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Objective: The aim of this study was to investigate the characteristics of brain 
activity changes in patients with post-stroke balance dysfunction and their 
relationship with clinical assessment, and to construct a classification model 
based on the extreme Gradient Boosting (XGBoost) algorithm to discriminate 
between stroke patients and healthy controls (HCs).

Methods: In the current study, twenty-six patients with post-stroke balance 
dysfunction and twenty-four HCs were examined by resting-state functional 
magnetic resonance imaging (rs-fMRI). Static amplitude of low frequency 
fluctuation (sALFF), static fractional ALFF (sfALFF), static regional homogeneity 
(sReHo), dynamic ALFF (dALFF), dynamic fALFF (dfALFF) and dynamic ReHo 
(dReHo) values were calculated and compared between the two groups. The 
values of the imaging metrics for the brain regions with significant differences 
were used in Pearson correlation analyses with the Berg Balance Scale (BBS) 
scores and as features in the construction of the XGBoost model.

Results: Compared to HCs, the brain regions with significant functional 
abnormalities in patients with post-stroke balance dysfunction were mainly 
involved bilateral insula, right fusiform gyrus, right lingual gyrus, left thalamus, 
left inferior occipital gyrus, left inferior temporal gyrus, right calcarine fissure and 
surrounding cortex, left precuneus, right median cingulate and paracingulate 
gyri, right anterior cingulate and paracingulate gyri, bilateral supplementary 
motor area, right putamen, and left cerebellar crus II. XGBoost results show 
that the model constructed based on static imaging features has the best 
classification prediction performance.

Conclusion: In conclusion, this study provided evidence of functional 
abnormalities in  local brain regions in patients with post-stroke balance 
dysfunction. The results suggested that the abnormal brain regions were mainly 
related to visual processing, motor execution, motor coordination, sensorimotor 
control and cognitive function, which contributed to our understanding of the 
neuropathological mechanisms of post-stroke balance dysfunction. XGBoost is 
a promising machine learning method to explore these changes.
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1 Introduction

Stroke can cause a variety of neurological impairments, including 
sensory, cognitive, and motor impairments, poor coordination, and 
difficulty maintaining balance (Winstein et al., 2016). More than 80% 
of stroke survivors experience balance dysfunction, which can limit 
their ability to participate in daily activities and significantly reduce 
their quality of life (Schmid et al., 2013; Tyson et al., 2006). Balance 
dysfunction is strongly associated with an increased risk of falls in 
stroke patients and is also recognized as an important factor affecting 
patients’ ability to walk independently (Nayak et al., 2024; Park et al., 
2021). However, the underlying brain mechanisms of post-stroke 
balance dysfunction remain unclear (Peng et al., 2024). Therefore, 
there is a need to clarify the brain function abnormalities in patients 
with post-stroke balance dysfunction, which may help to develop 
precise therapeutic interventions.

Resting-state functional magnetic resonance imaging (rs-fMRI), 
which measures low-frequency fluctuations in blood oxygen level-
dependent (BOLD) signals, is a promising tool for studying 
spontaneous brain activity and has been widely used to study changes 
in brain function in both patients and healthy individuals (Biswal 
et al., 1995; Raimondo et al., 2021). A large number of studies have 
shown that low-frequency fluctuations are critical for understanding 
human brain activity (Auer, 2008; Lee et al., 2013). Various methods 
such as amplitude of low frequency fluctuation (ALFF), fractional 
ALFF (fALFF), and regional homogeneity (ReHo) have been widely 
used to analyze changes in brain function after stroke (Quan et al., 
2022; Wang H. et al., 2022; Wu et  al., 2023)]. ALFF reflects the 
intensity of intrinsic brain activity by measuring spontaneous neural 
activity in localized areas of the brain in the range of 0.01 ~ 0.1 Hz 
(Zang et al., 2007). Later, Zou et al. proposed fALFF based on ALFF, 
i.e., the ratio of the low-frequency power spectrum to the power 
spectrum of the whole frequency range, which reflects the relative 
contribution of specific low-frequency oscillations to the whole 
detectable frequency range (Zou et al., 2008). ReHo, calculated on the 
basis of Kendall’s coefficients, was used to measure the similarity of a 
given voxel’s time series to its nearest neighbor and to detect subtle 
changes in neural activity in specific brain regions (Zang et al., 2004). 
The combination of the above three methods can more 
comprehensively reflect the spontaneous neural activity of the brain. 
Although a large number of studies have detected significant 
alterations in ALFF, fALFF, and ReHo in some brain regions after 
stroke (Li et al., 2022; Yang et al., 2024; Zhao et al., 2018), studies 
exploring alterations in brain function associated with balance 
dysfunction are still lacking.

Although it is well known that brain activity changes dynamically 
(Wang et al., 2023), most current studies have traditionally calculated 
indicators such as ALFF under the assumption that the BOLD signal 
remains constant throughout the functional magnetic resonance 
imaging (fMRI) scan, ignoring the fact that local brain activity has 
dynamic properties during time-varying processes and may therefore 
miss valuable information (Cohen, 2018; Xie et al., 2018). Previous 

studies have suggested that dynamic analyses can compensate for the 
shortcomings of static analyses and that a combination of the two may 
be more conducive to a more comprehensive understanding of the 
neuropathological changes in disease (Bonkhoff et al., 2020; Bonkhoff 
et al., 2021; Wang et al., 2023). The sliding window approach, the main 
method of dynamic analysis techniques, is considered effective and 
sensitive in exploring the temporal variability of brain activity and has 
been widely used to study abnormal brain function in neurological 
and psychiatric disorders (Cui et al., 2020; Liu et al., 2021). Some 
studies have found significant changes in dynamic ALFF and other 
indicators in stroke patients that correlate significantly with clinical 
characteristics (Chen and Li, 2023; Wang et al., 2023). However, there 
are few studies using both dynamic and static analysis methods to 
investigate brain functional activity in patients with post-stroke 
balance dysfunction.

In addition, machine learning methods are powerful tools for the 
classification of patients with respect to healthy controls 
(Ruksakulpiwat et al., 2023; Wang J. et al., 2022). There have been a 
number of neuroimaging studies applying machine learning methods 
to detect biomarkers of disease and build classification or prediction 
models. Extreme Gradient Boosting (XGBoost) is a well-established 
and widely used machine learning modelling algorithm for solving 
supervised learning problems using the gradient boosting framework, 
which is highly accurate, difficult to overfit and scalable (Chen et al., 
2023; Hu et al., 2022). As a decision tree-based algorithm, XGBoost 
was named the best algorithm in the Machine Learning and Prediction 
Competition hosted by Kaggle.com (Chen and Guestrin, 2016). 
XGBoost has been gradually applied to the medical field and has 
demonstrated superior model performance compared to other 
machine learning algorithms such as logistic regression, support 
vector machines and random forests in many studies (Ai et al., 2024; 
Hou et al., 2020; Tang et al., 2024).

In this study, firstly, based on rs-fMRI data, static and dynamic 
metrics, including static ALFF (sALFF), static fALFF (sfALFF), static 
ReHo (sReHo), dynamic ALFF (dALFF), dynamic fALFF (dfALFF), 
and dynamic ReHo (dReHo), were used to investigate the 
characteristics of brain activity changes in patients with post-stroke 
balance dysfunction. Secondly, the relationship between imaging 
metrics and clinical assessment were explored. Finally, the values of 
the imaging metrics of the brain regions with significant differences 
were used as features for feature screening and classification model 
construction using the XGBoost algorithm.

2 Materials and methods

2.1 Participants

A total of 30 patients with post-stroke balance dysfunction were 
continuously recruited from the Neurorehabilitation Department of 
China Rehabilitation Research Center to be included in the patient 
test (PT) group, and 25 age - and sex-matched healthy controls (HC) 
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with no physical diseases or history of neurological or psychiatric 
disorders were included in this study. This study protocol was 
approved by the Medical Ethics Committee of China Rehabilitation 
Research Center (No. 2021–138-1), and all subjects signed informed 
consent before participation.

Inclusion criteria for stroke patients were as follows: (1) first-ever 
stroke; (2) unilateral focal brain lesions; (3) stroke duration between 
1 and 3 months; (4) age 30–75 years; (5) balance dysfunction caused 
by stroke with a Berg Balance Scale (BBS) score ≤ 40 points. Stroke 
patients were excluded according to the following criteria: (1) stroke 
lesion located at cerebellum or brainstem; (2) pre-existing balance 
dysfunction prior to stroke; (3) severe aphasia or cognitive impairment 
that interferes with basic communication and testing; (4) other 
neurological disorders that would interfere with the experiment; (5) 
severe arthritis or other musculoskeletal disorders that would affect 
balance function assessment; (6) any contraindication to magnetic 
resonance imaging (MRI).

2.2 Clinical scale tests

Stroke participants were assessed for balance dysfunction using 
the BBS. The BBS consists of 14 items with a total score of 56 points 
(Berg et al., 1992). A higher score indicates better balance ability. 
Scores from 0 to 20 are described as “balance disorder,” scores from 
21 to 40 are interpreted as “acceptable balance,” and scores from 41 to 
56 are classified as “good balance” (Kaygusuz et al., 2022). In general, 
subjects with BBS scores ≤40 are considered at risk for falls. The BBS 
has been shown to have good reliability and validity in assessing 
balance function after stroke (Blum and Korner-Bitensky, 2008).

2.3 MRI data acquisition

Each participant underwent an MRI scan. During the scan, all 
participants were asked to close their eyes, stay awake, and remain as 
still as possible. The MRI scan protocol for this study included rs-fMRI 
and high-resolution T1-weighted structural images. The MRI data 
were collected on a Philips Ingenia 3 T MRI scanner with a 32-channel 
head coil at the China Rehabilitation Research Center with the 
following parameters: (1) rs-fMRI: acquired with a gradient echo 
planar imaging (EPI) sequence, repetition time (TR) = 2000 ms, echo 
time (TE) = 30 ms, flip angle = 90°, FOV = 224 × 224 mm2, 
matrix = 64 × 64, 32 slices, voxel size = 3.5 × 3.5 × 4.35 mm3. (2) 
T1-weighted structural images: acquired using a magnetization-
prepared rapid gradient echo sequence with the following parameters: 
TR = 7.13 ms, TE = 3.22 ms, flip angle = 7°, FOV = 256 × 256 mm2, 
matrix = 256 × 256, 192 slices, voxel size = 1 × 1 × 1 mm3.

2.4 MRI data preprocessing

Before preprocessing, MRI images of stroke patients with left-
sided lesions were flipped relative to the median sagittal plane so that 
all patients’ lesions were uniformly located in the right hemisphere. 
Preprocessing of the rs-fMRI data was performed using the Data 
Processing and Analysis for Brain Imaging software package (DPABI, 
http://rfmri.org/DPABI) based on the MATLAB platform (Chao-Gan 

and Yu-Feng, 2010). The steps of the pre-processing are as follows: (1) 
the first 10 volumes of each subject’s rs-fMRI images were removed to 
equalize the signal; (2) the remaining 230 volumes were corrected for 
slice timing and realigned for head motion correction. Participants 
with head movements exceeded 3 mm or 3° were excluded. Hence, 4 
stroke patients and 1 healthy subject were excluded; (3) functional 
images were spatially normalized to the standard Montreal 
Neurological Institute (MNI) EPI template based on Diffeomorphic 
Anatomical Registration Through Exponentiated Lie algebra 
(DARTEL), and each voxel was resampled to 3 × 3 × 3 mm3; (4) 
detrending; (5) Friston-24 head motion parameters, white matter, and 
cerebrospinal fluid were regressed out as nuisance factors; (6) 
temporal band-pass frequency filter (0.01–0.08 Hz). Ignore this step 
before calculating ALFF and fALFF; (7) spatial smoothing with a 
6 mm full width at half maximum (FWHM) Gaussian kernel. Skip this 
step before calculating ReHo.

2.5 sALFF, sfALFF, and sReHo calculation

DPABI software was used to calculate sALFF, sfALFF and sReHo. 
After preprocessing the rs-fMRI data, the time series were converted 
to the frequency domain by fast Fourier transform (FFT) and then the 
power spectrum was obtained for each participant. The square root of 
the power spectrum for each subject was calculated by taking the 
average square root over the frequency range of 0.01 ~ 0.08 Hz to 
obtain the sALFF value. The ratio of conventional band power to full 
band power was calculated as fALFF value. ReHo was defined as the 
similarity between the time series of a given voxel and its nearest 26 
voxels, and Kendall’s coefficient of concordance (KCC) was used to 
calculate sReHo by the DPABI software. The calculated sReHo images 
were then spatially smoothed with 6 mm FWHM. In addition, all 
image data were then z-transformed for subsequent statistical analysis.

2.6 dALFF, dfALFF, and dReHo calculation

In this study, the sliding window method was used to compute 
dynamic local indicators (dALFF, dfALFF, or dReHo) based on the 
DPABI-based Temporal Dynamic Analysis toolkits (Yan et al., 2016). 
Based on previous studies, a sliding window length of 50 TR (100 s) 
and a step size of 1 TR (2 s) were used, which was considered 
appropriate for capturing dynamic brain activity (Dong et al., 2022; 
Leonardi and Van De Ville, 2015; Liao et al., 2019). We then calculated 
the standard deviation (SD) of dALFF, dfALFF, and dReHo values for 
all voxels in the 181 windows for each participant to assess the 
variability of ALFF, fALFF, and ReHo. Finally, the images were 
statistically analyzed after z-score normalization and full-width 
Gaussian kernel smoothing with a half-maximum of 6 mm.

2.7 Statistical analysis

SPSS software version 25.0 (IBM Corp, Armonk, USA) was used 
for statistical analyses. Data on continuous clinical variables were first 
tested for normal distribution using the Shapiro–Wilk test. 
Continuous variables that conformed to a normal distribution were 
expressed as mean ± standard deviation and compared between 
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groups using two-sample t-tests, otherwise they were expressed as 
median (interquartile range) and compared between groups using the 
Mann–Whitney U test. Categorical variables were expressed as 
frequencies (percentages) and compared using the χ2 test or the Fisher 
exact test. Two-sample t-test with age, sex, and head motion 
parameters of the mean FD values as covariates was performed for 
differences in imaging indicators between groups. The Gaussian 
Random Field Theory (GRF) correction (voxel p  < 0.001, cluster 
p < 0.01, two-tailed) was used for multiple testing, and the automatic 
anatomical marker (AAL) template was used as a brain mask to obtain 
the brain regions with significant differences in sALFF, sfALFF, sReHo, 
dALFF, dfALFF, and dReHo values between the PT group and the HC 
group. In addition, given that there are several methods of correcting 
for multiple comparisons, we will also provide the results of the false 
discovery rate (FDR) correction (p  < 0.05, two-tailed) and the 
permutation test (based on sampling permutation distribution 5,000 
times) + threshold-free cluster enhancement (TFCE) correction in the 
Supplementary material to demonstrate the reliability of the results. 
We  would report the effect sizes for each significant cluster, i.e., 
Cohen’s d values. For correlation analysis, we used the “psych” package 
in R software version 4.2.2 to analyze the Pearson correlation between 
the imaging metrics of abnormal brain regions and the clinical scale 
(BBS), and corrected the p values for FDR. A two-tailed p-value <0.05 
was considered significant.

We used the “XGBoost” and “caret” packages in R software version 
4.2.2 for feature selection, training, hyperparameter tuning and testing 
of the classification models. Specifically, first, we extracted the imaging 
feature values of abnormal brain regions from the between-group 
comparisons of all subjects; second, all subjects were randomly 
divided into two datasets with a split ratio of 7:3; third, 70% of the 
subjects were used for feature selection and model training, and the 
importance of the features was quantified according to the information 
gain, and the features with information gain >0. 5 are used to train the 
model, and then the model is optimised using hyperparameter tuning; 
finally, the remaining 30% of subjects are used to test the model. In 
this study, to compare the difference between static and dynamic 
features in discriminating stroke patients from healthy controls, static 
imaging features, dynamic imaging features and static combined with 
dynamic imaging features are used separately to develop the XGBoost 
model, and therefore three models are built. The “pROC” package was 
used to plot the receiver operating characteristic (ROC) curves and 
calculate the area under the curve (AUC) (Robin et al., 2011), and the 
AUC of the models were compared using Delong’s method (DeLong 
et al., 1988), and the performance of the models was also evaluated in 

terms of accuracy, precision, sensitivity, specificity and F1 score. A 
two-tailed p value <0.05 was considered statistically significant.

3 Results

3.1 Participants’ characteristics

Finally, 26 stroke patients and 24 healthy subjects were included 
in the statistical analysis. The demographic and clinical characteristics 
of the two groups are summarized in Table 1. There were no significant 
differences in age (p = 0.621), gender (p = 0.623), and mean framewise 
displacement (FD) (p = 0.357) between the two groups. The mean 
time since the onset of stroke for the patients included in the study was 
2.12 months and the mean BBS score was 27.04.

3.2 Differences in sALFF and dALFF

The significant differences in sALFF between groups are shown 
in Table  2 and Figure  1. Compared with the HC group, the PT 
group had significantly lower sALFF in the left insula (INS.L), left 
rolandic operculum (ROL.L), right fusiform gyrus (FFG.R), right 
lingual gyrus (LING.R), left inferior occipital gyrus (IOG.L), left 
inferior temporal gyrus (ITG.L), right calcarine fissure and 
surrounding cortex (CAL.R), right median cingulate and 
paracingulate gyri (DCG.R), right supplementary motor area 
(SMA.R), right anterior cingulate and paracingulate gyri (ACG.R), 
and right superior frontal gyrus, medial (SFGmed.R) whereas the 
left thalamus (THA.L), left precuneus (PCUN.L), and left 
supplementary motor area (SMA.L) had significantly higher 
sALFF. When compared with the HC group, the PT group displayed 
significantly decreased dALFF in the CAL.R, LING.R, FFG.R, 
IOG.L, ITG.L, INS.L, DCG.R, SMA.R, and ACG.R, while in the 
right lenticular nucleus (PUT.R), right insula (INS.R), and PCUN.L 
exhibited significantly higher dALFF (Table 3 and Figure 2). All 
clusters with significant differences between groups had Cohen’s d 
values above 0.7, indicating a medium or large effect size.

3.3 Differences in sfALFF and dfALFF

Significant differences in sfALFF were found between the HC and 
PT groups (Table 4 and Figure 3). Significantly decreased dfALFF in 

TABLE 1 Demographic and clinical characteristics between HC group and PT group.

Characteristic HC group (n = 24) PT group (n = 26) P value

Age (years) 49.83 ± 12.16 51.35 ± 9.24 0.621

Gender, n (%) 0.623

  Female 6 (25.00%) 5 (19.23%)

  Male 18 (75.00%) 21 (80.77%)

Mean FD 0.125 ± 0.053 0.141 ± 0.068 0.357

Time post-stroke (month) / 2.12 ± 1.11 /

BBS score / 27.04 ± 11.71 /

HC: healthy control; PT: patient test; FD: framewise displacement; BBS: Berg Balance Scale.
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left cerebellar crus II (CC2.L) and FFG.R and increased sfALFF in 
PCUN.L were detected in stroke patients compared to HCs. There 
were no detectable changes in dfALFF between the HC and PT groups 
when corrected for multiple comparisons. All clusters with significant 
differences between groups exhibited medium or large effect sizes.

3.4 Differences in sReHo and dReHo

Compared with the HC group, the PT group showed significantly 
reduced sReHo in the PUT.R, CAL.R, and DCG.R (Table  5 and 
Figure  4). With regard to dReHo, the stroke patients showed a 
significant reduction in the PUT.R compared to the HCs (Table 5 and 
Figure 5). All clusters with significant differences between groups 
showed medium or large effect sizes.

3.5 Correlational analysis

The relationship between these indicators and balance function 
was further investigated. The values of the mean static metrics 
(sALFF, sfALFF and sReHo) and the values of the dynamic metrics 

(dALFF, dReHo) of the brain regions with significant differences in 
the stroke patients were extracted and Pearson’s correlation was 
performed with the BBS scores, respectively. The results (Table 1 in 
Supplementary materials) showed no significant correlation with 
BBS scores, but the sALFF value of LING.R and the sReHo value of 
DCG.R were significantly positively correlated with BBS before FDR 
correction (r = 0.41, p = 0.04, P. adjusted = 0.24; r = 0.46, p = 0.02, 
P. adjusted = 0.05, respectively).

3.6 Classification model

When building a classification model using static image features, after 
feature filtering, the sALFF values of ROL.L, FFG.R, ITG.L, SMA.R, 
SFGmed.R, THA.L, PCUN.L, SMA.L and the ReHo values of PUT.R, 
CAL.R are used to train the XGBoost model (model 1). When building a 
classification model using dynamic imaging features, after feature 
filtering, the dALFF values of PUT.R, INS.R, ITG.L, INS.L, SMA.R, 
ACG.R and PCUN.L and the dReHo values of PUT.R are used to train 
the XGBoost model (model 2). When both dynamic and static image 
features are used to build a classification model, the sALFF values of 
INS.L, ROL.L, DCG.R, SMA.R, ACG.R, SFGmed.R, ACG.R, SMA.L and 

TABLE 2 Brain regions showing sALFF differences between groups.

Brain regions (AAL) Voxels Peak MNI coordinates Peak T-value Cohen’s d

X Y Z

Cluster 1 280 −57 −6 9 −5.3937 0.75

  Insula_L 111

  Rolandic_Oper_L 43

Cluster 2 280 21 −78 −9 −6.1203 0.76

  Fusiform_R 133

  Lingual_R 84

Cluster 3 307 −3 −15 −12 6.3326 0.79

  Thalamus_L 59

Cluster 4 209 −45 −54 −9 −6.4599 0.77

  Occipital_Inf_L 65

  Temporal_Inf_L 50

Cluster 5 128 27 −63 9 −5.1276 0.71

  Calcarine_R 90

Cluster 6 70 −3 −60 57 5.5499 0.86

  Precuneus_L 70

Cluster 7 448 27 45 −12 −5.5818 0.78

  Cingulum_Mid_R 101

  Supp_Motor_Area_R 85

  Cingulum_Ant_R 82

  Frontal_Sup_Medial_R 47

Cluster 8 54 −3 3 63 5.8 0.82

  Supp_Motor_Area_L 48

sALFF: static amplitude of low frequency fluctuation; AAL: automated anatomical labeling; MNI: Montreal Neurological Institute; Insula_L: left insula; Rolandic_Oper_L: left rolandic 
operculum; Fusiform_R: right fusiform gyrus; Lingual_R: right lingual gyrus; Thalamus_L: left thalamus; Occipital_Inf_L: left inferior occipital gyrus; Temporal_Inf_L: left inferior temporal 
gyrus; Calcarine_R: right calcarine fissure and surrounding cortex; Precuneus_L: left precuneus; Cingulum_Mid_R: right median cingulate and paracingulate gyri; Supp_Motor_Area_R: right 
supplementary motor area; Cingulum_Ant_R: right anterior cingulate and paracingulate gyri; Frontal_Sup_Medial_R: right superior frontal gyrus, medial; Supp_Motor_Area_L: left 
supplementary motor area.
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FIGURE 1

Statistically significant differences between groups are shown in a static amplitude of low frequency fluctuation (sALFF) map of the whole-brain with 
magnetic resonance imaging (MRI). The color bars indicate the T-value. FFG.R: right fusiform gyrus; IOG.L: left inferior occipital gyrus; LING.R: right 
lingual gyrus; ITG.L: left inferior temporal gyrus; INS.L: left insula; SFGmed.R: right superior frontal gyrus, medial; CAL.R: right calcarine fissure and 
surrounding cortex; ROL.L: left rolandic operculum; THA.L: left thalamus; ACG.R: right anterior cingulate and paracingulate gyri; DCG_R: right median 
cingulate and paracingulate gyri; SMA.R: right supplementary motor area; PCUN.L: left precuneus; SMA.L: left supplementary motor area.

TABLE 3 Brain regions showing dALFF differences between groups.

Brain regions (AAL) Voxels Peak MNI coordinates Peak T-value Cohen’s d

X Y Z

Cluster 1 430 27 −15 12 6.6945 0.88

  Putamen_R 76

  Insula_R 62

Cluster 2 558 30 −69 −9 −6.5294 0.78

  Calcarine_R 159

  Lingual_R 141

  Fusiform_R 129

Cluster 3 621 −3 −27 −6 7.3463 0.85

  Occipital_Inf_L 72

  Temporal_Inf_L 67

Cluster 4 615 −42 −21 24 −6.8048 0.80

  Insula_L 118

Cluster 5 555 9 45 21 −5.7322 0.76

  Cingulum_Mid_R 85

  Supp_Motor_Area_R 80

  Cingulum_Ant_R 70

Cluster 6 65 −3 −57 54 6.0352 0.84

  Precuneus_L 65

dALFF: dynamic amplitude of low frequency fluctuation; AAL: automated anatomical labeling; MNI: Montreal Neurological Institute; Putamen_R: right lenticular nucleus; Insula_R: right 
insula; Calcarine_R: right calcarine fissure and surrounding cortex; Lingual_R: right lingual gyrus; Fusiform_R: right fusiform gyrus; Occipital_Inf_L: left inferior occipital gyrus; Temporal_
Inf_L: left inferior temporal gyrus; Insula_L: left insula; Cingulum_Mid_R: right median cingulate and paracingulate gyri; Supp_Motor_Area_R: right supplementary motor area; Cingulum_
Ant_R: right anterior cingulate and paracingulate gyri; Precuneus_L: left precuneus.
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the dALFF values of INS.R, CAL.R, IOG.L, INS.L, DCG.R, ACG.R and 
the ReHo values of PUT.R, CAL.R and the dReHo values of PUT.R are 
used to train the XGBoost model (model 3). The performance of the three 
XGBoost models developed in this study is shown in Table 6. Despite the 
same AUC for model 1 and model 2, model 1 had better accuracy, 
precision, specificity and F1 score than model 2. The model 1 and model 
3 had the same accuracy, precision, sensitivity, specificity and F1 score, 
but the AUC of Model 1 was slightly higher than that of Model 3, although 
there was no significant difference in the comparison (p = 0.69).

4 Discussion

In this study, we used dynamic and static analyses based on rs-fMRI 
data to investigate the characteristics of brain activity changes in stroke 
patients with balance dysfunction. Compared with HCs, the 
comprehensive ALFF, fALFF and ReHo results revealed that the 
significantly different brain regions in stroke patients mainly involved 

bilateral supplementary motor area, bilateral insula, left rolandic 
operculum, left thalamus, left inferior occipital gyrus, left inferior 
temporal gyrus, left precuneus, left cerebellar crus II, right fusiform 
gyrus, right lingual gyrus, right calcarine fissure and surrounding 
cortex, right lenticular nucleus, right median cingulate and paracingulate 
gyri, right anterior cingulate and paracingulate gyri and right superior 
frontal gyrus, medial. In terms of functional division, these brain 
regions are mainly associated with visual processing, motor execution, 
motor coordination, sensorimotor control and cognitive functions, etc. 
In addition, the XGBoost model built based on static imaging features 
has the best classification results. These findings provide important 
insights into our understanding of the pathophysiological mechanisms 
of post-stroke balance dysfunction.

In the present study, we  found that patients with post-stroke 
balance dysfunction had significantly lower sALFF and dALFF in 
Lingual_R, Occipital_Inf_L, and Temporal_Inf_L, significantly lower 
sALFF, dALFF, and sReHo in Calcarine_R, and significantly lower 
sALFF, dALFF and sfALFF in Fusiform_R. Previous studies have 

FIGURE 2

Statistically significant differences between groups are shown in a dynamic amplitude of low frequency fluctuation (dALFF) map of the whole-brain 
with magnetic resonance imaging (MRI). The color bars indicate the T-value. ITG.L: left inferior temporal gyrus; IOG.L: left inferior occipital gyrus; 
LING.R: right lingual gyrus; FFG.R: right fusiform gyrus; INS.R: right insula; PUT.R: right lenticular nucleus; CAL.R: right calcarine fissure and surrounding 
cortex; INS.L: left insula; ACG.R: right anterior cingulate and paracingulate gyri; DCG.R: right median cingulate and paracingulate gyri; SMA.R: right 
supplementary motor area; PCUN.L: left precuneus.

TABLE 4 Brain regions showing sfALFF differences between groups.

Brain regions (AAL) Voxels Peak MNI coordinates Peak T-value Cohen’s d

X Y Z

Cluster 1 61 −30 −75 −39 −5.3466 0.79

  Cerebelum_Crus2_L 49

Cluster 2 172 30 −51 −12 −6.098 0.82

  Fusiform_R 86

Cluster 3 91 −6 −60 54 6.5653 0.93

  Precuneus_L 91

sfALFF: static fractional amplitude of low frequency fluctuation; AAL: automated anatomical labeling; MNI: Montreal Neurological Institute; Cerebelum_Crus2_L: left cerebellar crus II; 
Fusiform_R: right fusiform gyrus; Precuneus_L: left precuneus.

https://doi.org/10.3389/fnins.2025.1558069
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tang et al. 10.3389/fnins.2025.1558069

Frontiers in Neuroscience 08 frontiersin.org

confirmed that all of these brain regions are involved in visual 
processing (Dai et al., 2021; Lin et al., 2020; Makovski and Lavidor, 
2014; Palejwala et al., 2020; Wang H. et al., 2022). Other researchers 
have also found abnormalities in brain regions associated with visual 
processing in stroke patients (Chen and Li, 2023; Wang H. et al., 
2022). It is well known that balance control is regulated by the 
integration of multiple afferent sources, including visual, vestibular, 
and somatosensory feedback, with vision being the primary form of 
feedback (Mak et al., 2021). Jahn et al. found that fMRI in healthy 
subjects during a walking imagery task showed activation in the 
fusiform gyrus (an area involved in visuospatial navigation), occipital 
visual areas (Jahn et al., 2004). A number of studies have found visual 

feedback training to be effective in improving balance function (Hyun 
et al., 2021; Noh et al., 2019). Our results confirmed the importance 
of the visual processing related cortex for balance function after 
stroke. This study also observed significantly increased sALFF, dALFF, 
and sfALFF values in the left precuneus of stroke patients. The 
precuneus is also thought to be involved in visual processing, although 
recent studies have shown that it also plays an important role in 
complex cognitive functions (Dadario and Sughrue, 2023). Overall, 
our findings suggested that, from a neural mechanism perspective, 
there was cortical dysfunction related to visual processing in patients 
with post-stroke balance dysfunction, making it necessary to focus on 
visual training in the rehabilitation of dysfunction.

FIGURE 3

Statistically significant differences between groups are shown in a static fractional amplitude of low frequency fluctuation (sfALFF) map of the whole-
brain with magnetic resonance imaging (MRI). The color bars indicate the T-value. CC2.L: left cerebellar crus II; FFG.R: right fusiform gyrus; PCUN.L: 
left precuneus.

TABLE 5 Brain regions showing sReHo and dReHo differences between groups.

Brain regions (AAL) Voxels Peak MNI coordinates Peak T-value Cohen’s d

X Y Z

sReHo

Cluster 1 133 24 −15 12 −5.0577 0.74

  Putamen_R 42

Cluster 2 26 24 −57 6 −4.5846 0.70

  Calcarine_R 21

Cluster 3 41 6 18 36 −5.4823 0.78

  Cingulum_Mid_R 32

dReHo

Cluster 1 303 33 −6 3 −7.1128 0.88

  Putamen_R 71

sReHo: static regional homogeneity; dReHo: dynamic regional homogeneity; AAL: automated anatomical labeling; MNI: Montreal Neurological Institute; Putamen_R: right lenticular nucleus; 
Calcarine_R: right calcarine fissure and surrounding cortex; Cingulum_Mid_R: right median cingulate and paracingulate gyri.
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FIGURE 4

Statistically significant differences between groups are shown in a static regional homogeneity (sReHo) map of the whole-brain with magnetic 
resonance imaging (MRI). The color bars indicate the T-value. CAL.R: right calcarine fissure and surrounding cortex; PUT.R: right lenticular nucleus; 
DCG.R: right median cingulate and paracingulate gyri.

FIGURE 5

Statistically significant differences between groups are shown in a dynamic regional homogeneity (dReHo) map of the whole-brain with magnetic 
resonance imaging (MRI). The color bars indicate the T-value. PUT.R: right lenticular nucleus.

TABLE 6 The performance of the XGBoost models.

Performance Model 1 (static 
features)

Model 2 (dynamic 
features)

Model 3 (static + dynamic features)

AUC 0.982 0.982 0.963

Accuracy 93.33% 86.67% 93.33%

Precision 0.86 0.75 0.86

Sensitivity 1 1 1

Specificity 0.89 0.78 0.89

F1 score 0.92 0.86 0.92

XGBoost: eXtreme Gradient Boosting; AUC: Area Under Curve.
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Previous studies have shown that balance control is a complex task 
involving a wide range of sensorimotor networks (Takakusaki, 2017), and 
the results of the present study confirm the abnormalities of sensorimotor-
related brain regions in patients with post-stroke balance dysfunction. The 
results showed that the sALFF and dALFF values of Supp_Motor_Area_R 
were significantly reduced, the sALFF, dALFF and sReHo values of 
Cingulum_Mid_R were significantly reduced, and the sfALFF value of 
Cerebelum_Crus2_L was decreased, and sReHo and dReHo values were 
significantly lower for Putamen_R. All of the above brain regions are 
thought to be involved in motor execution, coordination and control. Our 
results are similar to those of a previous task-state fMRI finding. Taube 
et al. found that a dynamic postural control task activated participants’ 
motor centers including the putamen, cerebellum, supplementary motor 
area, premotor cortex and primary motor cortex (Taube et al., 2015). 
Human and animal studies have shown that supplementary motor areas 
contribute to normal gait and postural control, overall trunk and limb 
movement, motor planning, interlimb coordination, sequencing of 
complex movements, and self-initiated movement (Fujimoto et al., 2014). 
Previous studies have also found that neurofeedback-induced facilitation 
of the supplementary motor area significantly affects postural stability 
(Fujimoto et al., 2017; Mihara et al., 2021), suggesting an important role 
for the supplementary motor area in balance and postural control. A 
previous review found that almost every region of the brain was associated 
with balance, but the cerebellar grey and white matter had the highest 
number of findings, suggesting that the cerebellum plays a key role in 
balance acquisition and balance ability (Surgent et al., 2019). Furthermore, 
several studies have shown that the cerebellum is critical for maintaining 
balance, postural control and motor function, and that non-invasive 
neuromodulation targeting the cerebellum can significantly improve the 
balance function of stroke patients (Koch et al., 2019; Liao et al., 2024; Zhu 
et al., 2024). It was found that the cingulate cortex, which is known to 
be involved in the coordination of complex movements and may therefore 
be involved in dynamic postural control, was activated during dynamic 
postural control tasks (Smith et al., 2023). The putamen is subservient to 
the basal ganglia, another known centre of motor function, and is 
therefore closely linked to balance control (Surgent et  al., 2019). In 
addition, in the present study we found that the sALFF values of the left 
thalamus and left supplementary motor area and the dALFF value of the 
right putamen were significantly increased, suggesting that spontaneous 
brain activity in these brain areas was enhanced. Dijkstra et al. concluded 
that the thalamus is one of the key nodes that is repeatedly activated in 
humans during balance tasks (Dijkstra et al., 2020). The thalamus is 
thought to be a relay station for sensory information, helping to integrate 
sensory inputs related to postural control (Surgent et al., 2019). One study 
found that postural imbalance in patients with progressive supranuclear 
palsy was strongly associated with thalamic dysfunction, and that deficits 
in thalamic postural control were most pronounced when balance was 
assessed in the context of modified sensory input (Zwergal et al., 2011). 
Previous research on stroke has shown that when entering the later stages 
of recovery, the brain begins to find new ways to adapt to the injury. The 
contralateral hemisphere may begin to be more active to help compensate 
for the loss of function in the ipsilateral hemisphere (Di Pino et al., 2014). 
Previous studies have found disturbances in neural activity in both the 
ipsilateral and contralateral hemispheres in subcortical stroke patients 
(Guo et al., 2023). The stroke patients in the present study had an average 
disease duration of more than 2 months, had entered the rehabilitation 
phase, and all had lesions involving subcortical brain regions. Therefore, 
enhanced spontaneous neural activity in the aforementioned brain 
regions may be interpreted as a compensatory manifestation of impaired 

brain function after stroke, contributing to the understanding of possible 
mechanisms of recovery after dysfunction. Taken together, the present 
study suggests that post-stroke balance dysfunction involves a wide range 
of abnormalities related to motor execution, motor coordination and 
sensorimotor control brain regions.

We also found that patients with post-stroke balance dysfunction 
had significantly reduced sALFF and dALFF values in the Insula_L and 
Cingulum_Ant_R, and significantly increased dALFF value in the 
Insula_R. All of these brain regions are involved in cognitive function, 
including the fusiform gyrus mentioned above. Karim et al. also found 
that fMRI showed activation of the anterior cingulate gyrus and 
fusiform gyrus in healthy subjects during a simulated active balance 
task (Karim et al., 2014). Recently, there has been increasing evidence 
that cognitive functions are involved in complex motor and postural 
control (Montero-Odasso and Speechley, 2018; Morris et al., 2016; 
Tasseel-Ponche et al., 2015). Yu et al. also found that stroke patients 
with poor cognitive function had worse balance and posture control 
(Yu et al., 2021). Our study also confirms that balance function is 
related to cognitive function from a functional imaging perspective.

In this study, we identified changes in brain regions associated with 
balance control in stroke patients. However, we did not did not find that 
the values of imaging metrics of abnormal brain regions were 
significantly correlated with BBS scores, although the sALFF value of 
LING. R and the sReHo value of DCG. R were significantly positively 
correlated with BBS before FDR correction. Possible reasons may be due 
to the heterogeneity of stroke patients and the relatively small sample 
size. Studies with large sample sizes are needed to further explain this 
association. In addition, we extracted the imaging metrics values of 
brain regions with significant differences and built three classification 
models based on the XGBoost algorithm. The results showed that the 
performance of the model built using a combination of dynamic and 
static imaging features was no better than that of the model built using 
static imaging features. We speculate that this may be due to the small 
sample size of this study and the fact that only a single sliding window 
length and step size was used in the dynamic analysis. However, 
we found that between-group comparisons of sALFF and dALFF did 
not show exactly the same abnormal brain regions, e.g., Putamen_R and 
Insula_R showed significantly increased dALFF values in stroke 
patients, whereas no abnormality was shown in sALFF analyses, 
suggesting that dynamic brain activity analyses can still provide 
complementary information to static brain activity analyses.

There are undoubtedly some limitations to the present study. Firstly, 
rather than performing formal sample size calculations and power 
analyses, the present study used similar sample sizes from previous stroke-
related functional MRI studies because of the lack of previous studies on 
similar issues and the uncertainty in the BOLD response that led to fewer 
power calculations in fMRI studies (Ding et al., 2024; Guo et al., 2023; 
Soares et al., 2016; Zhao et al., 2018). As a pilot study, the sample size of 
this study is relatively small, which may lead to instability of the results, 
but we give results corrected for multiple comparisons, and the results are 
similar after GRF correction, FDR correction, or permutation test + 
TFCE correction, and the thresholds set by multiple comparison 
correction are more stringent than some fMRI studies in recent years. In 
addition, clusters with significant differences showed moderate or large 
effect sizes, so our results can be considered reliable and can be used as a 
reference for future studies with large sample sizes. Second, the present 
study only compared differences in spontaneous neural activity between 
patients with post-stroke balance disorders and healthy controls. Future 
studies should consider increasing the sample size and dividing patients 
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into subgroups according to the degree of balance dysfunction, which 
may provide more meaningful results. Finally, this was a cross-sectional 
study that included only patients whose disease duration was limited to 
1–3 months after stroke and did not investigate the characteristics of brain 
function in patients with balance dysfunction during the chronic phase 
or the longitudinal changes in spontaneous neural activity from the acute 
to the chronic phase. Future studies should conduct longitudinal studies 
to investigate the dynamic changes in brain activity over time in patients 
with balance disorders after stroke.

5 Conclusion

In conclusion, this resting-state fMRI study revealed abnormalities 
in static and dynamic metrics in multiple brain regions of the bilateral 
brain in patients with post-stroke balance dysfunction, which are 
mainly associated with visual processing, motor execution, motor 
coordination, sensorimotor control, and cognitive function. The 
functional abnormalities of local brain regions identified in this study 
contribute to our understanding of the underlying neuropathological 
mechanisms of post-stroke balance dysfunction and provide new 
insights into the rehabilitation of post-stroke balance dysfunction.
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