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Objective: Alzheimer’s disease (AD) is mainly identified by cognitive function

deterioration. Diagnosing AD at early stages poses significant challenges

for both researchers and healthcare professionals due to the subtle nature

of early brain changes. Currently, electroencephalography (EEG) is widely

used in the study of neurodegenerative diseases. However, most existing

research relies solely on functional connectivity methods to infer inter-

regional brain connectivity, overlooking the importance of spatial connections.

Moreover, many existing approaches fail to fully integrate multi-frequency

EEG features, limiting the comprehensive understanding of dynamic brain

activity across different frequency bands. This study aims to address

these limitations by developing a novel graph-based deep learning model

that fully utilizes both functional and structural information from multi-

frequency EEG data.

Methods: This paper introduces a Multi-Frequency EEG data-based Multi-

Graph Convolutional Network (MF-MGCN) model for AD diagnosis. This method

integrates both functional and structural connectivity to more thoroughly

capture the relationships among brain regions. By extracting differential entropy

(DE) features from five distinct frequency bands of EEG signals for each segment

and using graph convolutional networks (GCNs) to aggregate these features, the

model effectively distinguishes between AD and healthy controls (HC).

Results: The outcomes show that the developed model outperforms

existing methods, achieving 96.15% accuracy and 98.74% AUC in AD and

HC classification.

Conclusion: These findings highlight the potential of the MF-MGCN model

as a clinical tool for Alzheimer’s disease diagnosis. This approach could help

clinicians detect Alzheimer’s at earlier stages, enabling timely intervention and

personalized treatment plans.

KEYWORDS

Alzheimer’s disease diagnosis, EEG, multi-graph convolutional network, dual-mode
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1 Introduction

Dementia is mainly identified by cognitive function
deterioration, which notably affects daily bodily functions
and includes several neurodegenerative conditions. Alzheimer’s
disease (AD) stands as the primary form of dementia, impacting
millions of individuals globally (Mayeux, 2006; Rossini et al., 2020),
particularly among the elderly. AD typically progresses slowly in
its early stages and worsens over time. However, clinical diagnosis
of AD is challenging, as brain lesions in patients are not apparent
during the initial stages (Seto et al., 2021). Current treatment
focuses on artificial interventions to slow disease progression
and delay its transition to the most severe stage. Diagnosing
these diseases generally involves a combination of cognitive and
neurological evaluations, along with neuroimaging methods like
magnetic resonance imaging (MRI) (Sperling et al., 2011; Li et al.,
2024). While these modalities are valuable, they are both costly and
time-consuming (Babiloni et al., 2016), making them unsuitable
for long-term monitoring.

Therefore, there is a need to develop a fast and cost-effective
diagnostic method. Electroencephalography (EEG) is a cost-
effective and accessible neuroimaging method (Li R. et al., 2019;
Wang et al., 2022), which captures cumulative electrical potentials
from multiple brain regions. It is ideally suited for the long-term
monitoring of AD. EEG is widely applied across various fields,
making it a promising alternative method. However, its potential
for differential diagnosis of AD has not been fully explored. While
EEG has not been extensively employed in the clinical diagnosis of
AD, research points to its significant effectiveness in AD detection
using EEG-based methods (Fouladi et al., 2022).

However, raw EEG data often cannot be directly applied for
vigilance estimation in non-ERP experiments (Shi et al., 2013).
Therefore, it is essential to derive features from EEG signals. EEG
signal features are generally categorized into three main types.
In the time domain, widely adopted EEG features include Hjorth
parameters (Hjorth, 1970), fractal dimension (Liu and Sourina,
2013), and higher-order cross (Petrantonakis and Hadjileontiadis,
2009). Because EEG signals are represented as discrete sequences
over time, time-domain features provide crucial information about
the brain’s electrical patterns and its activity (Li Y. et al., 2019).
Frequency-domain features analyze the frequency components
of the signal, with common features including power spectral
density (PSD) (Goldfischer, 1965) and differential entropy (DE)
(Duan et al., 2013). Time-frequency domain features primarily
include Hilbert-Huang Spectrum (Jenke et al., 2014) and wavelet
transforms (Sbargoud et al., 2019). DE, in particular, can better
reflect the complexity and uncertainty of signals, effectively
quantifying the complexity and dynamics of EEG activity (Shi et al.,
2013). This aspect is especially important for neurodegenerative
diseases, as these conditions often lead to significant changes in
brain activity patterns (Pievani et al., 2011; de Haan et al., 2012a).
Therefore, DE features can reveal these changes and provide critical
information for diagnosing neurodegenerative diseases. In this
study, we focus on extracting DE features from EEG signals.

Recently, with advancements in deep learning techniques
(Yoo et al., 2020; Yang and Hong, 2021; Huang et al., 2024),
several researchers have combined EEG signals with deep learning
techniques for related studies (Yang et al., 2023). For instance,

Komolovaitė et al. (2022) employed convolutional neural networks
(CNN) to analyze EEG data collected from various participants
in response to visual stimuli. Amini et al. (2021) extracted time-
related parameters from channels as input features for CNNs
to classify AD. Chen et al. (2023) developed a classification
framework integrating multi-feature fusion using CNN and
Vision Transformers for AD classification. Ieracitano et al.
(2019) converted channel PSD into images, employing CNNs for
classification. However, while these methods utilize multi-channel
data, they overlook the connectivity between electrode channels,
which may limit a comprehensive understanding of brain activity.

To address these challenges, research utilizing graph-based
models specifically designed for structured data has emerged (Klepl
et al., 2022; Shan et al., 2022). Graph convolutional networks
(GCNs) are adept at processing graph data characterized by
complex topological structures (Kipf and Welling, 2017; Yang et al.,
2024). They effectively extract both local and global features from
nodes by aggregating information from neighboring nodes (Gilmer
et al., 2017). GCNs show promise across various fields, including
emotion recognition and the identification of neurodegenerative
conditions. For instance, Adebisi et al. (2024) introduced a GCN
framework that utilizes EEG signals and employs a phase lag
index to create a connectivity network for Alzheimer’s disease
(AD) classification. Additionally, Leng et al. (2023) developed
a GCN framework that captures directional characteristics from
brain networks and analyzes the connectivity of EEG data for
AD classification.

Although many researchers have proposed EEG signal
processing frameworks based on GCN, these methods have indeed
enhanced the classification and analysis performance of EEG
signals to some extent. However, most studies overlook spatial
connectivity between channels, which can reveal synchronized
activity patterns between different brain regions, thus providing
valuable structural information (Pons et al., 2010). Most existing
research relies solely on functional connectivity methods to
infer inter-regional brain connectivity, failing to fully capture
the complex interactions within EEG signals. Additionally, many
approaches do not adequately integrate multi-frequency EEG
features, limiting the comprehensive understanding of the dynamic
changes in brain activity across different frequency bands.

Therefore, this paper introduces a Multi-Frequency EEG data-
based Multi-Graph Convolutional Network (MF-MGCN) model
for AD diagnosis. The neuropathological features of AD include
the deposition of β-amyloid plaques, tau protein tangles leading
to synaptic dysfunction, and widespread degeneration of brain
functional networks (Braak and Braak, 1991). The model uses a
multi-graph structure to separately model the functional network
connectivity of five different frequency bands, capturing the
degradation of linear interactions between brain regions in AD
patients and the abnormal connectivity patterns across different
frequency bands in these patients. This model combines Pearson
correlation coefficients with spatial connectivity to enhance the
ability to capture relationships between nodes in EEG signals.
The Pearson correlation measures the functional link intensity
among electrodes in various brain regions, reflecting their linear
correlation in EEG activity. In contrast, spatial connectivity focuses
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FIGURE 1

Dual-mode connectivity.

on the structural connections between various brain regions
in physical space. The schematic diagram of the combination
of functional connectivity and structural connectivity is shown
in Figure 1. This combination allows the framework to grasp
functional associations and structural characteristics of brain
activity, thereby improving its ability to analyze EEG data
comprehensively.

The main contributions of this paper are as follows:

• The framework considers the influence of various EEG
frequency ranges on AD diagnosis. Hence, we introduced a
multi-graph convolutional architecture in the methodology,
and DE features from five distinct frequency bands are then
extracted from each segment.
• Our model employs a 90% sliding window overlap,

utilizing GCN to aggregate feature information in both
the time-frequency and spatial dimensions. By integrating
functional connectivity (the correlation of DE features
between channels) and structural connectivity (the spatial
relationships between channels), this combination offers
richer information compared to single connectivity methods,
forming a dual-mode connectivity approach that enhances the
overall analysis.
• We performed thorough evaluations using the dataset

(ds004504) from the OpenNeuro repository to assess our
model, and the findings indicate that the approach delivers
strong classification results.

This paper will be structured around the following key points:
Section 2 outlines the methodology, Section 3 describes the

experiments, Section 4 showcases the results, followed by the
discussion in Section 5. Lastly, Section 6 provides conclusions and
suggests future directions.

2 Materials and methods

Figure 2 illustrates the process of Alzheimer’s disease diagnosis.
Initially, EEG signals are collected and then undergo frequency
band decomposition. The EEG signals within the same frequency
band are subsequently restructured. Afterward, the restructured
signals are segmented, and relevant features are extracted from
each segment. These features are then input into the MF-MGCN
model to perform the diagnosis of Alzheimer’s disease. The graph
structure design of GCN can simulate the topological properties
of the human brain network. The nodes represent the positions
of the N EEG electrode locations, with node features being the
DE values that reflect the complexity of the EEG signals. The
edges (connection weights) are calculated based on the Pearson
correlation coefficient, which quantifies the functional connectivity
strength between electrodes and the degradation of connectivity
in AD patients. Previous studies have shown that, compared
to healthy controls (HC), the brain functional networks of AD
patients exhibit degeneration (Braak and Braak, 1991). The graph
convolution operation in GCN can capture these topological
changes, making the GCN architecture more effective in capturing
the differences in EEG signals between HC and AD patients.

Figure 3 illustrates the architecture of the MF-MGCN model.
First, EEG data is segmented using a windowing method, dividing
it into overlapping T-second segments. DE features from five
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FIGURE 2

Procedure for Alzheimer’s disease diagnosis.

FIGURE 3

Architecture of the MF-MGCN model. N refers to the EEG signal channels, while M and L denote the input and output sizes for the GCN layers,
respectively, and K represents the count of hidden units within the GCN layer. N × L × J and Z represent the input and output sizes of the fully
connected layers, J represents the count of frequency bands, while S, F indicate hidden layer units.

distinct frequency bands are then extracted from each segment. The
architecture consists of two GCN layers. Each electrode channel
from the EEG signal is considered a node in the GCN structure.
Pearson correlation coefficients among the DE features from the N
electrode channels are calculated to construct the adjacency matrix
for the first GCN layer, while the spatial connectivity between the

N electrode channels serves as the adjacency matrix for the second
GCN layer. The model then sets up three fully connected layers. We
extracted the DE features from various frequency bands, and after
convolutional aggregation through the GCN layers, the features
from all bands are combined and input into the fully connected
layers to ultimately classify AD and HC.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2025.1555657
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1555657 June 30, 2025 Time: 15:6 # 5

Xu et al. 10.3389/fnins.2025.1555657

FIGURE 4

Detailed process of the flattening.

Figure 4 illustrates the detailed process of flattening in the
MF-MGCN framework. In this process, features from different
frequency bands have already been aggregated using GCN, then
fused together, and finally, the fused features are input into the fully
connected layer for further processing.

2.1 Feature extraction techniques

DE effectively captures signal variability and uncertainty,
providing numerical measures of dynamics in EEG activity (Shi
et al., 2013). In this study, DE features are derived from each
segment of the EEG data, and the mathematical expression of DE is
defined as follows:

DE(x) = −
∫
+∞

−∞

s(x) log2(s(x))dx (1)

where x represents the time variable of the EEG data, s(x) is
the probability density function of x. The EEG time series is
approximately Gaussian distributed, with the signal’s mean denoted
as µ and variance as σ2.

s(x) =
1√

2πσi2
exp(−

(x− µi)
2

2σi2 ) i ∈ {δ, θ, α, β, γ } (2)

DEi(x) = −
∫
+∞

−∞

1√
2πσi2

exp(−
(x− µi)

2

2σ 2
i

) log2

(
1√

2πσi2
exp(−

(x− µi)
2

2σ 2
i

))dx

=
1
2

log2(2πeσi
2) i ∈ {δ, θ, α, β, γ } (3)

where DEi (x) represents the DE of the i-th frequency band, µi
and σ 2

i represent the mean and variance of the signal in the i-th
frequency band, x∼(µi,σ i

2), e and π are constants. In this study,
DE features are drawn from five core EEG frequency ranges: δ-band
(0.5 ∼ 4 Hz), θ-band (4 ∼ 8 Hz), α-band (8 ∼ 13 Hz), β-band (13
∼ 25 Hz), and γ -band (25∼ 45 Hz).

2.2 Graph convolution network

2.2.1 General representation of graph
A graph is defined as G = {V,E,A}, with V indicating the

node set (|V| = N|), E denoting the connections or edges linking
the nodes, and A ∈ RN×N being the adjacency matrix showing the
strength of connections between nodes.

2.2.2 Node features and graph learning
Each electrode channel from the EEG signal is considered a

node in the GCN structure, and the node features are defined as
the DE calculated from an EEG data segment of duration T. Thus,
the input is a node feature matrix X ∈ RN×M , The node feature
matrix is normalized before being fed into the GCN. The Pearson
correlation coefficient matrix between each pair of node features is
computed as the adjacency matrix for the first GCN layer, while the
spatial connectivity between the N electrode channels serves as the
adjacency matrix for the second GCN layer. The adjacency matrix
is denoted as A ∈ RN×N , where N = 19 indicates the quantity of
EEG electrode channels.

2.2.3 Multi-graph convolutional network section
Within the GCN part, we introduce a multi-graph

convolutional network that takes into account five EEG frequency
bands. Features from each frequency band are treated as distinct
graph feature matrices. The model is designed with two graph
convolutional layers: the first layer’s adjacency matrix relies
on Pearson correlation coefficients, whereas the second layer’s
adjacency matrix depends on spatial connectivity between nodes.
This setup combines functional and structural connectivity,
leveraging multiple types of relational information between nodes.

The multi-graph for the first convolutional layer is defined
as follows:

X1
i = σ

(
D̂
−

1
2

1i Â1
i D̂
−

1
2

1i X0
i W0

i

)
i ∈ {δ, θ, α, β, γ } (4)
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where X0
i represents the input feature matrix corresponding to the

i-th frequency band, and X1
i stands for the output of the first layer

for that frequency band. Here, W0
i is the learnable parameter matrix

associated with the input layer, D̂1i denotes the degree matrix of
the graph, σ· denotes the activation function, and Â1

i represents the
adjacency matrix for the first layer in the i-th frequency band. Each
element a1

mn in Â1
i is derived from the Pearson correlation among

the related feature nodes for that frequency band.
The elements a1

mn of the adjacency matrix Â1
i in the first

convolutional layer are defined as follows:

a1
mn = ρxmyn =

∑
(xm − x)

(
yn − y

)√∑
(xm − x)2

(
yn − y

)2

m, n ∈
{

Fp1, F7, F3 · · · · · ·O2
}

(5)

ρxmyn represents the Pearson correlation coefficient between xm
and yn, where xm and yn indicate the respective feature values for
nodes m and n. x and y represent the mean feature values for nodes
m and n.

The multi-graph for the second convolutional layer is defined
as follows:

X2
i = σ

(
D̂
−

1
2

2i Â2
i D̂
−

1
2

2i X1
i W1

i

)
i ∈ {δ, θ, α, β, γ} (6)

where X1
i represents the input to the second layer for the i-th

frequency band, while X2
i stands for the output of the second layer

for the same band. W1
i refers to the learnable parameter matrix

associated with the second layer, D̂2i denotes the degree matrix of
the graph, σ· denotes the activation function, and Â2

i represents the
adjacency matrix for the second layer in the i-th frequency band.

Based on the International 10-20 system electrode layout, the
19 electrodes are assigned to different anatomical brain regions.
Frontal Lobe: Fp1, Fp2, F7, F3, Fz, F4, F8; Central Region: C3,
Cz, C4; Parietal Lobe: P3, Pz, P4; Temporal Lobe: T3, T4, T5, T6;
Occipital Lobe: O1, O2. If two electrodes belong to the same brain
region, the corresponding value in the structural adjacency matrix
is 1; otherwise, it is 0.

The elements a2
mn of the adjacency matrix Â2

i in the second
convolutional layer are defined as follows:

a2
mn =

{
1, if R(m) = R(n)
0, otherwise

m, n ∈
{

Fp1, F7, F3 · · · · · ·O2
}
(7)

where R(m) and R(n) represent the brain regions of channels m and
n, respectively. If R(m) = R(n), it indicates that the channels belong
to the same brain region.

3 Experiment

3.1 Dataset

The dataset employed in this research was obtained from
the OpenNeuro repository (ds004504) (Miltiadous et al., 2023).
It consists of EEG recordings from 65 participants, including 36
AD patients and 29 HC subjects. The cognitive abilities of these
participants varied significantly, and their cognitive function was

rigorously assessed using the MMSE (Kurlowicz and Wallace,
1999). Participants with AD typically presented with lower MMSE
scores, reflecting greater levels of cognitive deterioration, while
the HC group generally scored higher, representing normal
cognitive functioning. All participants were in a quiet, undisturbed
environment during EEG data collection, ensuring they were in
an eyes-closed resting state (without external task stimulation) and
remained awake and relaxed.

EEG recordings followed the standard 10-20 international
system, with a configuration of 19 scalp electrodes placed
at specific locations. The recording durations differed across
the different groups. For the AD group, the average session
lasted approximately 13.5 min, the range is from 5.1 to
21.3 min. In comparison, the HC group had an average
recording time of 13.8 min, with a shorter range, from
12.5 to 16.5 min. To ensure consistency and comparability
across participants, a 5-min segment was selected from each
participant’s EEG recordings for further analysis. By unifying
the data length, we ensured that the subsequent feature
extraction and analysis processes could be applied uniformly
across both groups.

3.2 Data preprocessing

The preprocessing of the EEG data was performed by the
original data collectors (Miltiadous et al., 2023), involving the
removal of irrelevant noise, reduction of artifacts, and ensuring
clear and reliable data. These preprocessing steps not only
enhanced the signal quality but also significantly improved the
accuracy of the analysis results. In our study, we further processed
the EEG data by segmenting it into overlapping T-second windows
using a sliding window technique. The DE features were derived
from every frequency band within these EEG segments. Because
the participant group was relatively limited, we applied data
augmentation by using a 90% overlap in the sliding windows to
increase the sample size. This method expanded the dataset tenfold,
growing the original 65 samples to 650, including 360 AD samples
and 290 HC samples.

TABLE 1 Configuration parameters of the MF-MGCN model.

Parameters for the MF-MGCN
model

Values

Model learning rate λ 0.001

Model batch size 10

Model training Epoch 200

Model loss function Cross entropy

GCN activation function type ReLU

EEG signal segment length T 10 s

Number of frequency bands J 5

Dimensions M and L of input and output features of
the GCN layer

32 and 2

The node count N within the graph 19

Number of model parameters 29,332
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3.3 Evaluation indices

We evaluated the MF-MGCN model using multiple indices.
The classification accuracy is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
. (8)

Precision is defined as:

Pre =
TP

TP + FP
. (9)

The calculation method for Recall is defined as:

Rec =
TP

TP + FN
. (10)

The calculation method for F1-score is defined as:

F1− score = 2∗
Pre∗Rec

Pre+ Rec
. (11)

ROC-AUC functions as a metric that evaluates overall efficacy.
Mathematically, the ROC can be expressed as:

TPR =
TP

TP + FN
, (12)

FPR =
FP

FP + TN
, (13)

where TP, TN, FP, and FN represent True Positive, True Negative,
False Positive, and False Negative, respectively.

3.4 Hyperparameters

The proposed MF-MGCN model incorporates both
convolutional and fully connected layers and is implemented
using Pytorch. We conducted various experiments, exploring a
range of combinations and layer depths for the convolutional
layers, as well as for the fully connected layers, the EEG segment
duration (T), and other hyperparameters, to determine the most
effective architecture for optimal performance. According to the
literature (Adebisi et al., 2024), a segment length of 10 seconds
for EEG signals is the optimal value. The total parameter count
for MF-MGCN is 29,332, which is comparable to other EEG
deep learning models (Klepl et al., 2022). The original data was
expanded to 650 samples (360 AD ++ 290 HC) using a 90%
overlapping sliding window, which aligns with the common data
augmentation method for small sample EEG studies (Roy et al.,
2019). The configuration parameters of the MF-MGCN framework
are presented in Table 1.

4 Results

4.1 Implementation details

Due to the process of data augmentation, several samples
were created for each participant. To avoid data leakage, data
splitting was performed at the participant level. Samples generated
from the same participant were treated as a single group. When

extracting samples for the training or testing sets, they were selected
by group (participants), ensuring that the training and testing
sets were completely separated by participant IDs. All augmented
samples from the same participant belong exclusively to either the
training set or the testing set. We randomly selected 80% of these
groups for training purposes, resulting in 520 samples, and the
other 20% were allocated to the test set, including 130 samples.
This procedure ensured that no data from a single participant
overlapped between the training and test sets. In order to reduce
the risk of overfitting, a 5-fold cross-validation method was utilized
during the training process.

4.2 Model performance

Using the aforementioned methods, the outcomes of the
MF-MGCN model’s classification for AD and HC are presented
in Table 2. It demonstrates that the MF-MGCN achieved a
classification accuracy of 96.15% and an AUC of 98.74% among
the 65 subjects, showcasing excellent classification performance.
The training and testing loss curves are shown in Figure 5. As
illustrated in the figure, both the training and testing losses exhibit
a smooth downward trend and remain closely aligned throughout
the training process, with no significant divergence or upward
rebound in testing loss. This indicates that the model did not
experience noticeable overfitting during training.

We conducted a comparative evaluation using the same dataset,
comparing the classification results of MF-MGCN with other
models, including XGBoost (Lal et al., 2024), Random Forest (RF)
(Lal et al., 2024), Extra Trees (ET) (Lal et al., 2024), K-Nearest
Neighbors (KNN) (Lal et al., 2024), LCADNet (Kachare et al.,
2024), CNN (Stefanou et al., 2025), and CNN-ViT (Chen et al.,
2023), as well as three variants of the MF-MGCN model: MF-
MGCNI, MF-MGCNII and MF-MGCNIII. MF-MGCNI uses a
single layer of graph convolution, with the adjacency matrix
calculated using Pearson correlation coefficients. MF-MGCNII
employs two layers of graph convolution, where each layer’s
adjacency matrix is also calculated using Pearson correlation
coefficients. MF-MGCNIII replaces the DE features with PSD

TABLE 2 Classification results of different models for AD and HC.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

AUC (%)

XGBoost 83.19 80.35 83.23 81.76 91.62

RF 89.10 88.41 87.38 87.89 95.81

ET 90.24 89.72 88.59 89.15 96.64

KNN 94.72 94.66 93.42 94.04 96.64

LCADNet 93.14 96.50 95.00 95.76 –

CNN 79.45 76.32 76.06 77.60 –

CNN-ViT 87.33 – 84.56 – 88.19

MF-MGCNI 91.54 92.98 88.33 90.60 96.98

MF-MGCNII 93.85 94.83 91.67 93.22 97.57

MF-MGCNIII 93.79 93.43 94.64 94.03 97.58

MF-MGCN 96.15 97.67 98.33 98.00 98.74
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FIGURE 5

Comparison of training and testing loss curves.

features. The comparative outcomes are presented in Table 2. It is
evident that the MF-MGCN outperformed the other models.

The performance of MF-MGCN exceeded that of its variants,
MF-MGCNI and MF-MGCNII, indicating the effectiveness of
incorporating spatial connectivity as the adjacency matrix in the
second layer. After replacing the DE features with PSD features,
the performance of model MF-MGCNIII shows a 2.36% decrease
in accuracy (from 96.15 to 93.79%). From these results, it is
clear that the combination of the graph structure architecture and
DE features is irreplaceable and has a significant contribution
to the classification accuracy. Based on the degree of accuracy
reduction, it can be concluded that the graph structure architecture
contributes more to the classification accuracy than the DE features.
Although MF-MGCNI and MF-MGCNII did not outperform KNN
in some metrics, they were still superior to XGBoost, RF, and ET.
Among the traditional models, KNN performed the best, while
RF and ET produced very similar results. Overall, our model
demonstrated effectiveness in classifying AD and HC. It should be

noted that LCADNet and CNN lack the AUC metric, and CNN-ViT
is missing Precision and F1-score metrics, as the relevant literature
did not provide these results.

We also validated the significance of the performance
differences between MF-MGCN and the baseline models using the
following methods: For the F1-score, we applied the Wilcoxon
signed-rank test and quantified the effect size using Cohen’s d; for
the AUC, we conducted significance analysis using the Delong test
and reflected the actual improvement through the AUC difference.
The statistical analysis results are shown in Table 3. With the
exception of GCN, the p-values for both F1-score and AUC in the
comparisons between MF-MGCN and the baseline models were
significantly lower than the statistical significance level (α = 0.05),
indicating statistically significant differences. To control for the
potential Type I error inflation due to multiple hypothesis testing,
we applied False Discovery Rate (FDR) correction using the
Benjamini-Hochberg procedure to the original p-values reported
in Table 3. Although some FDR-adjusted p-values slightly exceed

TABLE 3 Statistical analysis of the performance difference between MF-MGCN and baseline models.

Model F1-score
difference
P-value

F1-score
FDR-adjusted p

AUC
difference
p-value

AUC
FDR-adjusted
p

F1-score
effect size

AUC
Difference (%)

SVM 0.0215 0.0549 0.0182 0.0429 2.4381 4.7004

CNN 0.0327 0.0549 0.0284 0.0429 1.8204 5.2955

GCN 0.0631 0.0631 0.0429 0.0429 0.8513 2.3511

GAT 0.0412 0.0549 0.0365 0.0429 2.1261 4.3011

p < 0.05 indicates a statistically significant difference, Cohen’s d > 0.8 means a large effect size, 0.5-0.8 represents a medium effect size, and < 0.5 implies a small effect size, AUC
difference> 2.0% can be considered a meaningful improvement in practical performance.
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the conventional significance threshold of 0.05, the overall trends
remain statistically suggestive. Combined with large effect sizes
(Cohen’s d > 0.8) and AUC differences above 2%, the results still
support a meaningful performance improvement of MF-MGCN
over baseline models.

We also performed a noise ceiling analysis on the accuracy
to assess the theoretical performance limit that MF-MGCN can
achieve. Using the bootstrap method, we resampled 100 times
to calculate the theoretical maximum classification accuracy. The
analysis results indicate that the noise ceiling is 97.8% (95% CI:
96.8–98.2%), and the accuracy of MF-MGCN is 96.15%, with only
a 1.65% difference from the theoretical limit. This suggests that the
model’s performance is close to the theoretical limit of the data and
is minimally affected by data noise.

Finally, we have compared MF-MGCN with other DNN
models, and the comparison results are shown in Table 4. As
indicated in Table 4, MF-MGCN outperforms similar studies, even
with comparable or smaller sample sizes.

5 Discussion

5.1 Differences in DE features across
different frequency bands between AD
and HC

In the present research, we performed a comparison of DE
features across different frequency bands between AD patients and
HC, selecting samples from both groups, with results presented
in Figure 6. The figure reveals significant differences in DE values
across various frequency bands. The findings show that AD patients
exhibit higher DE values than HC in the Delta and Theta bands,
potentially linked to abnormal synchronization of brain neurons
and cognitive decline. The increased power in the Delta and Theta
bands in AD patients has been widely reported (Jeong, 2004). The
elevation of DE values in these bands in the AD group in our
study corroborates the findings of increased power reported by

Jeong (2004). In contrast, in the mid-to-high frequency bands,
the DE values of AD patients are lower than those of HC, with
the most pronounced difference observed in the Alpha band. This
indicates a marked reduction in brain activity related to cognition,
attention, and memory functions in AD patients, the reduced
complexity in the Alpha band in AD patients is directly related
to the degeneration of the DMN functional connectivity (de Haan
et al., 2012b). whereas healthy individuals exhibit stronger brain
activity in these bands.

These findings further support the characteristic
neurodegenerative pattern of AD, where low-frequency activity is
enhanced, and high-frequency activity is diminished. This provides
strong evidence for using EEG signals to detect Alzheimer’s
disease. Moreover, the results suggest that DE features across

TABLE 4 Comparison of MF-MGCN model performance with similar AD
diagnostic models.

Study (year) Model
type

Data
modality

Sample
size

Accuracy(%)

Geng et al. (2022) GRU EEG AD: 20
HC: 20

93.46

Shan et al. (2022) ST-GCN EEG AD: 19
HC: 20

92.30

Chen et al. (2023) DBN EEG AD: 36
HC: 29

87.33

Klepl et al. (2023) AGGCN EEG AD: 20
HC: 20

90.50

Lin et al. (2020) ELM MRI+PET AD: 102
HC: 200

84.7

Abrol et al. (2020) ResNet MRI AD: 157
HC: 237

89.3

Suk et al. (2016) Deep sparse
multi-task
learning

MRI AD: 51
HC: 52

90.36

This study MF-MGCN EEG AD: 36
HC: 29

96.15

FIGURE 6

DE features of AD and HC across different frequency bands.
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FIGURE 7

Functional connectivity strength between AD and HC.

different frequency bands can effectively distinguish between AD
patients and HC.

5.2 Analysis of differences in functional
connectivity strength between AD and
HC

In the present research, we performed a comparison of
functional connectivity strength across different frequency
bands between AD and HC, selecting a subset of samples.
The results, as shown in Figure 7, reveal notable distinctions
between the two cohorts across the various frequency ranges.
The findings indicate that the HC group exhibits significantly
stronger functional connectivity in most frequency bands,
especially within the Theta, Alpha, and Gamma frequency

ranges, suggesting that healthy individuals have stronger
brain region connectivity in these bands. In contrast, the AD
group shows a general reduction in functional connectivity
across these bands, especially in those closely associated
with cognition and memory. These observations highlight
the diminished functional connectivity in AD patients across
multiple frequency bands, reflecting substantial changes in brain
activity patterns and further supporting its characterization as a
neurodegenerative disease.

5.3 Relationship between resting-state
EEG biomarkers and DE features

We systematically explain the relationship between DE features
and classic resting-state EEG biomarkers. The DE features used in

FIGURE 8

The impact of unit count in the GCN hidden layer (K) on classification accuracy.
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FIGURE 9

The effect of unit count within the fully connected hidden layers (S and F) on classification accuracy.

the model are consistent with EEG abnormal patterns related to AD
at multiple levels, offering good biological interpretability.

PSD Level: DE is the logarithmic energy integral of the PSD,
and its trend is highly consistent with classic PSD features. Previous
studies have shown that AD patients have increased PSD in the
Theta band and decreased PSD in the Alpha band (Jeong, 2004).
The DE features exhibit the same trends in these bands, showing
greater sensitivity to subtle frequency band fluctuations and more
detailed capture of the nonlinear fluctuations in frequency domain
features (Shi et al., 2013).

Functional Connectivity Level: We used DE features to
compute the Pearson correlation between channels, constructing a
functional connectivity network that is input to the GCN model.
Figure 7 shows that the functional connectivity strength in the
AD group is lower than in the HC group, which is consistent
with existing research. Compared to other features, DE is more
sensitive to pathological connection weakening when constructing
the connectivity matrix, making it a more effective indicator of the
weakened functional connections between brain regions.

TABLE 5 Classification results of MF-MGCN model for AD and HC across
different frequency bands.

Frequency
bands

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

AUC
(%)

Delta 68.46 67.92 60.00 63.72 65.83

Theta 71.54 67.16 75.00 70.87 70.31

Alpha 88.46 83.58 93.33 88.19 92.36

Beta 68.46 65.08 68.33 66.67 72.07

Gamma 73.08 75.51 61.67 67.89 73.12

Full 96.15 97.67 98.33 98.00 98.74

Signal Complexity Level: DE is essentially a frequency-domain
quantification of signal complexity. As shown in Figure 5, the DE
value in the Alpha band significantly decreases in AD patients,

TABLE 6 Ranking of EEG channel importance derived from
leave-one-channel-out analysis.

Channel Region AUC
(Removed, %)

1AUC (%)

Pz Parietal 83.47 15.27

F7 Frontal 86.19 12.55

F8 Frontal 87.53 11.21

T5 Temporal 88.32 10.42

T6 Temporal 88.67 10.07

C3 Central 89.48 9.26

F4 Frontal 89.73 9.01

P4 Parietal 90.12 8.62

Fz Frontal 90.55 8.19

C4 Central 90.89 7.85

F3 Frontal 92.37 6.37

T4 Temporal 93.15 5.59

Cz Central 93.82 4.92

P3 Parietal 94.06 4.68

T3 Temporal 94.33 4.41

O2 Occipital 96.83 1.91

Fp1 Prefrontal 97.12 1.62

Fp2 Prefrontal 97.39 1.35

O1 Occipital 97.67 1.07
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reflecting a reduction in the complexity of EEG signals in that band
for AD patients.

5.4 Effect of hyperparameters on model
performance

We further investigated how varying the units in the
GCN hidden layer (K) and the fully connected hidden layers
(S and F) influenced the classification accuracy of the MF-
MGCN model. The impact of K, S, and F on accuracy can
be observed in Figures 8, 9. Our results indicate that the
classification accuracy was highest when K was set to 16, and
S and F were set to 128 and 32, respectively. Therefore, in our
experiments, we used K = 16, S = 128, and F = 32 as the
optimal settings.

5.5 Classification effect of different
frequency bands

The research further evaluated the MF-MGCN model’s
performance across different frequency bands and the full
frequency range. The assessment outcomes of the MF-MGCN
model for distinguishing AD and HC are presented in Table 5.
It is evident that the full frequency band yielded the best
results, indicating that multi-frequency analysis enhances
the model’s sensitivity to changes in brain activity, thereby
improving the accuracy of AD identification. Among the single
frequency bands, the Alpha band achieved the highest AUC
of 92.36%, demonstrating its significant contribution to the
classification outcome.

This result is consistent with the fact that participants were
in a calm state during EEG data acquisition, and the Alpha
band is closely associated with relaxation, closed-eye rest, and
quiet wakefulness (Lagopoulos et al., 2009). Furthermore, it
aligns with previous findings that Alzheimer’s disease patients
typically exhibit reduced complexity in the Alpha band and
weakened functional connectivity within the default mode network
(DMN), both of which are indicative of early neurophysiological
deterioration (de Haan et al., 2012b). These observations
collectively support the validity and neurobiological relevance of
the classification results.

5.6 Key EEG channel identification for AD
via electrode ablation

To further enhance the interpretability of the model, we
conducted a leave-one-electrode-out analysis by sequentially
masking each of the 19 EEG electrodes (retaining the remaining
18 in each iteration). For every excluded electrode, we retrained
and tested the model, recording the decrease in AUC caused by its
removal. Based on the magnitude of AUC reduction, we ranked the
importance of each channel to quantify its relative contribution to
AD classification.

As shown in Table 6, removing any single electrode resulted
in a performance drop to varying degrees, confirming that

reducing the number of electrodes negatively affects classification
performance. Pz (1AUC = 15.27%), F7 (1AUC = 12.55%),
and F8 (1AUC = 11.21%) were identified as the most critical
channels for AD classification, underscoring the pathological
importance of the parietal and frontal regions in Alzheimer’s
disease. In contrast, the removal of electrodes such as O1, Fp2,
and Fp1 led to minimal performance degradation (1AUC < 2%),
indicating their relatively limited contribution to the model’s
discriminative power.

6 Conclusion and future work

The study introduces an MF-MGCN model for diagnosing
AD. The model integrates various EEG data frequency ranges,
with each band’s features processed through GCN layers and
subsequently combined. We analyzed the functional connectivity
strength between different brain electrode channels and conducted
experiments on a dataset published in the OpenNeuro repository.
The results demonstrated high classification accuracy (96.15%) and
AUC (98.74%), effectively detecting AD. The implementation of the
MF-MGCN and dataset are available at https://github.com/XQJMJ/
MF-MGCN.

Notably, we also evaluated the detection capabilities of the
model across various frequency bands. The comparative results
indicated that the full-frequency band performed the best,
providing more accurate identification of AD and HC. Among
individual frequency bands, the Alpha band showed the best
performance, with an AUC of 92.36%, demonstrating its significant
contribution to the classification outcome. Although the findings
emphasize the model’s ability to detect AD, further rigorous
testing and validation are required before it can be applied in
clinical practice.

While our approach achieved competitive performance, we
identified several limitations and potential directions for future
improvement. Our dataset was relatively small, which imposed
constraints on fitting more complex models. This limitation
could lead to instability in larger-scale real-world applications.
Future work should validate the generalizability on larger
datasets, incorporating data from different racial and regional
populations, and conducting research in more diverse cohorts.
The current study only utilized EEG signals, future work could
explore the integration of other physiological signals (such as
MEG, fMRI, etc.) to further improve the model’s detection
performance and robustness.

The model proposed in this study is expected to be applied
in the initial screening phase of cognitive disorder clinics,
assisting doctors in the rapid identification of AD patients.
Compared to high-cost imaging methods such as PET and
MRI, EEG offers advantages in terms of ease of acquisition,
low cost, and strong repeatability, with resting-state EEG taking
only about 5 min, making it suitable for large-scale clinical
implementation. Additionally, the model, based on the extraction
mechanism of multi-frequency band DE values and functional
connectivity features, possesses good interpretability. These feature
changes can be visually presented using heatmaps or brain
network visualization tools, helping clinicians understand the
basis for the model’s classification decisions, thus increasing its
clinical acceptance.
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