study corroborates 
immunohistochemical studies that identify SHANK3 expression in 

stomach myenteric neurons (Raab et al., 2010). Although the Shank3B 
ASD model globally knocks out most Shank3 isoforms, results from 
the ex vivo motility assays indicate that loss of Shank3 in intrinsic 
enteric neurons can alter motility even without the influence of 
extrinsic innervation. Notably, we found significant differences in ENS 
organization and CMC propagation in the distal colon, where 
scRNA-seq data has revealed higher expression of glutamate receptors 
compared to the rest of the GI tract (Drokhlyansky et  al., 2020). 
However, whether the excitability of enteric neurons is altered in mice 
with Shank3 mutations remains to be tested.

In the CNS, SHANK3 is well known as a scaffolding protein in 
the post-synaptic density of excitatory glutamatergic synapses. Loss 
of Shank3 in the CNS leads to alterations in dendritic spine 
morphology, reduced glutamatergic synaptic transmission, and 

FIGURE 4

(A) Spatiotemporal maps track colonic contractions in ex vivo colonic preparation across time (x-axis) and at different parts of the colon (y-axis). The 
diameter of the colon is indicated by the grayscale value. Contractions appear as vertical stripes in the map. (B–G) Quantification of colonic 
contraction properties from spatiotemporal maps (n = 5–6). Data reported as mean ± SEM, with individual data points representing mean values from 
each animal. One-way ANOVA with Tukey’s multiple comparison test. (B) Number of initiated contractions. (C) Average percentage of colon involved 
in contraction. (D) Percentage of contractions that completed propagation along the entire colon (as defined by propagating > 80% of the colon). 
(E) Average contraction velocity. (F) Duration of contraction (how long the contraction lasts). (G) Interval between contractions.
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impaired synaptic plasticity (Bozdagi et al., 2010; Wang et al., 2011). 
In the periphery, Shank3 mutation was shown to alter acetylcholine 
receptor clustering in myotubes at the neuromuscular junctions in 
individuals with PMS (Lutz et al., 2020). However, the molecular 
function of SHANK3 in ENS synapses and how it regulates specific 
neurotransmitter receptor expression is unknown. Future studies 
may investigate whether Shank3 mutations result in altered 
distribution of cholinergic and glutamatergic varicosities in the ENS, 
particularly in relation to cell types that are common downstream 
targets of glutamatergic neurons, such as calretinin+ excitatory 
motor neurons and secretagogin+ sensory neurons (Hamnett et al., 
2024). Whether SHANK3 expression varies across different subtypes 
of ENS neurons and synapses, or if SHANK3 mutation results in 
altered populations of enteric neuron subtypes, remains to 
be explored.

Nonetheless, glutamatergic signaling in the ENS has been shown 
to modulate myenteric neuron excitability via activation of mGluR 
channels on sensory interneurons and increase the force, but not 
frequency, of CMCs through activation of ENS AMPA receptors (Seifi 
and Swinny, 2016; Swaminathan et al., 2019). Furthermore, activation 
of VGLUT2 glutamatergic neurons led to an increase in colonic 
propulsion (Hamnett et al., 2024). Some enteric glutamatergic neurons 
have been shown to also produce acetylcholine— cholinergic neurons 
synchronously activate to facilitate motility (Tong et al., 2001; Filpa 
et al., 2016; Spencer et al., 2018). Taken together, these findings raise 
the possibility that Shank3 mutation may decrease GI motility by 
altering the excitation of motility circuits via sensory interneurons, or 
by directly altering the synchronicity or strength of 
cholinergic signaling.

We find that mice with Shank3 mutations exhibit alterations in GI 
tract and ENS morphology, which are accompanied by differences in 
intestinal barrier permeability and colonic motility. Further 
investigation will focus on identifying mechanisms underlying 
alterations in GI function associated with Shank3 mutations. 
Furthermore, given that the ENS continues to develop after birth, in 
part due to signaling from the gut microbiota (Rao and Gershon, 
2016), and that Shank3 plays a role as a postnatal regulator of synaptic 
plasticity, it would be worthwhile to track altered GI tract and ENS 
development at multiple time points during the animal’s development 
(Monteiro and Feng, 2017). Our findings add to the body of evidence 
that ASD-linked mutations can also result in biological changes local 
to the GI tract, identifying a locus of dysfunction outside of the brain 
which may play a role in the pathogenesis of GI comorbidities in those 
with ASD.
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