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Introduction: Age-related hearing loss (ARHL) is a common sensory disability

among older adults and is considered a risk factor for the development of

dementia. Previouswork has shown altered brain connectome topology in ARHL,

including abnormal nodal strength and clustering coe�cient. However, whether

ARHL a�ects the hierarchical organization of structural connectome and how

these alterations relate to transcriptomic signatures remain unknown.

Methods: Here, we apply a gradient mapping framework to the structural

connectome derived from di�usion magnetic resonance imaging. We focus on

the first three structural gradients that reflect distinct hierarchical organization of

structural connectome, and assess ARHL-related changes.

Results: We find that, compared to controls, ARHL patients exhibit widespread

disruptions of structural connectome organization, spanning from primary

sensory areas (e.g., somatomotor network) to high-order association areas

(e.g., default mode network). Subsequently, by employing subcortical-weighted

gradients derived from weighting cortical gradients by subcortical-cortical

connectivity, we observe that ARHL patients show significantly altered

subcortical-cortical connectivity in the left caudate, left nucleus accumbens,

right hippocampus, and right amygdala. Finally, we investigate the relationship

between gene expression and alterations in structural gradients. We observe

that these alterations in structural gradients are associated with weighted gene

expression profiles, with relevant genes preferentially enriched for inorganic ion

transmembrane transport and terms related to regulating biological processes.

Discussion: Taken together, these findings highlight that ARHL is associated

with abnormal structural connectome hierarchy and reveal the transcriptomic

relevance of these abnormalities, contributing to a richer understanding of the

neurobiological substrates in ARHL.

KEYWORDS

hierarchical organization, structural gradient, age-related hearing loss, transcriptional

signatures, brain network, di�usion magnetic resonance imaging

1 Introduction

Age-related hearing loss (ARHL) is a prevalent sensory impairment that affects

more than 40% of adults over 50 years old, resulting in social isolation, communication

difficulties, and diminished quality of life (Eckert et al., 2012; Slade et al., 2020). Individuals

with ARHL are considered to have an increased risk of cognitive deficits and dementia
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(Ford et al., 2018; Liu and Lee, 2019; Slade et al., 2020).

Previous neuroimaging studies have demonstrated that ARHL

patients exhibit disrupted brain networks in both local and global

characteristics (Guan et al., 2022; Ponticorvo et al., 2022; Xu

et al., 2024). For instance, compared with healthy controls, ARHL

patients showed a significant increase in global efficiency and

clustering coefficient of functional networks (Guan et al., 2022;

Ponticorvo et al., 2022), as well as changes in local nodal strength

of structural networks in several regions (Ponticorvo et al., 2022).

Through the lens of brain connectome analysis and graph theory,

these studies provide valuable insights into the neuropathological

mechanisms underlying ARHL.

By compressing macroscale brain connectomics into a

low-dimensional embedding space, the recently developed

gradient mapping technique offers an appealing framework to

elucidate systematic organizational principles of brain connectome

(Margulies et al., 2016; Hong et al., 2019; Park et al., 2021b).

Different from graph theory that characterizes local and global

topological properties of networks, this technique generates a

series of spatial arrangements (called gradients) that capture

continuous variations in connectivity profiles, with tightly

interconnected regions positioned proximally along gradient axes.

The spatial variation of gradient informs how connectivity profiles

of distributed regions are integrated and segregated (Huntenburg

et al., 2018; Bayrak et al., 2019). For example, the principal gradient

derived from resting-state functional connectivity represents a

macroscale organization that differentiates between transmodal

default mode areas and unimodal sensory areas (Margulies

et al., 2016). A substantial body of research has utilized gradient

mapping to characterize alterations in organization features of

functional and structural connectivity during development and

aging (Bethlehem et al., 2020; Park et al., 2021a; Dong et al., 2021),

as well as neuropsychiatric disorders (Hong et al., 2019; Park et al.,

2021b; Xia et al., 2022). Specially, one recent study reported that

ARHL patients exhibited alterations in the principal gradient of

functional connectivity in the visual and default mode networks,

suggesting abnormal functional organization (Tong et al., 2023).

Nevertheless, it remains unclear whether hierarchical organizations

of structural connectivity are similarly altered in ARHL patients. In

addition, preliminary evidence indicates that ARHL is associated

with changes in subcortical structures (Xu et al., 2019; Chen et al.,

2020), yet there are limited studies examining subcortical-cortical

structural connectivity in ARHL patients. It remains uncertain

whether alterations in structural gradients are accompanied

with subcortical impairments. Given the potential relationship

between functional and structural connectomes (Yang et al., 2023),

identifying altered structural connectome hierarchy provides

valuable insights into functional network abnormalities observed

in ARHL.

The availability of spatially comprehensive whole-brain

transcriptomic maps, such as the Allen Human Brain Atlas

(AHBA) (Hawrylycz et al., 2012), has provided opportunities

to assess relations between gene expression and neuroimaging

phenotypes. Prior studies have explored the spatial correspondence

between gene expression profiles and regional variations in

neuroimaging phenotypes (Morgan et al., 2019; Li et al., 2021),

giving insights into potential molecular substrates that underlie

altered phenotypes. For example, abnormalities in functional or

structural connectome organization have been associated with gene

expression patterns in multiple brain disorders, including autism

(Park et al., 2021b), depression (Xiao et al., 2023), and Alzheimer’s

disease (Zheng et al., 2024). However, whether and how alterations

in structural connectome organization in ARHL relate to gene

expression remains unclear.

Here, we sought to investigate whether hierarchical

organizations of structural connectome are altered in ARHL

patients, and if so, provide further insights into the potential

molecular mechanisms underlying these changes. To achieve

this, we utilized the diffusion mapping method to estimate the

first three structural gradients in both controls and patients.

We hypothesized that ARHL patients would show significantly

different structural gradients compared to controls. Subsequently,

we employed subcortical-weighted gradients to examine whether

ARHL patients were associated with abnormal subcortical-cortical

structural connectivity. Finally, we applied a partial least squares

(PLS) regression to investigate the relationship between alterations

in structural gradients and transcriptomic data.

2 Materials and methods

2.1 Participants and data acquisition

The dataset is obtained from the Hearing loss Connectome

(ds005026) (Ponticorvo et al., 2022) that is available on the

OpenNeuro platform (Markiewicz et al., 2021). Fifty-two ARHL

patients (16 female; 63.67 ± 7.80 years old) and thirty normal

hearing controls (20 female; 59.53± 7.17 years old) were included.

All participants had no history of neurological and/or psychiatric

illness, ear surgery, or specific contraindications to magnetic

resonance. Pure-tone audiometry and speech audiometry were

conducted to evaluate participants’ audiological status.More details

on auditory evaluation can be found in Ponticorvo et al. (2022). All

participants provided written informed consent, and experimental

procedures were approved by the institutional review board of the

University of Salerno.

The MRI data were collected on a 3T Siemens Skyra scanner

with a 20-channel RF head-and-neck coil. The T1-weighted images

were acquired with an MPRAGE sequence using the following

parameters: TR = 2.4 s, TE = 2.26 ms, TI = 0.95 s, flip angle = 8◦,

matrix = 256× 256, voxel size = 1× 1× 1. The diffusion-weighted

images were collected with a multi-band accelerated echo-planar

sequence using the following parameters: TR = 4.71 s, TE = 0.0906

s, Acceleration Factor = 2, flip angle = 90◦, voxel size = 2× 2× 2, 1

volume with b = 0 s/mm2, 64 noncollinear directions with b = 1500

s/mm2. A diffusion-weighted scan with opposite phase encoding

directions was acquired to correct susceptibility distortions.

2.2 Data preprocessing

All T1-weighted images were subjected to tissue segmentation

and cortical surface reconstruction by FreeSurfer’s recon-all

pipeline (version: 7.4.1) (Dale et al., 1999; Fischl, 2012). Diffusion-

weighted data were processed using FSL (version: 6.0.7) (Jenkinson

et al., 2012), MRtrix3 (version: 3.0.4) (Tournier et al., 2019),
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and MRtrix3Tissue (version: 5.2.9, https://3Tissue.github.io). The

preprocessing procedures included denoising (Veraart et al.,

2016; Cordero-Grande et al., 2019), correction for susceptibility

distortions (Andersson et al., 2003), corrections ofmotion and eddy

current distortions (Andersson and Sotiropoulos, 2016; Bastiani

et al., 2019; Andersson et al., 2016), bias field correction (Tustison

et al., 2010), and estimation of brain mask (Hoopes et al.,

2022). Individual structural connectome was derived from the

preprocessed diffusion data. We estimated the response functions

of different tissues using the Dhollander algorithm (Dhollander

et al., 2019). Fiber orientation distributions were reconstructed

using the single-shell 3-tissue constrained spherical deconvolution

method (Dhollander and Connelly, 2016) and were intensity

normalized in the log-domain (Raffelt et al., 2017; Dhollander

et al., 2021). A whole-brain tractography with 5 million streamlines

was generated using a probabilistic approach (iFOD2) (Tournier

et al., 2010) and anatomically constrained tractography (ACT)

algorithm (Smith et al., 2012, 2020) with dynamic seeding, and

the estimation of tract weights (SIFT2) (Smith et al., 2015)

to reduce reconstruction biases. The Schaefer-400 parcellation

(Schaefer et al., 2018) was mapped onto the individual diffusion-

weighted space to create cortical structural connectivity. Eight

bilateral subcortical structures (including the thalamus, caudate,

putamen, pallidum, hippocampus, amygdala, accumbens, and

ventral diencephalon) derived from the FreeSurfer’s segmentation

(Dale et al., 1999) were used to construct subcortical-cortical

connectivity. The structural connectivity between pairs of regions

was further scaled by the inverse of two region volumes (Hagmann

et al., 2008). Quality control of T1-weighted images was done

by visual inspection, and two participants with excessive head

movement or poor cortical segmentation were excluded. Diffusion

data from two participants with high total outliers were excluded.

Additionally, one participant’s diffusion data had a different phase

encoding direction from other participants and was also excluded

from this study. Finally, 77 participants (49 patients) were retained

for the subsequent analysis.

2.3 Structural connectome gradients

For each participant, we estimated structural connectome

gradients using the BrainSpace toolbox (Vos de Wael et al.,

2020). Specifically, we constructed an affinity matrix by calculating

the cosine similarity between regional structural connectivity

profiles (Park et al., 2021b). Due to the sparsity of structural

connectome, this step was implemented on individual structural

connectome that was not thresholded (Kim et al., 2024). We

then performed a nonlinear diffusion map embedding (Coifman

et al., 2005) of the affinity matrix to obtain multiple continuous

components (i.e., structural gradients) that were arranged in

descending order of explained variance. The procedure treats

the affinity matrix as a graph and estimates the low-dimensional

embedding from the high-dimensional connectivity matrix. Along

low-dimensional axes, regions that are tightly interconnected are

closer together, while regions with weak interconnection are farther

apart (Huntenburg et al., 2018). Diffusion map embedding was

affected by two parameters t and α. Consistent with previous

studies (Margulies et al., 2016; Park et al., 2021a), we set t =

0 and α = 0.5 to preserve global relationships between points

in the embedded space. To ensure the comparability between

participants’ structural gradients, we constructed a group-level

gradient template. In accordance with prior studies (Zarkali et al.,

2021; Yang et al., 2024), we averaged all structural connectome

matrices from both patients and controls to generate the group-

level structural connectome.We estimated the group-level gradient

template from the group-level structural connectome and aligned

the structural gradients of each participant to the template via

Procrustes alignment (Langs et al., 2015). Procrustes alignment

has been extensively utilized to rotate individual-level gradients to

achieve maximum similarity with the template gradients, without

applying a scaling factor (Hong et al., 2019; Xia et al., 2022; Vos de

Wael et al., 2020). Procrustes alignment determines an optimal

linear transformation S between the unaligned gradients G and the

template gradients M, which minimizes the sum of squared errors

between the aligned gradients (G*S) and template gradients M.

In other words, the aligned gradient is obtained through a linear

combination of the unaligned gradients.

2.4 Between-group di�erences in
structural gradients

In agreement with previous work (Park et al., 2021b; Yoo et al.,

2024), we applied multivariate analyses to compare differences in

the first three structural gradients between ARHL patients and

controls. In multivariate analyses, we employed Hotelling’s T to

identify the shared effects of ARHL across the three structural

gradients. We conducted between-group comparisons at both

network-level and region-level. To be specific, for network-level

analyses, we averaged regional gradient scores according to Yeo’s

seven functional systems (Yeo et al., 2011), which included

the visual, somatomotor, dorsal attention, ventral attention,

limbic, frontoparietal, and default mode networks. We used

multivariate analyses to compare network-level differences across

the first three structural gradients, with statistical significance

set at FDR-corrected p < 0.05. We then performed single-

gradient comparisons on each gradient separately, using the

univariate linear model. Multiple comparisons were corrected

by the FDR method (corrected p < 0.05). For region-level

analyses, we conducted multivariate analyses to assess between-

group differences in gradient scores of each region across the

first three structural gradients, with statistical significance set at

FDR-corrected p < 0.05. We then performed post-hoc analyses to

examine the contributions of each gradient to the overall effects,

while correcting for the number of considered structural gradients

(p< 0.05/3) (Wan et al., 2023; Yang et al., 2024).We also conducted

regional comparisons on each gradient using the univariate linear

model, with statistical significance set at FDR-corrected p < 0.05.

In all comparisons, age and gender were included as covariates. All

multivariate analyses were performed using the BrainStat toolbox

(Larivière et al., 2023). Surface visualizations of between-group

differences in structural gradients were generated using the Python

packages BrainSpace (Vos de Wael et al., 2020) and Surfplot (Gale

et al., 2021).
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2.5 Meta-analysis

To understand the cognitive implication of brain regions with

significant ARHL-related alterations, we performed ameta-analytic

function decoding using the Python package NiMARE (Salo et al.,

2022). We only retained significant cortical regions to get a

thresholded Hotelling’s Tmap. The decoding process correlated the

thresholded map with all meta-analytic maps in the NeuroSynth

database (Yarkoni et al., 2011). We only retained the top 15 terms

relevant to cognitive behaviors or functions.

2.6 Subcortical-weighted gradients

We capitalized on the subcortical-weighted gradient to assess

ARHL-related alterations in subcortical-cortical connectivity.

Consistent with previous studies (Park et al., 2021b; Lee et al.,

2023; Xiao et al., 2023), the subcortical-weighted gradient for

each subcortical region was generated through element-wise

multiplication between the structural gradient and the subcortical-

cortical structural connectivity. We then averaged each subcortical-

weighted gradient to extract nodal degree values. Multivariate

analyses were implemented to compare between-group differences

in nodal degree values along the first three gradients, with age and

gender as covariates. We then used the univariate linear model

to evaluate differences in degree values corresponding to each

subcortical-weighted gradient. Multiple comparisons were adjusted

by the FDRmethod (corrected p < 0.05). Subcortical visualizations

of between-group differences in subcortical-weighted gradients

were based on the R packages ggplot2 (Wickham, 2011) and ggseg

(Mowinckel and Vidal-Piñeiro, 2020).

2.7 Transcriptomic-neuroimaging
association analysis

We utilized transcriptomic data from the Allen Human Brain

Atlas (AHBA) database (Hawrylycz et al., 2012) to examine

the relationship between between-group differences in structural

gradients and gene expression profiles. The AHBA database

had postmortem microarray data in 3,702 different brain tissue

samples from six neurotypical donors (1 female and 5 males, aged

from 24 to 57 years). Given that these postmortem microarray

data from the AHBA database are the only publicly available

high spatial resolution gene expression atlas, it is a compromise

choice to analyze the transcriptional association of ARHL-related

structural alterations. Notably, although these data are derived

from healthy donors, prior studies have utilized these data

to explore transcriptional signatures of structural alterations in

neuropsychiatric disorders (Morgan et al., 2019; Park et al.,

2021b) and age-related neurodegenerative diseases (Thomas et al.,

2021; Estevez-Fraga et al., 2023). Particularly, a recent study has

employed these data to investigate the relationship between gene

expression and the association between hearing ability in older

adults and cortical morphology (Qiu et al., 2024). Given that

only two donors contained gene expression data of the right

hemisphere, we restricted the analysis to the left hemisphere.

We preprocessed the microarray data using the Python package

abagen (Markello et al., 2021; Arnatkeviciute et al., 2019), which

included (1) updating theMNI coordinates of all tissue samples, (2)

reannotating microarray probe-to-gene mappings, (3) intensity-

based filtering of probes, (4) probe selection based on the highest

differential stability in donors from the probes, (5) mapping

tissue samples to regions defined by the Schaefer-400 parcellation,

(6) normalizing expression data using a scaled robust sigmoid

function, (7) calculating regional expression values. When none

of the donors have assigned a tissue sample to a region in the

functional parcellation, the expression value of the tissue sample

closest to the centroid of the region will be assigned to that region.

The process eventually yielded expression values of 15, 633 genes in

200 regions.

We used a partial least squares (PLS) regression to assess

the association between group differences in gradients and gene

transcription profiles. The PLS regression extracted components

that were related to group differences in gradients from

transcription profiles of 15, 633 genes. Consistent with prior work

(Morgan et al., 2019; Li et al., 2021), the statistical significance of

the variance explained by PLS components was assessed by 10, 000

permutation tests. We calculated the spatial correlation between

PLS scores and case-control differences in structural gradients and

evaluated its statistical significance via 10,000 spin permutation

tests. The variability of PLS weight was estimated using 2,000

bootstrap resamples of 200 brain regions. The Z score of PLS weight

was evaluated as the weight divided by its bootstrap standard

deviation. According to the Z scores of PLS weights, we chose

significant genes (one-sample Z tests, corrected p < 0.05) for

subsequent analysis. Based on the sign of PLS weights, the selected

genes were categorized into two sets (PLS+ and PLS- gene sets).

To understand the functional implications of the selected genes,

we performed functional enrichment analysis for the PLS+ and

PLS- gene sets, respectively, using the online software Metascape

(Zhou et al., 2019). The enrichment categories included Gene

Ontology (GO) Biological Process, KEGG Pathway, WikiPathways,

Canonical Pathways, and Reactome Gene Sets. The results of the

enrichment analysis were adjusted by the FDR method, and the

significance threshold was set to corrected p < 0.05.

3 Results

3.1 Structural connectome gradients

Through the diffusionmap embedding algorithm, we generated

the first three structural gradient templates (G1, G2, and G3)

(Figures 1A–C). The three gradients accounted for approximately

43.33% of the total variance in the template connectome

(Figure 1D). Consistent with previous literature (Park et al., 2021b;

Noh et al., 2024), the first gradient (G1) captures a left-to-right

hierarchical organization. The second gradient (G2) reflects a

hierarchy traversing from anterior to posterior. The third gradient

(G3) delineates a hierarchy axis where the prefrontal and lateral

parietal/motor regions are situated at opposite ends (Figure 1C).

To ensure direct comparability of structural gradients across

individuals and groups, we aligned individual structural gradients

to the template gradients using Procrustes alignment. The first
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FIGURE 1

Pipeline for estimating structural connectome gradients. (A) The structural connectome is constructed using whole-brain probabilistic tractography.

(B) The a�nity matrix is derived by calculating the cosine similarity between regional structural connectome profiles. (C) The first three structural

gradient templates are constructed by applying the di�usion map embedding algorithm to the group-level a�nity matrix. (D) Variance accounted for

by the first ten gradient components.

three structural gradients of the group averages for the control and

ARHL groups were presented in Supplementary Figure S1. Visually

inspected, their spatial patterns are highly similar to the template

gradients.

3.2 Network-level analysis

In this section, we examined whether ARHL altered structural

gradients, and if so, whether these alterations were concentrated

in specific functional systems. We performed multivariate analyses

using Hotelling’s T to investigate shared effects across the first

three gradients. Network-level analyses showed that, compared

with controls, ARHL patients exhibited significant alterations

in structural connectome organization across multiple networks,

including the somatomotor, dorsal attention, limbic, and default

mode networks (Figure 2A). We further conducted case-control

comparisons in a single gradient. We detected no significant

differences in G1 and G2 (Figure 2B). For G3, we observed

significantly reduced gradient scores in the somatomotor and

dorsal attention networks, and significantly increased gradient

scores in the limbic and default mode networks in ARHL patients

(Figures 2B, C). The detailed results of network-level analyses were

reported in Supplementary Table S1.

3.3 Region-level analysis

We subsequently explored the between-group differences in

hierarchical organization across the first three gradients at the

regional level. Multivariate analyses revealed significant group

differences in structural gradients in multiple cortical areas.

These regions were predominantly situated in the lateral parietal

cortex, motor cortex, paracentral lobule, lateral temporal cortex,

cingulate, right visual areas, and prefrontal cortex (especially

orbitofrontal cortex) (Figure 3A). Functional decoding analysis

suggested that these significant regions were primarily related

to motor-related functions (Figure 3B, Supplementary Table S2).

For single-gradient comparisons, post-hoc analyses indicated that

group differences in structural gradients were present in G2

and G3 (Supplementary Figure S2). Specifically, for G2, ARHL

patients showed significantly higher gradient scores in two

regions located in the left cingulate and right temporal pole

respectively. In contrast, ARHL patients exhibited lower gradient

scores in one region in the right superior parietal cortex.
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FIGURE 2

Network-level comparisons of structural gradients between controls and ARHL patients. (A) The multivariate analyses using Hotelling‘s T to identify

shared e�ects across the first three structural gradients. *denotes significant group di�erences. (B) Network-level ARHL-control di�erences in a

single gradient. *denotes significant group di�erences. (C) The significant ARHL-control di�erences in structural gradients in single-gradient

comparisons. In each boxplot, the central line of the box indicates the median, the top/bottom edge of the box denotes the 75th/25th percentiles,

and the whiskers of the box indicate the upper/lower bounds of 1.5 × the interquartile range. Resting-state networks: Vis, visual; Smn, somatomotor;

Dan, dorsal attention; Van, ventral attention; Lim, limbic; Fpn, frontoparietal; Dmn, default mode.

For G3, lower gradient scores were observed in the bilateral

precentral, postcentral, paracentral, and superior parietal regions

in ARHL patients. Conversely, higher gradient scores were in

the left medial prefrontal and right visual regions in ARHL

patients.

We performed regional comparisons at the single-gradient level

using the univariate linear model. For G1 and G2, no significant

between-group differences in gradient scores were detected. For

G3, we found that ARHL patients showed significantly reduced

gradient scores in 15 brain parcels, primarily located in the superior

parietal lobule, precentral gyrus, postcentral gyrus, and paracentral

lobule (Supplementary Figure S3A). We observed a significant

negative correlation between the ARHL-control Student’s t map

in G3 and the mean gradient scores of the control group in G3

(Pearson’r = -0.609, p = 0.021, 10, 000 spin permutation tests)

(Supplementary Figure S3B), suggesting that regions with higher

gradient scores tended to exhibit smaller ARHL-control t values.

3.4 Between-group comparisons in
subcortical-cortical connectivity

Using subcortical-weighted gradients, we investigated group

differences in subcortical-cortical connectivity. Multivariate

analyses revealed significant ARHL-related alterations in

subcortical-weighted gradients in the left caudate, left

nucleus accumbens, right hippocampus, and right amygdala

(Figures 4A, B). When comparisons at a single gradient, significant

group differences in the degree values of subcortical-weighted

gradients were detected in G1 and G2 (Figure 4C). To be specific,

for G1, ARHL patients showed significantly reduced degree values

in the right amygdala. For G2, ARHL patients had significantly

increased degree values in the right amygdala. The details of

differences in subcortical-cortical connectivity can be found

in Supplementary Table S3. We provided two additional tables

(Supplementary Tables S4–S5) to systematically summarize the

significant results of multivariate and univariate analyses.

3.5 Transcriptomic signatures of altered
structural gradients

Using postmortem data from the AHBA database and

the partial least squares (PLS) regression, we asked whether

the abnormalities in structural gradients were related to gene

expression profiles. We found that the PLS1 and PLS2 components

accounted for 15% and 16% of the variance in group differences in

gradients, significantly exceeding the null expectation (p = 0.0015).

We focused on the PLS2 component to explore transcriptomic

associations because it explained the highest variance in our PLS

models. We found that the PLS2 weighted gene expression pattern

was significantly correlated with the between-group differences in

structural gradients. (Pearson’r= 0.40, p= 0.0025) (Figures 5A, B).

Utilizing the online software Metascape, we conducted gene set

enrichment analyses to assess the biological significance of genes

strongly contributing to the PLS2 component. The contributions of

genes were defined according to their normalized weights. Based on

one-sample Z tests, we extracted significant PLS2 genes including

556 PLS2+ genes (Z > 2.89, corrected p < 0.05) and 627 PLS2-

genes (Z < -2.89, corrected p < 0.05) (Figure 5C). We chose

significant enrichment terms (corrected p < 0.05) and removed

discrete enrichment clusters. The enrichment analysis revealed

that the PLS2+ genes were most prominently enriched with

inorganic ion transmembrane transport (GO biological process)

and Cytoskeleton in muscle cells (KEGG pathway) (Figures 6A, B).

The PLS2- genes were significantly enriched for GO terms related

to biological regulation and regulation of biological process, such as

negative regulation of intracellular signal transduction, regulation

of membrane potential, and modulation of chemical synaptic

transmission (Figures 6C, D). The detailed results of enrichment

analyses were shown in Supplementary Tables S6–S7.
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FIGURE 3

Region-level comparisons of structural gradients between controls and ARHL patients. (A) Significant ARHL-control di�erences in the first three

structural gradients identified by multivariate analyses. The brain maps are colored according to Hotelling’s T-values (FDR-corrected p < 0.05). LH,

left hemisphere; RH, right hemisphere. (B) The top 15 cognitive terms from meta-analysis. The corr values represent the correlations between the

thresholded Hotelling’s T map and meta-analytic maps. The larger font size of a term indicates a stronger correlation between the thresholded

Hotelling’s T map and the meta-analytic map corresponding to that term.

FIGURE 4

The comparisons of subcortical-weighted gradients between controls and ARHL patients. (A) The ARHL-control di�erences in the first three

subcortical-weighted gradients identified by multivariate analyses. The subcortical maps are colored according to Hotelling’s T-values. (B) The spider

chart provides a detailed summary of Hotelling’s T values for each subcortical region. *denotes significant group di�erences (FDR-corrected p <

0.05). (C) Significant group di�erences in the degree values of subcortical-weighted gradients in single-gradient comparisons. In each boxplot, the

central line of the box indicates the median, the top/bottom edge of the box denotes the 75th/25th percentiles, and the whiskers of the box indicate

the upper/lower bounds of 1.5 × the interquartile range.
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FIGURE 5

The association between alterations in structural gradients and gene expression profiles. (A) The graph at the top indicates the ARHL-control

Hotelling’s-T map of left hemisphere. The graph at the bottom indicates the weighted gene expression of left hemisphere that derived from the

scores corresponding to the second component of the PLS model. (B) Pearson correlation between the PLS2 weighted gene expression pattern and

the di�erences in structural gradients (p = 0.0025, 10,000 spin permutation tests). (C) Ranked PLS2 genes according to their corresponding z scores.

3.6 Sensitivity analysis

We repeated our multivariate analyses under various

methodological considerations, including (1) constructing

the template gradients based on the group-average structural

connectome derived exclusively from the control group; (2)

calculating the affinity matrix using other similarity measures

including Spearman’s rank correlation and normalized angle

similarity; (3) applying different thresholds to sparsify the

structural connection matrix (sparsity levels including 0.7, 0.8,

and 0.9); (4) using different parameter settings of diffusion map

embedding ((t, α) = (0, 0.2), (0, 0.8), and (1, 0.5)); (5) aligning

individual-level gradients with the template gradients through

joint embedding (Nenning et al., 2020; Xu et al., 2020), instead

of the Procrustes alignment; (6) Between-group comparisons

including the average absolute motion of individual diffusion data

or total outliers of individual diffusion images, derived from FSL’s

eddy correction process (Andersson and Sotiropoulos, 2016), as a

covariate. We found that there were no significant differences in

these two metrics between the control and ARHL groups (Control-

ARHL, the average absolute motion: Student’s t = -1.66, p-value =

0.10; total outliers: Student’s t = -0.46, p-value = 0.64). The results

of sensitivity analysis were shown in Supplementary Figures S4–S9.

To assess the robustness, we calculated the Dice index between

the significant results from the main analysis and those from the

sensitivity analysis. The Dice indices for the analyses of network-

level, region-level, and subcortical-weighted gradients were

0.84± 0.20, 0.71± 0.22, and 0.85± 0.16 (Supplementary Table S8),

respectively, suggesting that our results exhibited good consistency

across various methodological considerations.

We validated our findings using different brain atlas

(Glasser atlas) (Glasser et al., 2016). We found that the

verification results were highly consistent with the main

results (Supplementary Figure S10). We also added an alternate

parcellation that derived from von Economo and Koskina’s

cytoarchitectonic stratification (von Economo and Koskinas, 1925;

Larivière et al., 2021), which grouped 400 regions into five distinct

structural types: agranular, frontal, parietal, polar, and granular.

We found that ARHL patients showed significantly abnormal

structural gradients in three structural types including agranular,

frontal, and polar (Supplementary Figure S11).

Considering that there was an imbalance in the sample size

between the control (28 participants) and ARHL (49 participants)

groups.We conducted optimal groupmatching using the R package

MatchIt (Ho et al., 2011), with group as the treatment variable

and age and sex as covariates. This process yielded a subset

including 28 controls and 28 ARHL patients. We repeated our

main analysis in this subset. The Dice indices for the network-

level, region-level, and subcortical-weighted gradient analyses were

0.74, 0.99, and 1, respectively, indicating good reproducibility

(Supplementary Figure S12, Supplementary Table S8).

4 Discussion

In the current study, we employed the gradient mapping

framework to investigate the hierarchical organization of

structural connectome in ARHL patients. We found that ARHL

patients showed disruptions of connectome organization in

multiple functional networks, including the somatomotor, dorsal

attention, limbic, and default mode networks. Multivariate

analyses at the regional level revealed atypical structural gradients

mainly in the lateral parietal cortex, lateral temporal cortex,

cingulate, right visual, somatomotor, and orbitofrontal cortex.

Univariate analyses further indicated that these alterations in

structural gradients were concentrated in the third gradient,

with ARHL patients showing significantly decreased gradient

scores in the somatomotor and superior parietal areas. Using

subcortical-weighted gradients, we observed significant between-

group differences in subcortical-cortical connectivity in the left
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FIGURE 6

The functional enrichment of significant PLS2 genes. (A, C) The bubble chart for the PLS2+ (A) and PLS2- genes (C), which shows significant GO

biological processes and pathway terms (FDR-corrected p < 0.05). The size of the bubble reflects the number of genes contained in each term. (B, D)

Metascape enrichment network illustrating the intra-cluster and inter-cluster similarities among enriched terms for the PLS2+ (B) and PLS2- (D)

genes. Each circle point denotes an enriched term, with the point size proportional to the number of input genes included in the term. Di�erent

colors represent distinct clusters.

caudate, left nucleus accumbens, right hippocampus, and right

amygdala. Transcriptomic association analyses suggested that

these alterations in structural gradients related to weighted gene

expression profiles, with strongly contributing genes primarily

enriched for the “Cytoskeleton in muscle cells” pathway, inorganic

ion transmembrane transport, and regulation of biological process.

In sum, these findings provide evidence of structural gradient

reorganization in ARHL patients and uncover potential molecular

underpinnings behind these changes.

Prior research has demonstrated that ARHL patients exhibit

significantly aberrant white matter integrity (e.g., decreased

fractional anisotropy) (Ma et al., 2016), altered structural

connectivity strength, and subtle differences in graph metrics

(e.g., global efficiency) of structural connectomes (Ponticorvo

et al., 2022). Here we extend these diffusion MRI findings

in ARHL using a gradient mapping method that compresses

high-dimensional structural connectomes into a range of low-

dimensional continuous representations in the embedded space.

Prior studies employing a similar methodology have reported

abnormal hierarchy of the macroscale structural connectome in

somatomotor and association cortices in patients with autism

(Park et al., 2021b), as well as disrupted structural connectome

organization in the sensory and limbic regions in patients with

episodic migraine (Noh et al., 2024). By multivariate analyses at

the network and region levels, we found that patients showed

broad and distributed structural gradient abnormalities across

cortical regions, spanning from the primary sensory cortex (e.g.,

somatomotor and right visual regions) to the high-order cognitive

cortex (e.g., orbitofrontal and inferior parietal regions). Structural

gradient reorganizations observed in the primary sensory regions

may arise from the primary sensory cortex’s compensation in

response to impaired auditory input (Glick and Sharma, 2017;

Tong et al., 2023). In contrast, structural gradient abnormalities

in the high-order association regions are likely associated with

cognitive deficits (Slade et al., 2020). In addition, our findings

are in agreement with the emerging evidence that ARHL involves
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disruption of multi-network systems (Chen et al., 2018; Tong

et al., 2023; Xing et al., 2022). Post-hoc annlyses and univariate

analyses at the single-gradient level suggested that the overall effects

of ARHL on structural gradients were primarily contributed by

G3. In this study, G3 represents a spatial axis where the highest

gradient values are in the parietal/motor regions while the lowest

values are in the prefrontal regions. Interestingly, we observed

significantly reduced gradient values in the somatomotor and

parietal regions, along with increased values in the left prefrontal

regions in ARHL patients, suggesting a compressed hierarchical

organization. The networks or regions with significant differences

that we identified overlapped to some extent with previous fMRI-

based studies in ARHL patients. For example, prior studies have

reported altered functional connectivity within the default mode

network (Xing et al., 2022) and abnormal functional organizations

of the visual network in ARHL patients (Ponticorvo et al.,

2022). One recent study applied the diffusion mapping embedding

method to functional connectome and found significantly altered

functional gradients in the visual, default mode, somatomotor,

frontoparietal, and limbic networks (Tong et al., 2023). Our

findings provide a potential structural substrate for the widespread

functional connectome abnormalities reported in ARHL patients.

Further studies are required to integrate functional and diffusion

data to dissect how structural connectome reorganizations affect

functional connectome in ARHL patients. By meta-analysis, we

observed that regions with significant differences were mainly

related to motion-related cognitive terms such as motor imagery

and premotor. Previous studies have suggested a decrease in

auditory-motor processing of speech for ARHL patients, indicating

a reduced integration of the motor cortex during phonological

processing (Panouillères andMöttönen, 2018). However, due to the

lack of detailed levels of motor function in patients, the direct link

between altered structural gradients and motor function warrants

further investigation.

Through multivariate and univariate analyses at both the

network-level and region-level, we observed that the large effect

sizes and great statistical significance for between-group differences

in structural gradients were located in the somatomotor regions,

as well as the superior parietal lobule. Previous studies indicate

that these regions might be implicated in the pathology of ARHL.

For instance, ARHL patients exhibit altered functional gradients

in the somatomotor network (Tong et al., 2023), and increased

betweenness centrality of the functional network in the right

postcentral gyrus (Guan et al., 2022). Furthermore, ARHL can affect

resting-state functional connectivity between the dorsal attention

network and superior parietal lobule (Rosemann and Thiel, 2019).

A previous study has suggested that the somatomotor system acts as

a transdiagnostic hub that is associated with cognitive dysfunction,

general psychopathology, and impulsivity (Kebets et al., 2019). Our

findings offer further support for the pathological relevance of the

somatomotor and superior parietal regions, implying that targeting

these regions potentially contributes to the diagnosis and treatment

of ARHL.

The alterations of structural connectome hierarchy observed

in ARHL patients indicate the abnormality of the white

matter structure. which is compatible with previously reported

impairments of white matter integrity in ARHL patients (Ma et al.,

2016). It’s worth noting that the abnormalities of white matter

integrity are found in the hearing-related brain regions. Similarly,

we observed altered structural gradients in the left superior

temporal lobe region near the auditory cortex. Furthermore, in

contrast to local white matter integrity abnormalities, we observed

extensive structural gradient alterations ranging from sensory to

association regions. We speculate that the long-term impairments

in local sensory inputs propagate and affect multiple functional

systems (e.g. the somatomotor and default mode networks),

ultimately disrupting higher-order cognitive functions. Prior

studies on autism and schizophrenia have observed a comparable

cascading effect, where anomalies in the sensory system impact

higher cognitive systems (Park et al., 2021b; Dong et al., 2023). A

recent study suggests that children with congenital sensorineural

hearing loss exhibit a functional reorganization involving the

auditory, somatic motor, visual, and prefrontal cortices (Yin et al.,

2024). This is consistent with our findings, implying that abnormal

auditory function can lead to widespread alterations acrossmultiple

systems. Based on the gradient mapping framework, previous work

has demonstrated that the aging process (Wang et al., 2024b)

and neurodegenerative diseases such as Alzheimer’s disease (Wang

et al., 2024a) and frontotemporal dementia (Bouzigues et al., 2024)

exhibit altered hierarchical organization of functional connectome

in specific networks such as the default mode, somatomotor, and

ventral attention networks. Although these reported networks

partially overlap with our findings onARHL, these studies are based

on the functional connectome. Future research should further

investigate whether and how other atypical age-related processes

change the hierarchical organization of structural connectome, to

determine if there is an overlap with our findings.

Several studies have documented notable changes in subcortical

structures of ARHL patients, including atrophy of the hippocampus

and amygdala (Belkhiria et al., 2020; Jafari et al., 2021),

increased functional connectivity between the caudate and right

supramarginal gyrus (Xu et al., 2022), and reduced directed

functional connectivity between the hippocampus and cortical

areas (Chen et al., 2020). By employing subcortical-weighted

gradients, we observed altered subcortical-cortical structural

connectivity in the left caudate, left nucleus accumbens, right

hippocampus, and right amygdala. Our finding, combined

with previous findings, provides emerging evidence that these

subcortical regions are intricately related to the pathology of

ARHL. These subcortical structures are generally involved in

motor processes, memory, and learning, partially mirroring the

cognitive functions of cortical areas we have identified. This finding

further suggested that ARHL patients likely exhibit impairments

that extend from the primary motor to higher-order cognitive

systems. Multivariate and single-gradient comparisons consistently

demonstrated that the right amygdala had the strongest effect

of group differences. Given the crucial role of the amygdala

in emotional response and social cognition (Phelps, 2006), we

speculate that abnormal subcortical-cortical connectivity in the

right amygdala might stem from social isolation and loneliness

caused by long-term hearing loss (Husain et al., 2014). Collectively,

our findings highlight that subcortical regions, particularly

the amygdala, are crucial for understanding the pathological

mechanism behind ARHL.
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By utilizing transcriptome data from the AHBA database,

we identified a link between ARHL-related changes in structural

gradients and weighted gene expression profiles. The enrichment

analysis informed that the most correlated genes were primarily

enriched for the ‘Cytoskeleton in muscle cells’ pathway and several

biological processes including inorganic ion transmembrane

transport (GO:0098660) and terms related to regulation of

biological process. These terms that we identified exhibit some

correspondences with molecular mechanisms associated with

ARHL as reported in the prior literature. More specifically,

prior studies have suggested that specific ion channels and

transport proteins (e.g., KCNQ4 K+ channel) are crucial for

normal hearing (Bazard et al., 2021). The aging process disrupts

protein homeostasis in the inner ear, resulting in alterations

in ionic homeostasis that induce ARHL-related dysfunction

(Peixoto Pinheiro et al., 2021; Guo et al., 2022). Animal experiments

also indicate that the regulation of specific membrane potentials

(e.g., mitochondrial membrane potential) may be associated with

ARHL (Tian et al., 2020; Guo et al., 2022). Our imaging-

transcriptomics findings contribute to the understanding of the

molecular substrates underlying ARHL.

There are a few limitations to our findings that warrant

consideration. First, the relatively modest sample size in the

current study potentially constrains the generalizability of our

findings. Future studies could utilize a large sample to validate

our findings. Second, due to the dearth of detailed information

on the severity of hearing loss, and cognitive status and behaviors,

we are unable to explore the impacts of these factors on

the structural gradient differences. Further research aimed at

investigating whether structural connectome reorganization relates

to these factors would be of great significance. Third, our

findings are based on single-modal neuroimaging data. Future

studies could integrate other data types (e.g., functional MRI,

magnetic resonance spectroscopy, or longitudinal data) to further

validate and expand our findings. Finally, our transcriptomic

association analyses relied on gene expression data obtained

from donors without ARHL. Future studies should leverage

transcriptomic data from ARHL patients to further validate

our findings.
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