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Objective: Long-term mobile phone use (LTMPU) has been linked to sleep 
disorders, mood disorders, and cognitive impairment, with MRI-detected 
enlarged perivascular spaces (EPVSs) as potential imaging markers. This study 
investigated computational MRI-visible EPVSs and their association with sleep 
disturbance, dementia, and mental distress in young adults with LTMPU.

Methods: This retrospective study included 82 LTMPU patients who underwent 
MRI scans and assessments using six clinical scales: Montreal Cognitive 
Assessment (MoCA), Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity 
Index (ISI), Epworth Sleepiness Scale (ESS), Hamilton Anxiety (HAM-A), and 
Hamilton Depression (HAM-D). Deep learning algorithms segmented EPVSs 
lesions, extracting quantitative metrics (count, volume, mean length, and mean 
curvature) across 17 brain subregions. Correlation analyses explored relationships 
between EPVSs indicators and clinical measurements. The BrainNet Viewer tool 
highlighted significant brain subregions and EPVSs traits linked to dementia, 
sleep disturbance, and mental distress.

Results: Correlation analyses identified 23 significant indicator pairs (FDR-
adjusted p < 0.05), including associations between nine EPVSs characteristics 
and MoCA scores: four with the PSQI, one with the ISI, three with the ESS, 
four with the HAM-A, and two with the HAM-D. Regression analyses revealed 
seven significant EPVSs features, with three linked to cognitive impairment: 
mean EPVSs length in the left basal ganglia and mean length/curvature in the 
left temporal lobe. Also, the mean EPVSs length in the left frontal lobe could 
indicate insomnia, sleepiness, and anxiety.

Conclusion: Computational EPVSs metrics offer insights into the EPVSs 
pathophysiology and its links to mood disorders, sleep disturbances, and 
cognitive impairment in LTMPU patients. These findings also highlight 
potential connections between EPVSs, excessive daytime sleepiness, and 
anxiety, contributing to a comprehensive understanding of these multifaceted 
conditions.
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1 Introduction

The number of mobile phones has markedly increased in recent 
decades. The number of mobile Internet users in China was 1.029 
billion, with young adults making up a significantly high proportion 
of such users (19.7%), as of December 2021 (Zhang et al., 2023). Long-
time mobile phone use (LTMPU) is defined as engaging with a mobile 
device ≥ 4 h/day (Liu et al., 2019). Recognition of the negative effects 
of mobile phone overuse is increasing. Previous research has 
highlighted the correlation between excessive mobile phone usage and 
a spectrum of health issues, including sleep disturbances, excessive 
daytime sleepiness (EDS), poor sleep quality, dementia, anxiety, 
depressive disorders, and so on (Abi-Jaoude et al., 2020; Li et al., 2020; 
Liu et  al., 2019; Nowak et  al., 2022; Wang et  al., 2024a; Zhao 
et al., 2023).

Sleep disturbances (particularly insomnia disorders, EDS, and 
poor sleep quality) frequently co-occur with various medical and 
psychiatric conditions that inherently affect sleep, including dementia 
and mood disorders (anxiety and depressive disorders) (McCarter 
et  al., 2022; Pérez-Carbonell et  al., 2022; Sutton, 2021). Our 
understanding of the precise neurobiology and neural underpinnings 
of insomnia disorders, EDS, subjective sleep quality, mood disorders, 
and dementia remains limited (Aquino et al., 2024; Chouliaras and 
O'Brien, 2023; Craske and Stein, 2016; Malhi and Mann, 2018; 
McCarter et  al., 2022; Pérez-Carbonell et  al., 2022). In practice, 
conditions such as insomnia disorders, EDS, subjective sleep quality, 
dementia, anxiety disorders, and depressive disorders often pose 
challenges to clinicians because of the complexities involved in their 
detection, diagnosis, and variability in treatment responses (Perlis 
et al., 2022; Pérez-Carbonell et al., 2022; McCarter et al., 2022; Wang 
et al., 2024b; Chellappa and Aeschbach, 2022; Blumberger et al., 2018). 
It is imperative to unravel their mechanisms to prevent or defer the 
onset of these conditions and mitigate progression.

Evidence suggests that perivascular spaces (PVSs) dysfunction is 
involved in the pathogenesis of sleep disturbances, Alzheimer’s 
disease, and other neurodegenerative and inflammatory disorders 
(Rasmussen et al., 2022; Wardlaw et al., 2020). PVSs include a variety 
of passageways around the arterioles, capillaries, and venules in the 
brain and play an essential role in forming a network of drainage 
channels and the glymphatic system for eliminating metabolic waste 
and fluid from the brain (Ding et al., 2017; Wardlaw et al., 2020). Sleep 
is crucial for brain clearance in humans, and one night of sleep 
deprivation leads to reduced clearance of intrathecally delivered MRI 
contrast agents from the brain parenchyma across multiple brain 
regions (Rasmussen et al., 2022). PVSs dysfunction serves as a marker 
of neuroinflammation (Fang et al., 2020), and is associated with mood 
disorders (anxiety and depressive disorders) (Guo et  al., 2023). 
Previous studies have indicated that glymphatic inhibition resulting 
from sleep disturbances could be  a common pathway leading to 
cognitive impairment in the elderly and promoting the progression of 
neurodegenerative disorders (Rasmussen et al., 2022). The glymphatic 
system, with PVSs as a key component, plays a crucial role in the 
clearance of brain amyloid β (Aβ) and tauopathy, which are linked to 

neurodegenerative conditions (cognitive impairment) (Wang 
et al., 2022).

MRI is a pivotal tool for the diagnosis and prognosis of various 
neuropsychiatric disorders, including sleep disturbances, dementia, 
and depressive or anxiety disorders, and for monitoring treatment 
progress. MRI-visible enlarged perivascular spaces (EPVSs) visualized 
on structural MRI scans, mark perivascular space dysfunction, 
impairment of normal brain fluid, waste clearance and microvascular 
dysfunction, and impaired glymphatic exchange (Rocca et al., 2023; 
Wardlaw et  al., 2020). Previous studies on epilepsy, long-term 
COVID-19, cerebral small vessel disease, and post-stroke have 
indicated an association between MRI-visible EPVSs and insomnia 
disorder (Sotgiu et al., 2023), subjective poor sleep quality (Del Brutto 
et al., 2022), dementia (Ding et al., 2017), and depressive disorders 
(Liang et al., 2018), while studies exploring the association between 
MRI-visible EPVSs and anxiety and EDS are limited.

Currently, a growing body of research is focused on the 
computational quantification of EPVSs, facilitated by advancements 
in the analysis of extensive datasets in which visual rating scores and 
scales are either absent or deemed unreliable for assessing EPVSs in 
the centrum semiovale (Del Brutto et al., 2022; Waymont et al., 2024). 
Recent advancements in automated segmentation algorithms, such as 
the VB-Net architecture, have enabled high-precision volumetric and 
morphological analyses of EPVSs, addressing the inconsistencies 
inherent in manual grading methods. In our previous work, VB-Net 
achieved a recall and precision of 0.953 and 0.923, respectively, 
demonstrating exceptional reliability in EPVSs quantification (Zhang 
et al., 2024). This framework combines an encoder-decoder design for 
feature embedding, residual connections for stable gradient 
propagation, and bottleneck layers for computational optimisation, as 
detailed in previous publications (Zhu et al., 2022).

In this study, we  aimed to demonstrate the features of 
computational MRI-visible EPVSs and their association with sleep 
disturbances, dementia, and mental distress in young adults 
with LTMPU.

2 Materials and methods

2.1 Participants

This school-based, cross-sectional study was conducted between 
October 2021 and May 2022. A total of 165 students and young 
teachers aged 18–50 years at a medical college in the Wenjiang 
District, Chengdu, China, were recruited. Of these, 146 (88.5%) were 
valid. Questionnaires were distributed to the students and young 
teachers during class. The Ethics Committee of the Hospital of 
Chengdu University of Traditional Chinese Medicine approved 
this study.

The inclusion criteria were as follows: (a) LTMPU. The duration 
of mobile phone use per day was determined using the following 
question: How long do you usually spend using mobile phones per 
day? The response categories for this question were less than 2 h, 
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2–4 h, 4–6 h, and more than 6 h. LTMPU was defined as using a 
mobile phone ≥ 4 h per day in consideration of the recent findings 
(Liu et al., 2019); (b) ethnic Han; (c) being free of any psychoactive 
medication at least 2 weeks before and during the study (Li et al., 
2016); (d) right-handedness assessed with the Edinburgh Handedness 
Inventory (Oldfield, 1971). Exclusion criteria were as follows: (a) with 
coronavirus disease 2019 (COVID-19) infections; (b) with any 
significant neuropsychiatric disease or brain structural abnormality; 
(c) with MRI contraindications.

To evaluate mental status, cognitive function, and sleep status, all 
participants were asked to complete the Hamilton Anxiety (HAM-A), 
Hamilton Depression (HAM-D), Montreal Cognitive Assessment 
(MoCA), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality 
Index (PSQI), and Insomnia Severity Index (ISI). The HAM-A was 
used to assess the severity of anxiety symptoms. The total 
comprehensive HAM-A scores ranged from 0 to 56. A HAM-A 
score ≤ 7 indicates no or minimal anxiety; 8–14 indicates mild anxiety; 
15–23 indicates moderate anxiety; and ≥ 24 indicates severe anxiety 
(Chen et  al., 2020; Matza et  al., 2010). The severity of depressive 
symptoms was assessed using the Hamilton Depression Rating Scale. 
A global HAM-D score ranged from 0 to 54. A HAM-D score ≤ 7 
indicates no depression; 8–16 indicates mild depression; 17–23 
indicates moderate depression; and ≥ 24 indicates severe depression 
(Zimmerman et al., 2013).

The severity of cognitive impairment was assessed using the 
MoCA. The total MoCA score ranged from 0 to 30. Cognitive 
impairment is defined as a score < 26. The lower the MoCA score, the 
worse the cognitive function (Chen et  al., 2020). The severity of 
excessive daytime sleepiness symptoms was assessed using the 
ESS. The total ESS scores ranged from 0 to 24. An ESS score of more 
than 6, 11, and 16 was defined as sleepiness, excessive sleepiness, and 
risky sleepiness, respectively (Hou et  al., 2022). The severity of 
subjective sleep quality was assessed using the PSQI. The total PSQI 
score ranged from 0 to 21. A score > 5 indicated poor sleep quality 
(Morin et al., 2011). The severity of insomnia was assessed using the 
ISI. The total ISI score ranged from 0 to 28. An ISI score ≤ 7 indicates 
the absence of insomnia; 8–14 indicates sub-threshold insomnia; 15–21 
indicates moderate insomnia; 22–28 indicates severe insomnia (Morin 
et al., 2011).

At baseline, 91 out of 146 participants (62.3%) reported using a 
mobile phone ≥ 4 h per day (LTMPU). Each participant with LTMPU 
provided written informed consent before undergoing magnetic 
resonance (MR) (within 2 weeks of completing the scale). Nine 
participants were excluded due to MRI motion artifacts. Finally, 82 
participants with LTMPU were included.

2.2 MR imaging

All patients were examined using a 3.0 T whole-body scanner 
(Discovery MR750; GE Healthcare, Milwaukee, WI, USA) equipped 
with a 32-channel phased-array head coil. T2-weighted images 
(T2WI) acquisition parameters were as follows: TR = 5,613 ms, 
TE = 116 ms, slice thickness = 5.0 mm, slice spacing = 1.5 mm, and 
FOV = 26 cm. 3D T1-weighted imaging (T1WI) was acquired using 
a spoilt gradient echo sequence with a repetition time = 2.9 ms, echo 
time = 3.0 ms, inversion time = 450 ms, flip angle = 8°, slice 
thickness = 1 mm, matrix = 250 × 250, FOV = 22 cm × 22 cm.

2.3 Data preprocessing and EPVSs 
quantification

The image preprocessing encompasses multiple steps, as 
described below. Initially, N4 bias field corrections were implemented 
on both T1WI and T2WI images to eliminate magnetic field 
inhomogeneity. Subsequently, the grayscale values were standardised 
by normalising the intensities to fall within the range of [−1, 1] 
through clipping in the range of 0.1–99.9%. By employing a deep 
learning model (VB-Net) (Shi et al., 2022), which was embedded 
within an image analysis tool known as the uAI research portal 
(United Imaging Intelligence) (Shi et al., 2022; Wu et al., 2023), the 
skull was removed from the T1WI, and the entire brain was 
segmented into 109 regions of interest (ROIs) based on the DK atlas 
(Desikan et al., 2006).

These ROIs were grouped into 17 subregions 
(Supplementary Table  1) based on their anatomical proximity, 
functional homogeneity, and pathological relevance to EPVSs 
involvement. Key subregions include the basal ganglia, centrum 
semiovale, thalamus, and brainstem–established loci for glymphatic 
dysfunction (Wardlaw et al., 2020; Ineichen et al., 2022; van der Thiel 
et al., 2024). The final subregions included the bilateral frontal lobes, 
parietal lobes, occipital lobes, temporal lobes, basal ganglia, cerebellum, 
thalamus, centrum semiovale, and brainstem (Supplementary Table 1). 
Thereafter, the EPVSs lesions were automatically segmented from the 
T2WI images using a built-in VB-Net model (Zhang et al., 2024), 
demonstrating high accuracy for EPVSs segmentation with a recall and 
precision of 0.953 and 0.923, respectively (Zhang et al., 2024). The 
AI-generated masks were reviewed and modified by two experienced 
radiologists when necessary. Additionally, the T1WI and T2WI images 
were co-registered using a registration algorithm (Avants et al., 2014), 
transferring the segmentation mask from the T1WI space to the T2WI 
space. A comprehensive analysis was performed, computing 68 
quantitative metrics of EPVSs lesions, including the number, volume, 
average length, and average curvature of the EPVSs lesions for each 
brain subregion.

2.4 Correlation analyses

To explore the association between the EPVSs metrics (namely, 
distributed regions, number, volume, mean length, and mean 
curvature) and human life status evaluated by the corresponding 
scales (e.g., MoCA scale for cognition, PSQI scale for sleep quality, ISI 
scale for insomnia, ESS scale for sleepiness, HAM-A scale for anxiety, 
and HAM-D scale for depression), relevant correlation analyses were 
conducted. The methods of correlation analysis were as follows: (1) for 
two measured values that conformed to a normal distribution, 
Pearson’s correlation analysis was employed; (2) when at least one of 
the two measured values did not conform to a normal distribution, 
Spearman’s correlation analysis was used. In multiple hypothesis 
testing, the false discovery rate (FDR) was utilised to correct the 
p-value of the correlation analysis, and an FDR-adjusted p-value < 0.05 
was considered statistically significant. Correlation coefficient (r) 
represent the strength of correlation: r ≥ 0.90, very strong correlation; 
0.70 ≤ r < 0.90, strong correlation; 0.40 ≤ r < 0.70, moderate 
correlation; 0.10 ≤ r < 0.40, weak correlation; r < 0.10, negligible 
correlation (Schober et al., 2018).
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Based on the significant correlations identified, scatter plots were 
employed to illustrate the distribution of each pair of variables and 
their positive or negative associations. Scatter plots were constructed 
using RStudio (version 4.2.2). In addition, BrainNet Viewer (https://
www.nitrc.org/projects/bnv/; Xia et  al., 2013) emphasised the 
significant brain subregions in which the EPVSs metrics exhibited a 
significant correlation with clinical scale scores.

2.5 Partial correlation analyses

Considering the potential confounding effects of age and sex on 
EPVSs morphology and clinical status, partial correlation analyses 
were conducted using age and sex as covariates to assess the adjusted 
associations. Following the framework outlined in Section 2.4, 
normality testing was first applied to all the variables. Partial Pearson 
correlations were computed for pairs of variables satisfying normality 
assumptions; otherwise, partial Spearman correlations were used. The 
FDR method was rigorously applied to correct p-values across all 
comparisons, with statistical significance defined as FDR-adjusted 
p < 0.05.

2.6 Univariate and multivariate logistic 
regression analyses

Univariate and multivariate logistic regression analyses were 
conducted to identify robust characteristics correlated with clinical 
outcomes. A total of 70 features (68 EPVSs characteristics, age, and 
sex) were included in the univariate analysis for each of the six 
clinical statuses. Variables with p < 0.1 in univariate regression were 
advanced to multivariate regression, where statistical significance 
was defined as p  < 0.05. Clinical scales were dichotomised as 
follows: a MoCA score ≥ 26 indicated cognitive normalisation, while 
a score < 26 indicated cognitive impairment; a PSQI score > 5 
denoted poor sleep quality, and a score ≤ 5 denoted good sleep 
quality; an ISI score ≤ 7 was categorised as non-insomnia, and a 
score > 7 as insomnia; an ESS score ≤ 6 indicated non-sleepiness, 
while a score > 6 indicated sleepiness; a HAM-A score > 7 was 
considered anxious, and a score ≤ 7 was considered non-anxious; a 
HAM-D score > 7 was considered depressed, while a score ≤ 7 was 
considered non-depressed. Each clinical outcome was 
analysed separately.

3 Results

3.1 Participant characteristics

A total of 82 participants with LTMPU were retrospectively 
included. They underwent MR examinations and assessments using 
six clinical scales: the MoCA scale for cognition, PSQI scale for 
sleep quality, ISI scale for insomnia, ESS scale for sleepiness, 
HAM-A scale for anxiety, and HAM-D scale for depression. The 
demographic and clinical scale scores are presented in Table 1. The 
median age of all participants was 38.0 years, and 29.3% (24/82) 
were men. The distribution of clinical scale scores is plotted in 
Figure 1, with median scores of 25.0, 8.5, 7.0, 6.0, 6.0, and 9.0 for 

MoCA, PSQI, ISI, ESS, HAM-A, and HAM-D scale scores, 
respectively.

3.2 Correlation analysis

Correlation analyses were carried out to determine the 
relationship between EPVSs characteristics (distributed sub-regions 
and quantitative indicators) and human living conditions evaluated by 
the six scales: the MoCA, PSQI, ISI, ESS, HAM-A, and HAM-D. As 
depicted in Figure 2, 23 pairs of indicators were significantly correlated 
after FDR correction, as shown in Supplementary Table 2. Specifically, 
the MoCA score was positively correlated with nine EPVSs features: 
the mean curvature of EPVSs lesions in the left centrum semiovale, 
left occipital lobe, left parietal lobe, and left temporal lobe; the mean 
length of EPVSs lesions in the left centrum semiovale, left occipital 
lobe, and left parietal lobe; and the number and volume of EPVSs 
lesions in the left occipital lobe. The subregions with EPVSs 
characteristics that were significantly correlated with the MoCA score 
are highlighted in Figure 3. The corresponding distributions of these 
nine pairs of EPVSs characteristics and MoCA scores are plotted in 
Supplementary Figure 1.

In addition, the PSQI, ISI, and ESS were related to sleep 
assessment. Specifically, the PSQI score was positively correlated 
with the volume of the EPVSs in the right temporal lobe. At the same 
time, it exhibited a negative association with three EPVSs features: 
the mean curvature of the EPVSs in the left centrum semiovale and 
the mean length of the EPVSs in the left and right frontal lobes 
(Figures 4a,b). The ISI score was negatively correlated with the mean 
length of the EPVSs in the left frontal lobe (Figure 4c). In contrast, 
the ESS score was positively correlated with the mean length of the 
EPVSs in the left frontal lobe (Figure 4d), suggesting that the longer 
the EPVSs, the lower the ISI score and the less likely insomnia, 
whereas the higher the ESS score, the greater the degree of sleepiness. 
Moreover, the ESS score positively correlated with the EPVSs volume 
and mean length in the left centrum semiovale. The corresponding 
distributions of these EPVSs characteristics that were significantly 
correlated with the PSQI, ISI, and ESS scores are shown in 
Supplementary Figure 2.

In the mood-related correlation analyses, HAM-A and HAM-D 
scores were negatively correlated with the number and volume of 
EPVSs in the left temporal lobe (Figures 5a–d). Additionally, there 
were negative correlations between the HAM-A score and the mean 

TABLE 1 Demographics of participants (total = 82).

Variables Descriptive 
statistics

Disease (n, %)

Age (years) 38.0 (33.0, 43.0) -

Sex (male, n, %) 24 (29.3%) -

MoCA score 25.0 (21.8, 26.0) Cognitive impairment (55, 67.1%)

PSQI score 8.5 (5.0, 14.3) Poor sleep quality (54, 65.9%)

ISI score 7.0 (1.0, 14.0) Insomnia (36, 43.9%)

ESS score 6.0 (4.0, 10.0) Sleepiness (40, 48.8%)

HAM-A score 6.0 (3.8, 14.3) Anxiety (37, 45.1%)

HAM-D score 9.0 (4.0, 16.0) Depression (44, 53.7%)
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FIGURE 1

Distribution of six clinical scale scores across all participants. (a) MoCA, (b) PSQI, (c) ISI, (d) ESS, (e) HAM-A, and (f) HAM-D scale scores.

FIGURE 2

Correlation analyses between the 68 EPVSs characteristics and the 6 clinical scale scores. Asterisk represents two-tailed FDR-adjusted p-value, with * 
indicating adjusted-p < 0.05 and ** indicating adjusted-p < 0.01, showing that the correlations are statistically significant.
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length of the EPVSs in the left and right frontal lobes (Figure 5e). The 
corresponding distributions of the EPVSs characteristics that were 
significantly correlated with the HAM-A and HAM-D scores are 
shown in Supplementary Figure 3.

3.3 Partial correlation analysis

To account for potential confounding by age and sex, partial 
correlation analyses adjusted for these covariates were conducted 
across all 68 EPVSs features (17 subregions × 4 metrics: volume, 
number, mean length, and mean curvature) and six clinical scales. 
After FDR correction, six pairs of associations retain statistical 
significance (Table 2), while 17 previously identified correlations in 
unadjusted analyses (Supplementary Table 2) are attenuated below 
significance thresholds (FDR-adjusted p ≥ 0.05). Specifically, the 
MoCA scores were positively associated with EPVSs curvature in 
the left central semiovale and EPVSs length in the left parietal lobe. 
In contrast, the PSQI scores showed persistent negative correlations 
with EPVSs curvature in the left central semiovale and EPVSs 
length in the left frontal lobe. The bidirectional relationship between 

the left frontal EPVSs length and sleep phenotypes also survived 
adjustment; longer EPVSs were correlated with higher daytime 
sleepiness (ESS) but lower insomnia severity (ISI). These robust 
associations, unaffected by demographic confounders, highlight the 
independent role of EPVSs morphology in the sensorimotor, 
parietal, and frontal regions across cognitive and sleep-related 
outcomes. The full spatial patterns of the adjusted correlations are 
shown in Supplementary Figure 4.

3.4 Univariate and multivariate logistic 
regression analysis

Univariate and multivariate logistic regression analyses were 
conducted to identify further the robust characteristics significantly 
correlated with the clinical scale scores. The results are summarised 
in Supplementary Tables 3–8. All clinical scale scores were 
dichotomised to obtain disease and non-disease groups. Notably, 
no EPVSs features were found to be significant for sleepiness (ESS) 
or depression (HAM-D) in the multivariate regression analysis 
(p  > 0.05). The forest plot in Figure  6 illustrates the significant 

FIGURE 3

EPVSs characteristics that significantly correlate with MoCA scores, with subregions of the EPVSs distribution highlighted. (a) The number, (b) the 
volume, (c) the mean length, and (d) the mean curvature of EPVSs lesions in the corresponding subregions are correlated with MoCA scores. The 
centrum semiovale is not shown above. The scale bar represents the adjusted p-value in the correlation analyses, in which the adjusted p-values < 0.05 
are highlighted.
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variables with odds ratios (ORs) from multivariate logistic 
regression analyses. Age has emerged as a significant risk factor for 
anxiety (HAM-A) and cognitive impairment (MoCA). Specifically, 
for cognitive impairment, two characteristics were identified: the 
mean length of the EPVSs in the left basal ganglia and age. 
Additionally, the mean length of the EPVSs in the left frontal lobe 
has great potential for identifying poor sleep quality, insomnia, 
and anxiety.

4 Discussion

These non-invasive computational MRI-visible EPVSs metric 
approaches hold considerable promise for investigating different 
aspects of the glymphatic system. PVSs dysfunction is an emerging 
marker of sleep disturbance and neurodegenerative and 
neuroinflammatory diseases. However, little is known regarding 
MRI-visible EPVSs in the negative impact of MRI-visible EPVSs on 

FIGURE 4

EPVSs characteristics that significantly correlate with sleep-related scores, with subregions of the EPVSs distribution highlighted. (a) The volume and (b) 
the mean length of EPVSs lesions in the corresponding subregions are correlated with PSQI scores. The mean length of EPVSs is significantly 
correlated with (c) ISI score and (d) ESS score. The centrum semiovale is not shown above. The scale bar represents the adjusted p-value in the 
correlation analyses, in which the adjusted p-values < 0.05 are highlighted.

TABLE 2 Pairs of EPVSs characteristics and clinical scale scores with significant correlations in age and sex-adjusted partial correlation analyses.

No. Clinical scales EPVSs characteristics Coefficient Adjusted p-value

1 MoCA Mean_curvature_of_EPVSs_in_Left_centrum_semiovale 0.30 0.023

2 MoCA Mean_length_of_EPVSs_in_Left_parietal_lobe 0.30 0.039

3 PSQI Mean_curvature_of_EPVSs_in_Left_centrum_semiovale −0.30 0.023

4 PSQI Mean_length_of_EPVSs_in_Left_frontal_lobe −0.31 0.028

5 ISI Mean_length_of_EPVSs_in_Left_frontal_lobe −0.28 0.035

6 ESS Mean_length_of_EPVSs_in_Left_frontal_lobe 0.25 0.048
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young adults with LTMPU. In our study, computational MRI-visible 
EPVSs were associated with sleep disturbance (EDS), dementia, and 
mood disorders (anxiety) in young adults in the LTMPU. This 
understanding of computational MRI-visible EPVSs could provide 
novel insights into the pathologies underlying sleep disturbances, 
dementia, and mood disorders, which frequently co-occur and are 

mutually influenced. Our research further highlights that the 
association between MRI-visible EPVSs and measures such as 
HAM-A and ESS has not been extensively studied in the literature.

Our study found strong negative associations between the 
mean length of EPVSs in the left frontal lobe and HAM-A scores 
and between the mean curvature of EPVSs in the left temporal 

FIGURE 5

EPVSs characteristics that significantly correlate with mood-related scores, with subregions of the EPVSs distribution highlighted. The number (a,b), the 
volume (c,d), and the mean length (e,f) of EPVSs lesions in the corresponding subregions are significantly correlated with HAM-A and HAM-D scores. 
The scale bar represents the adjusted p-value in the correlation analyses, in which the adjusted p-values < 0.05 are highlighted.
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lobe and MoCA scores in young adults. It also demonstrated a 
positive association between the mean length of EPVSs in the left 
frontal lobe and the ESS. Accurate knowledge of the relevant 
brain areas for sleep disturbances (EDS), dementia, and mood 
disorders (anxiety) may provide a basis for prognostic and 
diagnostic tools.

We identified positive associations between the mean length of 
EPVSs in the left frontal lobe and ESS, suggesting a potential role for 
the frontal lobe in EDS, consistent with previous studies. This finding 
aligned with a previous review highlighting the involvement of 
specific brain regions, including the limbic system and the default 
mode network, in EDS (Pérez-Carbonell et  al., 2022). Impaired 
glymphatic function, a marker of MRI-visible EPVSs, has been 
observed in rapid eye movement sleep behaviour disorders (Kenwood 
et  al., 2022). We  found a positive association between the mean 
length of EPVSs and ESS; however, to our knowledge, no study has 
assessed this relationship. Nevertheless, a recent study (Boucetta 
et al., 2017) has shown a negative correlation between ESS scores and 
cerebral blood flow in the medial prefrontal cortex. Another study 
that evaluated gray matter volume (GMV) showed that reduced 
GMV in the left ventromedial prefrontal cortex was significantly 
related to greater self-reported daytime sleepiness in the ESS (Si et al., 
2022). Data on the role of perivascular spaces in healthy sleep and 
how their function may be  impaired in human sleep disorders 
(Wardlaw et  al., 2020). In addition, neuroimaging data are not 
invariably definitive, as variations in brain activity are contingent 
upon the behavioural impairments experienced by patients with 
sleepiness and the underlying cause of EDS (Pérez-Carbonell et al., 
2022). Studies with larger sample sizes and wider age ranges are 
required to confirm this association.

In primates, the prefrontal cortex is pivotal in regulating 
anxiety (Kenwood et al., 2022). The results of our study underscore 
this relationship, demonstrating robust negative correlations 
between the mean length of EPVSs in the left frontal lobe and 
HAM-A scores. On MRI assessment, youths with anxiety disorders 
compared to healthy subjects had decreased gray matter volumes 
in the inferior frontal gyrus (ventrolateral prefrontal cortex) 
(Strawn et al., 2015). A systematic review and meta-analysis also 
provided evidence of hypoconnectivity between the amygdala and 
medial frontal gyrus, anterior cingulate cortex, and cingulate gyrus 
in patients with anxiety disorders (Zugman et al., 2023). However, 
to the best of our knowledge, no previous study assessed the 
association between anxiety and MRI-visible EPVSs. Mood 
disorders, anxiety, and depression are associated with elevated 
levels of inflammation (Guo et al., 2023). Perivascular spaces play 
a critical role in maintaining homeostasis and priming 
neuroinflammation (Ineichen et al., 2022).

Furthermore, there is a relationship between EPVSs, 
neuroinflammation, and blood–brain barrier function in 
neuromyelitis optical spectrum disorder (Yao et al., 2022). Our 
understanding of the pathophysiology of anxiety and the role of 
perivascular spaces has made significant strides. However, many 
critical gaps in our knowledge still require further exploration 
(Craske and Stein, 2016; Wardlaw et al., 2020). Our findings may 
improve our understanding of anxiety and lead to promising yet 
uncharted therapeutic territory.

Our study’s strong negative associations between the mean 
curvature of the EPVSs in the left temporal lobe and MoCA agree 
with previous studies. High-resolution MRI has enabled the 
correlation of perivascular space morphology with a spectrum of 

FIGURE 6

Forest plot showing significant variables with odds ratio (OR) in the multivariate logistic regression analysis.
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physiological and pathological states, including cognitive 
function, vascular risk factors, cerebrovascular and 
neurodegenerative brain lesions, sleep patterns, and cerebral 
haemodynamics (Wardlaw et  al., 2020). Jeong et  al. (2022) 
suggested that the centrum semiovale (EPVSs) is associated with 
the progression of cognitive decline in an amyloid-independent 
manner (Jeong et  al., 2022). Previous studies have reported 
changes in EPVSs-related MRI parameters in patients with mild 
cognitive impairment and Alzheimer’s disease (AD) (Kamagata 
et al., 2022). The same study also showed that the EPVSs burden 
in the centrum semiovale may be a risk marker for early cognitive 
impairment (Pase et al., 2023). Atrophy of the medial temporal 
lobe or hippocampus, as observed on MRI, is the most well-
established neurodegenerative biomarker of AD (Jack et al., 2004). 
The glymphatic system is an exciting new target for AD (Harrison 
et al., 2020). Therefore, we speculate that temporally non-invasive 
computational MRI-visible EPVSs metrics may help predict the 
risk of syndromal conversion in early AD.

As discussed previously, while this study is pioneering in the 
metrics derived from this computational EPVSs segmentation, the 
limitations of this study include (a) the need for longitudinal studies 
and (b) larger sample sizes and multi-center ranges. An additional 
limitation of the study design was the lack of comparison between 
EPVSs computational metrics and EPVSs visual ratings. Further 
research with expanded cohorts and multicentre approaches is 
required to substantiate the reliability and generalisability of 
our model.

5 Conclusion

The metrics derived from computational EPVSs segmentation 
provide valuable insights into the pathophysiology of MRI-visible 
EPVSs. The EPVSs indicate impairment of normal brain fluid, 
waste clearance, microvascular dysfunction, and impaired 
glymphatic exchange. These are relevant for understanding the 
brain fluid dynamics underlying mood disorders, sleep 
disturbances, and cognitive impairment in young adults, 
particularly concerning EDS and anxiety. It is anticipated that 
emerging techniques and imaging biomarkers will soon 
be integrated into clinical practice to enhance diagnostic accuracy 
and inform therapeutic strategies. Newer techniques and imaging 
markers will soon be translated into clinical practice to support 
clinical diagnostics and therapeutic interventions.
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