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Introduction: Most brain imaging studies on olfaction focus on short-term

odorant stimuli, with few examining long-lasting odor exposure or its after-

effects. In this study, we utilized resting-state fMRI (rsfMRI) to investigate the

effects of prolonged odor exposure to lavender on brain activity and whether

these persist post-exposure.

Methods: Fourteen healthy women underwent two fMRI sessions, conducted

one week apart, in a randomized order. Both sessions included rsfMRI scans

before, during, and up to 2 h after a 14 min exposure to either lavender essential

oil or a non-odorant control.

Results: An Independent Component Analysis identified the salience network

(SAL) and default mode network (DMN) as the most consistent resting-

state networks. A two-factorial ANOVA revealed significant time-varying

interaction effects between the SAL and DMN. During odor exposure, functional

connectivity (FC) increased within the SAL, and a negative correlation between

the SAL and DMN appeared, which intensified immediately after exposure. Two

hours post-exposure, the FC between SAL and DMN turned positive.

Discussion: These findings suggest that prolonged odorant exposure to lavender

can induce long-lasting brain effects detectable up to 2 h afterwards in women.

This proof-of-concept study should be extended to other odorants and to men,

and offers new possibilities for exploring the effects of aromatherapy or other

odor exposure interventions on brain activity.

KEYWORDS

olfactory connectome, resting state functional MRI (rsfMRI), salience network (SAL),
default mode network (DMN), Independent Component Analysis (ICA)

Introduction

There is now ample evidence that exposure to an odorant is associated with increased
activity in a number of brain areas (Arnold et al., 2020; Torske et al., 2022 for recent meta-
analyses). These include the piriform cortex, amygdala, entorhinal cortex, anterior and
posterior insula, medial and lateral orbitofrontal cortex, anterior and posterior cingulate
cortex, and mediodorsal thalamus. Nearly all brain imaging studies on olfaction have
studied the response to short olfactory stimuli in the order of seconds, typically between
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three and six. Although animal studies have examined the effects
of long-lasting odor exposure on behavior, brain structure and
function (Buonviso and Chaput, 2000; Buonviso et al., 1998;
Hernández-Soto et al., 2022; Mandairon et al., 2006), studies in
humans investigating brain responses to longer-lasting tonic forms
of olfactory stimulation are lacking. This is surprising since we are
often exposed to much longer periods of olfactory stimulation in
daily life situations. Examples include scented environments (such
as the aroma of a forest, the ocean, a hospital, or a swimming pool),
aromatherapy, where an individual is exposed to a specific odor for
an extended period (typically between 10 and 60 min) (Her and
Cho, 2021), the presence of someone wearing perfume, and more.
This prompts the question of how the human brain reacts to a
prolonged odorant stimulus.

The effects of an odor on brain function may outlast the actual
exposure period (for reviews: Johnson, 2011; Kontaris et al., 2020).
To the best of our knowledge, there are no published brain imaging
studies examining purported lingering effects after exposure to
a tonic odorant. Odors are strongly linked to emotions and
memories and can induce involuntary autobiographical memories
(de Bruijn and Bender, 2018; Green et al., 2023; Reid et al.,
2015). Odors can also induce rapid changes in mood (Alaoui-
Ismaili et al., 1997; Chen et al., 2021; Cieri et al., 2023; Dal Bò
et al., 2022; Ehrlichman and Halpern, 1988; Chen and Haviland-
Jones, 1999; Weber and Heuberger, 2008). The influence of
odorants on emotion and memory may be attributed to the partial
overlap of brain networks responsible for olfaction, emotion and
memory, such as the amygdala, entorhinal cortex, hippocampus
and orbitofrontal cortex (Arshamian et al., 2013; Maddock et al.,
2001; Rolls, 2015; Saive et al., 2014; Soudry et al.,2011). Odorant
input is relayed from the olfactory bulb to forebrain and temporal
lobe structures involved in emotional processing (the amygdala,
insula and medial prefrontal cortex) and memory formation
(entorhinal cortex and hippocampus). Taken together, this suggests
that odorants may exert long-lasting effects through influencing
emotion and memory-related brain networks (Castellanos et al.,
2010). In aromatherapy, it is believed the effects of the odorant
stimulation persists beyond the actual exposure period, leading to
improved mood (Agatonovic-Kustrin et al., 2020), reduced anxiety
(Lehrner et al., 2005; Liao et al., 2021) and pain (Liao et al., 2021;
Yang et al., 2024), and improved sleep quality (Zhong et al., 2019)
and memory (Yang et al., 2021). The main objective of this proof-
of-concept study was to test whether long-term odor exposure
produces time-varying changes in brain resting state networks. In
order to address this question, we used a within-subject cross-
over study design in which we acquired longitudinal resting state
functional MRI (rsfMRI) before, during, immediately after, and 1
and 2 h after a 14 min odor exposure, or a non-odorant control.

Materials and methods

Subjects

Fourteen women, aged between 21 and 45 years (mean age:
38.5 ± 6.6 years) participated in the study. All participants were
right-handed, non-smokers and normosmic, as measured by the
Sniffin Sticks test (Hummel et al., 1997) that was administered

prior to study inclusion. Individuals with a history of neurological
disease or currently taking medication affecting the central nervous
system were excluded from participation. We included only
women because of their better olfactory performance (Brand and
Millot, 2001; Sorokowski et al., 2019) and to reduce intersubject
variability (Robinson et al., 2015). Participants received 150€ for
their time spent and travel costs. The study was approved by
the ethics committee of the University Hospital St Luc, Woluwe-
Saint-Lambert (Ethics approval number No. B403201112591).
All methods were performed in accordance with the relevant
guidelines and regulations, and participants provided written
informed consent before participating in the study.

MRI procedures

The study protocol consisted of two fMRI sessions which
were carried out on different days, spaced 1 week apart, in a
randomized order. Half of the participants began with exposure
to the active compound, lavender essential oil (IFF, France;
CAS: 8000-28-0) at a concentration of 50% in an odorless
and non-volatile solvent (isopropyl myristate), while the other
half started with exposure to an odorless physiological serum,
our control condition. Lavender predominantly activates the
olfactory system, but it can also stimulate the trigeminal system,
leading to both a scent perception and physical sensations like
coolness. The lavender essential oil was administered by placing
three drops on a cotton pad positioned on the head coil,
15–20 cm from the participant’s nose inside the MRI room
(Figure 1). To avoid that the odorant would spread inside
the scanner room, we maintained a constant inverse airflow
inside the magnet. The randomized cross-over design allowed
each participant to act as their own control. All fMRI sessions
took place during the evening, between 6:00 and 10:00 p.m., in
order to minimize potential effects due to variations in circadian
rhythm.

During the two fMRI sessions, five rsfMRI data sets were
acquired: before, during, immediately after, 1 h after and 2 h
after odor (or non-odorant control) exposure. All rsfMRI runs
lasted 7 min, except the one during odor (or non-odorant control)
exposure which lasted 14 min. Participants were instructed to stay
awake, have their eyes closed, and to let their thoughts wander
freely during scanning. Participants stayed inside the MRI for the
first three rsfMRI data acquisitions (Figure 1). Immediately after
finishing the odor exposure scan, the experimenter went into the
scanner room to remove the cotton pad with the odorant from
the head coil, while the participant remained on the scanner table
and was repositioned in the magnet. This whole procedure lasted
about 3 min, no lingering smell was present in the scanner room by
the time the next (immediately after) scan started. After the third
rsfMRI session, participants were taken out of the MRI and were
guided to a quiet room, where they waited until the next rsfMRI
data acquisition. Participants returned to the MRI room for the 1 h
after data acquisition, which involved a 7 min resting state scan,
followed by a 10 min structural imaging (MPRAGE) acquisition.
Thereafter, participants returned to the quiet room where they
waited an additional 40 min before returning to the MRI room for
the last rsfMRI data acquisition, 2 h after odor exposure. No odor
exposure was done in the 1 and 2 h after sessions.

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2025.1555922
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1555922 June 10, 2025 Time: 15:18 # 3

Kupers et al. 10.3389/fnins.2025.1555922

FIGURE 1

Experimental study design. Each participant went twice through the procedure, once while being exposed to lavender, and once during exposure to
a non-odorant substance. The order of the two sessions was counter-balanced across participants. The image to the upper left corner shows the
odor administration procedure with the cotton patch attached to the head coil of the magnetic resonance imaging (MRI).

Behavioral measurements

Upon arrival at the MRI center, participants filled out a
circadian typology questionnaire (Horne and Ostberg, 1976) and
the Smith Relaxation States Inventory 3 (SRSI) (Smith, 2001) to
measure degree of relaxation before the first MRI acquisition. After
the third rsfMRI session, participants rated odor intensity on a
scale from 0 to 10, with “0” corresponding to not perceptible and
“10” very strong intensity. Participants also rated their level of
relaxation during the scans on a scale from -10 to 10, with “-10”
indicating extremely tense’ and “10” extremely relaxed, and they
completed the SRSI for the second time. Following the 2 h after
scan, participants completed the SRSI for the third time. Finally,
participants rated the likeability of the used odor on a Likert scale
from -10 to 10, with “-10” indicating strongly dislike and “10” like
it very much.

MRI data acquisition

Anatomical and rsfMRI scans were performed using a 3 Tesla
SIGNATM Premier GE (General Electric, Milwaukee, United States)
MRI Scanner equipped with a 48-channel head coil. The 3D
T1-weighted structural images were acquired with the following
parameters: a resolution of 1 × 1 × 1 mm3, 1 mm slice thickness,
repetition time (TR) = 2,187 ms, echo time (TE) = 2.95 ms, flip
angle = 8 deg, FOV = 256 × 256 mm2. The resting-state sequences
consisted of T2∗-weighted echo-planar images and were acquired
using the following parameters: a voxel size of 2 × 2 × 2 mm3,
2 mm slice thickness, TR = 1,700 ms, TE = 30 ms, flip angle = 90
deg, FOV = 220 × 220 mm2, 75 slices acquired in an ascending
interleaved order. The rsfMRI scans before, immediately after, 1
and 2 h after odor exposition consisted of 253 volumes while the
one during odor exposition (or non-odorant control substance)
consisted of 497 volumes.

MRI data pre-processing

The 3D anatomical data was pre-processed as follows. First,
we corrected for inhomogeneities in image intensities using a bias

field created by the analysis of whiter matter intensity changes
over space (Vaughan et al., 2001). This procedure includes an
automatic brain extraction step. Next, we normalized the data into
MNI space, performing a template matching approach to MNI-
152 space represented by the high-resolution template “MNI-ICBM
152 2009c.” The input native anatomy is transformed to the MNI
152 2009c template by minimizing a cost function that reflects the
match of the input VMR with the template VMR.

For the functional data, we first performed a slice scan
time correction using sinc interpolation, based on information
about the TR (1,700 ms) and the order of slice scanning as
specified in the original raw data. A 3-D head motion correction
was performed to correct for small head movements by spatial
alignment of all functional volumes of a subject to the first volume
by rigid body transformations. Inspection of estimated translation
and rotation parameters revealed that they never exceeded 3 mm or
2◦. Drift removal consisted of a linear trend removal, followed by
removal of low-frequency non-linear drifts of three or fewer cycles
(0.0063 Hz) per time course. For spatial smoothing, we applied a
Gaussian filter (FWHM 5 mm) to the volume-based analysis after
spatial interpolation to voxel space. Functional data was aligned to
the native anatomical data using a two-step procedure. First, we
applied position information based on the header of the functional
and anatomical scans. Next, we applied a gradient-based alignment
to fine-tune the alignment between the two datasets. The functional
data was normalized into a four-dimensional representation with
2 × 2 × 2 mm resolution, using the alignment information
and the MNI “a12” transformation matrix obtained by the MNI
normalization of the anatomical data.

fMRI analysis

Seed-based correlation (SBC) analysis
To define our seed regions-of-interest, we took the coordinates

from a meta-analysis on the Default Mode Network (DMN) and
the salience network (SAL) to extract the time courses for the
SBC analysis (Pievani et al., 2017). For the posterior cingulate
cortex (PCC), we drew a sphere of 5 mm radius around the x,
y, z coordinates 0, -56, 26, whereas for the right anterior insular
cortex, we drew a 5 mm sphere around coordinates 40, 14, -2. This

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1555922
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1555922 June 10, 2025 Time: 15:18 # 4

Kupers et al. 10.3389/fnins.2025.1555922

approach allowed us to identify known resting state networks at all
time points and conditions. The seed-based correlation approach
averages the time course of all functional voxels within the selected
region of interest (seed) and performs a pairwise correlation within
all functional voxels in the dataset. The method is discussed in
comparison to other resting analysis techniques in Seewoo et al.
(2021).

ICA-based probabilistic maps
We first applied a single-run ICA (Formisano et al., 2002a;

Formisano et al., 2002b; Formisano et al., 2004), followed by
a Group ICA (Esposito et al., 2005) to all the 140 functional
runs (14 subjects, five time points and two sessions) of the
sample. The single subject ICA plugin implements methods
described in Formisano et al. (2002a),b, 2004 and includes a C++
implementation of the fastICA algorithm (Hyvärinen and Oja,
2000; Esposito et al., 2002). Prior to the ICA decomposition, we
performed a principal component analysis (PCA) to reduce the
dimensions of the functional dataset from the original number
of timepoints to 40, which corresponds to more than 20% of
the initial temporal dimensions and accounted for more than
99.9% of the total variance/covariance in all subjects. Next, we
applied the self-organizing group ICA (sogICA) procedure to the
ICA decompositions obtained from the datasets of each subject,
using a C++ plugin in BrainVoyager, according to the methods
and component clustering algorithm described in Esposito et al.
(2005). In this step, the independent components from the
individual datasets are “clustered” at the group level. The clustering
algorithm is based on the components’ mutual similarity measures
implemented as linear spatial correlation in a common anatomical
space. In general, the sogICA framework allows the similarity
matrix to be a combination of spatial and temporal measures. Using
pure spatial similarity allows investigation of the consistency of the
independent components at the group level. The similarity matrix
is then transformed into a dissimilarity matrix, which is used as a
“spatial distance” matrix within a hierarchical clustering algorithm
(see also Himberg et al., 2004). The cluster “group” components
were calculated as random effects maps. The random effects statistic
for each voxel was calculated as the mean ICA z-value of that voxel
across the individual maps divided by its standard error, resulting
in a t-statistic, which was converted to a z-statistic.

Next, we performed an analysis of variance (ANOVA) on
the sorted components of each group’s ICA result to identify
the major resting state networks consistent among subjects, time
points and conditions. The identification of network components
was performed on the basis of the spatial maps of the ICA
components. This procedure allowed us to identify the classical
resting state networks (Supplementary Figure 1). Within the
selection of detectable resting state networks, we focused on the
SAL and the DMN since they were the most similar networks with
the highest rank orders within the sorted group components, and
identifiable at all time points. After detailed inspection of these two
resting state networks, we decided to focus our further analyses
on the SAL since it met the following requirements: no difference
between lavender and control conditions at “baseline” (before), a
significant difference “during.” and a persistent, though smaller,
difference during the post-exposure time points (collapsed into
a single “After” timepoint; Supplementary Figure 2). Within the
DMN, no such temporal pattern was detected. We selected and

saved the consistent component map of the SAL of all participants
and conditions into a common “volume map” structure, combining
all the SALs of all the functional runs. Then, we ran two-factorial
ANOVAs on the SALs with group (lavender and control) and time
of measurement (before, during, immediately after, 1 after and
2 h after) as independent variables. This approach allows for the
analysis of the main effects of “condition” and “time point,” as well
as their interaction.

Results

Behavioral data

Average odor intensity ratings were 8.4 ± 1.3 in the lavender
condition versus 1.8 ± 1.2 in the control condition (P < 0.0001),
indicating that our odor exposure procedure worked well. Average
odor liking ratings were 6.4 ± 3.7 for lavender versus 2.0 ± 3.6
in the control condition (P < 0.05), indicating that on average
the participants liked the lavender smell. Average relaxation ratings
during odorant exposure were not significantly different between
conditions and were 6.4 ± 2.6 and 4.4 ± 4.7 for the lavender
and control condition, respectively (Table 1). We also did not find
a significant difference between the odor and control conditions
at any of the measured time points for the degree to which
participants succeeded to let their thoughts roam freely (Table 1).
No overall effect of odor exposure was found for the SRSI data
(Supplementary Figure 3).

MRI data - seed-based correlation (SBC)
analysis

Figure 2 shows a second level t-map based on the original
correlation values for the control conditions at the three time
points, using the PCC and right anterior insula as seed regions.
As shown, all maps show some correlated regions not belonging
to the DMN or SAL networks, suggesting residual noise within
the pre-processed data. Subtracting the resulting correlation (r)-
values between the odor and the control conditions did not show
significant differences for any of the time points. This null effect can
be due to the residual noise within the data, masking any potential
effects of interest. Therefore, in a next step, we used an Independent
Component Analysis (ICA) to properly separate different types of
residual noise from effects consistent with the classical resting state
networks.

TABLE 1 Relaxation and roaming thoughts.

Relaxation Roaming thoughts

Control Lavender Control Lavender

Before 4.4 ± 4.7 6.4 ± 2.6 7.2 ± 1.9 7.6 ± 1.7

Immediately
after

5.1 ± 5.0 6.6 ± 2.3 7.6 ± 2.7 7.6 ± 1.5

2 h after 6.0 ± 3.6 5.9 ± 3.0 6.2 ± 3.0 5.6 ± 2.9

Relaxation and roaming thoughts were measured using numerical rating scales (methods).
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FIGURE 2

Results of the seed-based correlation (SBC) approach using the posterior cingulate cortex (PCC) and right anterior insula as seed regions. Results are
shown for the three time points: before, during and after odor exposure. (A) SBC maps based on PCC (x = 0, y = -56, z = 26) as seed region. (B) SBC
maps based on the right anterior insula (x = 40, y = 14, z = -2) as seed region. All maps are thresholded using the FDR-correction method. The two
seed regions are indicated with white arrows in the upper part of the figure.

MRI data - ICA-based analysis:
probabilistic map SAL

To check the validity of our ICA approach, we combined
the SAL maps of all conditions and all time points into a
probabilistic map. Figure 3 shows the consistency between all
selected component maps, thresholded at 60% minimal probability.
The resulting probabilistic map for the different time points
confirmed that the proper regions of interest were consistently
selected for the conditions and time points, providing a solid basis
for running the ANOVA including the results of the ICA.

Two-factorial ANOVA of the SAL maps

We first ran a two-factorial ANOVA of the SAL network maps
with the factors odor and time point. Results were thresholded
using the cluster threshold correction method (Wang and Li, 2015).
Figure 4A and Table 2 show the main effect of the factors time,
collapsed over the two conditions, and odor, collapsed over all
time points. Interestingly, the significant regions coincide with
large parts of the DMN, suggesting a potential interaction between
the SAL and DMN networks. More specifically, for the factor
time, significant areas included one large cluster in the posterior
cingulate cortex, a more anterior one in the perigenual anterior

FIGURE 3

Probabilistic map of the salience network (SAL), thresholded at 60% overlap between subjects, for the two conditions (odor and control) and the five
time points. The map confirmed that the proper regions of interest were consistently selected for the conditions and time points. The color coding
shows areas of overlap between the different maps.
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FIGURE 4

Two-factorial analysis of variance (ANOVA) of the salience network (SAL) maps with the factors odor and time point. (A) Main effect of the factor
odor, collapsed over all time points. The significant regions coincide with large parts of the default mode network (DMN), suggesting a potential
interaction between the SAL and DMN networks. Significant areas included clusters in the posterior cingulate cortex, perigenual anterior cingulate,
inferior prefrontal cortex (BA 47) and superior prefrontal cortex (BA 6, BA 8). (B) Main effect of the factor time, pooled over the two odor conditions.
Two clusters were observed, a large one in the posterior cingulate cortex, just anterior to the cluster observed for the factor odor, and a second one
in the perigenual anterior cingulate cortex. Results were thresholded using the cluster threshold correction method. All maps shown at P < 0.005.

TABLE 2 Analysis of variance (ANOVA): main effect of odor.

MNI coordinates

Brain area BA x y z Volume F P-value

Posterior cingulate gyrus BA 31 –3 –32 38 1.096 52.03 0.000007

Supramarginal gyrus BA 40 –62 –45 30 564 43.72 0.000017

Superior frontal gyrus BA 6 13 4 70 1.097 41.16 0.000023

BA 8 –22 34 34 183 20.46 0.000573

Cerebellum – 42 –72 –45 303 37.13 0.000038

Inferior frontal gyrus BA 47 –27 31 –23 310 30.73 0.000095

BA 47 55 32 3 988 28.91 0.000126

Cuneus BA 17 –13 –108 4 175 30.53 0.000098

Lingual gyrus BA 18 2 –79 –10 159 24.81 0.000251

Perigenual cingulate BA 32 –8 46 3 471 23.76 0.000304

Middle frontal gyrus BA 8 –35 22 44 198 21.55 0.000461

Globus pallidus – –22 –1 4 235 19.70 0.000669

– –54 21 –8 192 16.26 0.001423

cingulate, two in the inferior prefrontal cortex (BA 47) and two in
the superior prefrontal cortex (BA 6, BA 8) (Table 2). The ANOVA
further showed a significant effect of the factor odor pooled over
all the time points, with one large cluster in the posterior cingulate

cortex, just anterior to the cluster observed for the factor time, and a
second one in the perigenual anterior cingulate cortex (Figure 4B).
We calculated the eta-squared value (Maher et al., 2013) as a
measure of effect size for the main effects and their interaction. This
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resulted in the following eta-squared values: 0.0131 for the factor
odor, 0.3201 for the factor time and 0.2630 for the interaction of
odor and time.

While the above-described ANOVA is the best approach to
identify main effects and interactions between factors, any specific
post hoc contrast between pairs of conditions will be biased by
the inclusion of all the conditions within the error term applied.
To be able to calculate a statistically more correct error term, we
ran additional more simplified ANOVA models, including only
two levels of the time factor. In total, we performed four 2 × 2
ANOVAS including the two conditions and two time points: during
and before, immediately after and before, 1 h after and before, and
2 h after and before. Figure 5 shows the results of the interaction
effects at the different time points. During odor presentation, we
observed several clusters of increased and decreased FC with the
SAL network. More specifically, clusters of increased FC with
the SAL were found in bilateral middle temporal gyrus (BA 21),
bilateral superior frontal gyrus (BA 6, BA 8), left middle frontal
gyrus (BA 6), left inferior frontal gyrus (BA 45) and right temporo-
parietal junction (BA 39) (Figure 5 and Table 3). In addition, there
were two clusters of decreased FC, one in the right perigenual
cingulum (BA 32) and the other in the right posterior cingulate (BA
31). Both these areas are part of the DMN. In the immediately after
condition, he FC of the SAL changed substantially, with a majority
of areas with decreased FC with the SAL, especially brain areas that
are part of the DMN (Figure 5 and Table 4). More specifically,
a reduction in FC with the SAL network was found in the right
middle temporal gyrus (BA 21), bilateral supramarginal gyrus (BA
39), right inferior frontal gyrus (BA 45, BA 47), right middle frontal
gyrus (BA 8), right dorsal frontal gyrus (BA 10), precuneus (BA 7),
cingulate gyrus (BA 24), left inferior temporal gyrus (BA 20) and
cerebellum. A smaller number of brain areas showed increased FC

with the SAL network, including bilateral angular gyrus (BA 39),
left superior parietal lobule (BA 7), left superior frontal gyrus (BA
6), left inferior parietal lobule (BA 40) and left inferior temporal
gyrus (BA 37). At 1 h post odor exposure, there were four small
clusters of decreased FC with the SAL network, including the right
angular gyrus (BA 39), left inferior (BA 7) and left superior (BA 7)
parietal lobule, and left middle frontal gyrus (BA 46) (Figure 5 and
Table 5). Interestingly, at 2 h post exposure, clusters of increased
FC emerged, several of them belonging to the DMN. These clusters
included the right supramarginal gyrus (BA 40) and the right
middle and superior frontal gyri (BA 9). Additional increases in
FC were found in right middle temporal gyrus (BA 21), left middle
occipital gyrus (BA 19) and right cerebellum (Figure 5 and Table 6).
We calculated Cohen’s d (Lakens, 2013) as a measure of effect size
for the post hoc contrasts described above. We found an average
Cohen’s d of 0.952 for the regions showing a positive difference
between lavender and control odors, while Cohen’s d for the regions
showing a negative difference was -2.162.

We also checked how odor exposure affected the rankings of
the DMN and SAL ICA group components across the different
time points. As shown in Table 7, before odor exposure, the SAL
ranked as components 12 and 11 for the control and lavender
conditions, respectively, During odor exposure, the SAL moved
up to rank six for the lavender condition and up to rank seven in
the control condition. The latter observation could be due to odor
expectation. In the immediately after condition, the SAL network
ranked fifth place in the lavender condition compared to 14th place
in the control condition. At 1 h after, the SAL still ranked sixth place
in the lavender condition, to move down to eighth place at 2 h after.
In line with the expectations, the DMN ranked higher (third) at the
before time point for the two conditions. In the lavender condition,
the DMN moved to the fifth place at the during and immediately

FIGURE 5

Analysis of variance (ANOVA) results of the functional connectivity maps of the salience network (SAL), contrasting lavender with no odorant control
(Lavender > Control) at four time points. Data are presented on axial slices. The numbers at the bottom refer to the z-coordinates in MNI space.
Images are presented in radiological convention (left part of the brain is shown to the right). Cluster correction was applied to correct the maps. All
clusters shown are at q(FDR) < 0.001.
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TABLE 3 2-way analysis of variance (ANOVA) (odor > control): during.

MNI coordinates

Anatomical region BA x y z t P-value Nr voxels

Increases in FC

Middle temporal gyrus BA 21 46 –32 –1 6.45 0.000022 654

BA 21 –49 –36 0 8.14 0.000002 6254

Superior frontal gyrus BA 8 10 27 66 5.87 0.000055 484

BA 6 –5 15 72 7.95 0.000002 2235

BA 8 –9 42 56 7.35 0.000006 926

Middle frontal gyrus BA 6 –42 6 47 9.18 0.000000 2505

Inferor frontal gyrus BA 45 –55 26 12 7.05 0.000009 3386

BA 44 –52 15 25 7.46 0.000005 1056

Temporo-parietal junction BA 39 –50 –59 23 10.74 0.000000 2477

Decreases in FC

Perigenual cingulate gyrus BA 32 9 51 –1 –11.82 0.000000 3311

Posterior cingulate gyrus BA 31 7 –26 34 –6.82 0.000012 797

TABLE 4 2-way analysis of variance (ANOVA) (odor > control): immediately after.

MNI coordinates

Anatomical region BA x y z t P-value Nr voxels

Increases in FC

Angular gyrus BA 39 32 –70 21 6.76 0.000013 924

BA 39 –31 –76 33 7.83 0.000003 1,673

Superior parietal loblue BA 7 –9 –67 55 5.98 0.000046 408

Superior frontal gyrus BA 6 –23 10 60 7.14 0.000008 812

Inferior parietal lobule BA 40 –42 –45 51 8.03 0.000002 546

Decreases in FC

Dorsal frontal gyrus BA 10 4 61 8 –13.31 0.000000 24,553

Cerebellum 28 –82 –33 –10.49 0.000000 1,335

–21 –82 –40 –8.26 0.000002 3,389

Inferior frontal gyrus BA 47 43 21 –19 –8.66 0.000001 3290

BA 45 56 21 6 –6.77 0.000013 669

Middle temporal gyrus BA 21 59 1 –33 –8.23 0.000002 4,296

BA 21 –70 –16 –16 –7.27 0.000006 542

BA 21 68 –31 –4 –6.73 0.000014 721

Supramarginal gyrus BA 39 55 –61 36 –7.73 0.000003 3,181

BA 40 –52 –65 33 –6.85 0.000012 2,470

Middle frontal gyrus BA 8 44 24 38 –6.79 0.000013 414

Precuneus BA 7 1 –55 31 –6.92 0.000011 1,287

Cingulate gyrus BA 24 –1 –15 37 –6.31 0.000027 328

Inferior temporal gyrus BA 37 –48 –55 –8 6.86 0.000012 542

BA 20 –53 1 –34 –6.39 0.000024 437

after time points, and further up to the fourth place at 2 h. In the

control condition, the DMN ranking stayed very consistent, except

in the during condition where it moved up to the fourth place.

To test for the potential bias of the double duration of the

“during” scan, we ran another two-factorial ANOVA in which

we excluded the “during” time point. This analysis resulted
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TABLE 5 2-way analysis of variance (ANOVA) (odor > control): 1 h after.

MNI coordinates

Anatomical region BA x y z t P-value Nr voxels

Decreases in FC

Angular gyrus BA 39 40 –75 37 –7.15 0.000007 186

Inferior parietal lobule BA 7 –37 –81 47 –7.02 0.000009 192

Superior parietal lobule BA 7 –51 –63 51 –5.08 0.000212 190

Middle frontal gyrus BA 46 –51 29 31 –6.20 0.000032 174

TABLE 6 2-way analysis of variance (ANOVA) (odor > control): 2 h after.

MNI coordinates

Anatomical region BA x y z t P-value Nr voxels

Increases in FC

Middle temporal gyrus BA 21 68 –14 –14 10.04 0.000000 370

BA 21 64 2 –11 6.05 0.000041 313

Superior frontal gyrus BA 10 –26 53 16 7.34 0.000006 439

BA 9 0 56 12 5.78 0.000064 1484

Supramarginal gyrus BA 40 62 –54 39 5.04 0.000225 291

Middle frontal gyrus BA 9 24 47 30 7.07 0.000008 385

Middle occipital gyrus BA 19 –46 –77 30 6.10 0.000038 280

Cerebellum 27 –80 –29 5.71 0.000072 380

Decreases in FC

White matter –32 –63 13 –7.72 0.000003 233

–26 –49 20 –6.21 0.000032 219

TABLE 7 Ranking of salience network (SAL) and default mode network
(DMN) Independent Component Analysis (ICA) components at
all time points.

SN DMN

Time point Control Odor Control Odor

Before 12 11 3 3

During 7 6 4 5

Just after 14 5 3 5

1 h after 7 6 2 3

2 h After 10 8 3 4

in very similar effects, indicating that the influence of the
during time point on the interaction effect detected is negligible
(Supplementary Figure 4).

Discussion

We used rsfMRI to study the long-lasting effects of an odorant
on brain activity. Participants passively inhaled lavender oil for
14 min and its effects on brain resting state networks was
investigated up to 2 h after exposure. An ICA showed that the
SAL and DMN were the most robust and consistent resting state
networks identified throughout the 2 h period. During lavender

exposure, activity in the SAL increased compared to before. Using
the SAL maps, a two-way ANOVA with the factors “odor” and
“time” showed significant interaction effects between the SAL and
DMN networks which evolved over time, but persisted up to 2 h
after. These data provide the first evidence that effects of an odorant
can still be measured 2 h after exposure.

We employed a novel method of continuous odor exposure
that has not previously been used in brain imaging studies of
odor perception. Nearly all previous studies have measured brain
responses to short phasic odorant stimuli, lasting typically in
the order of seconds. In this study, we presented an odorant
for 14 min. Also different from most brain imaging studies on
olfaction, we did not use an olfactometer or an airflow-based
delivery system. Instead, we used a more natural method that
consisted of presenting the odorant by placing a piece of tissue
that was impregnated with the lavender solution to the MRI head
coil. This was done to mimic as close as possible a condition
resembling aromatherapy in which passively an odorant is inhaled
over a longer period. Our odor exposure method worked well as
evidenced by the average odor intensity and pleasantness ratings.
Also new is that we measured the effects on brain activity up to two
hours after the odorant source was removed. Finally, we emphasize
that participants served as their own controls since they were all
scanned during an odorant and a non-odorant condition.

Odorants can be of three types: pure olfactory, trigeminal
and mixed olfactory-trigeminal, Although lavender most strongly
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activates the olfactory system, it can also activate the trigeminal
system, particularly when used as an essential oil or in high
concentrations. Pure olfactory odorants activate the olfactory
nerve (cranial nerve I) which transmits signals from the olfactory
epithelium in the nasal cavity to the brain’s olfactory bulb (Brand,
2006; Schaefer et al., 2002). These odorants are experienced solely
as a smell, without accompanying sensations such as coolness or
irritation (Brand, 2006). In contrast, trigeminal odorants stimulate
both the olfactory nerve and the trigeminal nerve (cranial nerve V),
which is responsible for conveying sensations like burning, cooling,
tingling, stinging, or irritation from the nasal and oral cavities
(Brand, 2006; Frasnelli et al., 2011). As a result, trigeminal odorants
are perceived not only as a smell but also as a physical sensation
in the nose or throat. It is worthwhile mentioning that lavender
essential oils also exert anxiolytic (Agatonovic-Kustrin et al., 2020)
and analgesic effects (You et al., 2024).

During odor exposure, the most conspicuous change was a
reduction in FC of the SAL with the posterior cingulate and
perigenual cingulate cortices, two important key nodes of the
DMN. In addition, there were also noticeable increases in FC
within the SAL, indicating increased involvement of the SAL
during odor exposure. Together, these findings suggest an increased
engagement of the SAL and an inhibitory effect on the DMN during
odor exposure. Of interest, increased FC within the SAL was shown
in studies of the effects of mindfulness training (Bremer et al.,
2022). FC of the SAL with the right middle temporal gyrus and
the left temporo-parietal junction (TPJ) also increased during odor
exposure. These areas are part of the social brain network (Amft
et al., 2015; Pitcher and Ungerleider, 2021). The TPJ is functionally
connected with the SAL (Amft et al., 2015; Pitcher and Ungerleider,
2021) and is implicated in attention and awareness, particularly
in the context of directing attention to relevant stimuli in the
environment and monitoring changes in one’s surroundings. The
increased FC of the TPJ with the SAL in our study could reflect
the response to a change in the odorant environment. The TPJ is
also involved in various social cognitive functions, including theory
of mind, empathy, moral reasoning and perspective-taking (Saxe,
2006; Schurz et al., 2017).

In the immediately after condition, negative correlations of
the SAL with other brain areas dominated, especially with those
belonging to the DMN. At this time point, we also observed
a strong positive correlation between the SAL and the angular
gyrus. This brain area plays a critical role in cortical speech and
language processing, in memory retrieval, and in the integration of
information involving sensory modalities for semantic processing
(Seghier, 2013). The negative FC between the SAL and DMN
was no longer present 1 h after. However, at 2 h post odor
exposure, a positive FC between the two networks emerged.
Taken together, this suggests a time-resolved dynamic interaction
between the SAL and DMN networks which is initially negative,
reaches its maximum effect immediately after the odor presentation
and changes into a positive correlation 2 h after. A positive FC
between the SAL and DMN was shown in other conditions such as
mindfulness meditation (Bremer et al., 2022) and social cognition
(Ribeiro da Costa et al., 2022). It may therefore be tempting to
speculate that one of the long-term effects of tonic lavender oil
exposure is its capacity to couple brain activity in key nodes of the
SAL and DMN in an adaptive manner. Our findings can also be

reconciled with the default-mode interference hypothesis (Sonuga-
Barke and Castellanos, 2007) which states that DMN activity
can persist or remerge during goal-directed tasks, allowing it to
compete with task-specific neural processing.

What are the specific roles of the SAL and DMN in perception
and human cognition? A large body of evidence suggests that
the SAL is primarily involved in detecting and filtering important
or salient stimuli from the environment and internally generated
thoughts (Seeley et al., 2007; Menon, 2015, 2023). The SAL helps
in directing attention to relevant stimuli and in coordinating
appropriate responses. Key regions of the SAL network include the
anterior insula and the anterior cingulate cortex (Seeley et al., 2007;
Menon, 2015). The anterior insula is involved in processing bodily
sensations and emotional experiences, while the anterior cingulate
cortex is associated with monitoring of conflicts and errors. The
anterior insula is also involved in odor discrimination (Plailly
et al., 2007) and forms a key node of the olfactory connectome
(Arnold et al., 2020). Subcortical components of the SAL are
the ventral striatum, amygdala and the substantia nigra/ventral
tegmental area (Seeley et al., 2007; Menon, 2015). The SAL
network integrates sensory, cognitive and emotional information
and thus contributes to multiple complex brain functions such as
communication, social behavior and self-awareness (Menon and
Uddin, 2010; Feng et al., 2021; Craig, 2002, 2010). In contrast,
the DMN is active when at rest or engaged in internally focused
tasks such as daydreaming, mind-wandering, or self-referential
thinking. Key regions of the DMN include the medial prefrontal
cortex, posterior cingulate cortex, and inferior parietal lobule. The
DMN is involved in processes related to self-referential thinking,
autobiographical memory retrieval, social cognition, and theory of
mind (Raichle, 2015; Smallwood et al., 2021). The SAL and DMN
interact dynamically to facilitate adaptive behavior. When a salient
stimulus or task-relevant information is detected, the SAL becomes
activated, directing attention toward it and suppressing activity in
the DMN. Conversely, during internally focused tasks or when the
external environment is less salient, the DMN becomes more active,
while the SAL decreases its activity (Sridharan et al., 2008). The
interaction between these networks allows for the flexible allocation
of cognitive resources depending on the situational demands,
ensuring efficient cognitive processing and behavior regulation.
Dysregulation or imbalance in the interaction between these
networks may contribute to cognitive and emotional disturbances
observed in various neuropsychiatric disorders (Menon, 2011).
Several nodes of the DMN overlap with brain regions involved in
social and affective processing. These areas include the posterior
cingulate. TPJ, ventromedial prefrontal cortex, middle temporal
gyrus, subgenual cingulate cortex and precuneus. This has been
called the extended social-affective default network (Amft et al.,
2015). Many of these brain areas have odor-induced alterations
in FC with the SAL, suggesting dynamic interactions between
detecting and filtering important or salient stimuli from the
environment and social and affective processing.

The evolutionary significance of prolonged odor exposure may
be linked to survival, social and reproductive communication,
and environmental adaptation. Certain odors, such as those from
spoiled food, smoke, or chemical threats, serve as danger signals
(Mutic et al., 2017). Even with prolonged exposure, it is crucial that
particularly strong or harmful odors remain detectable to maintain
vigilance and facilitate avoidance (Ferdenzi et al., 2014). Across
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many species, including humans, body odors and pheromones play
a role in social bonding, mate selection, and group recognition
(Bakker et al., 2021 for a recent review). Extended exposure
to these social odors may strengthen relationships or indicate
reproductive status (Lübke and Pause, 2015). Additionally, the
olfactory system has strong connections to the limbic system, which
regulates emotions and memory (Kontaris et al., 2020). Prolonged
exposure to specific odors may reinforce associative learning by
linking a scent to safety, comfort, or past experiences. Prolonged
odor exposure can also affect mood, stress levels, and cognitive
function. For example, soothing scents like lavender may encourage
relaxation (López et al., 2017), while unpleasant or irritating odors
can heighten alertness or trigger avoidance responses (Iravani
et al., 2021). Additionally, long-term odor exposure is essential
for environmental awareness and adaptation, as both humans and
animals must continuously monitor their surroundings to respond
effectively to changes. The ability to detect and adapt to persistent
odors (e.g., the scent of food or water) can enhance survival in
changing environments. Finally, long-term odor exposure may
lead to habituation and sensory adaptation, whereby where the
brain reduces its response to a constant stimulus (Pellegrino et al.,
2017). Habituation helps organisms focus on new, potentially more
important smells (e.g., detecting a predator or food source in a
familiar environment) (Mignot et al., 2022).

This study has a number of limiting factors. First, we only
included 14 subjects which is at the low end in fMRI studies.
However, the fact that subjects served as their own control and were
tested twice under very similar conditions partly compensates for
the smaller sample size. Another limiting factor is that we tested
a single odorant, a single exposure duration and a single odor
concentration. It is important to test for various concentrations
in olfactory neuroscience (Wachowiak et al., 2025). Considering
that each participant already underwent 10 resting state scans,
spread out over two different sessions, testing for the effects of
different odorants, concentrations and exposure times seemed very
difficult. For this study, we selected lavender, which belongs to
the aromatic and floral odor families. Lavender is characterized
by fresh, herbal, and slightly sweet notes and is widely used in
aromatherapy, as well as in many feminine fragrances. The odorant
stimulus was presented for 14 min, a prolonged exposure that
may have contributed to physiological habituation to the scent and
potential shifts in attention. However, we did not control for the
influence of these factors on our results, as doing so would have
required behavioral measurements during fMRI data acquisition—
an approach we opted against to maintain the resting-state nature
of the study. We emphasize that incorporating an attentional task
was not our intention. Participants were not instructed to focus
on the stimuli; they were simply asked to close their eyes and
let their thoughts flow freely during MRI data acquisition. Future
studies could assess whether the same results are obtained when
subjects are instructed to pay attention to the odorant stimulus
or when imposing an odor-related task. Additionally, we did
not measure fluctuations in perceived odor intensity and quality
over time. However, we assume that evaporation likely influenced
these aspects. The odor intensity of lavender oil on a cotton pad
follows a typical evaporation curve, initially strong but gradually
diminishing as the most volatile compounds dissipate over time.
This process may also lead to perceptual shifts, transitioning from
fresh, floral, and slightly citrusy top notes to muskier, woody, or

earthy undertones by the end of the 14 min exposure. Another
limitation of our study is that we included only women, making it
necessary for future research to determine whether the findings can
be replicated in a male population. It would have been interesting
to measure also the menstrual status at the moment of testing.
However, our ethics approval did not allow to acquire information
on the menstrual cycle. Our study should therefore be considered
a proof of concept, demonstrating that prolonged exposure to a
tonic odorant can induce lasting effects on brain activity. Future
research should investigate whether these findings extend to other
odor families or scents with different emotional valence or social
significance. Indeed, there is evidence that emotions induced
by smells impact resting state functional brain connectivity in
a valence-specific manner (Carlson et al., 2020). Additionally, a
systematic exploration of the impact of odor exposure duration
and concentration is needed. For instance, unpleasant or socially
relevant odors, such as those associated with the human body,
can trigger strong emotional and attentional responses and may
produce time-dependent effects that differ from those observed in
this study (Calvi et al., 2020; Rolls et al., 2003).

In conclusion, we used resting state fMRI to study the long-
lasting effects of the exposure of a positively-valenced odor on
the interaction of large-scale brain networks. Our data show time-
resolved dynamic interactions between the SAL and the DMN that
could be measured up to two hours following odor exposure. Of
notice is the positive functional connectivity between the SAL and
DMN that was measured after 2 h and that may suggest a coupling
of brain activity within SAL and DMN in an adaptive manner.
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