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Editorial on the Research Topic

Signaling pathways and brain circuitry underlying circadian rhythms

and sleep

Introduction

Circadian rhythms occur on a 24-h cycle and modulate physiological and behavioral

processes, such as the sleep/wake cycle, across the day. The focus of this Research Topic

is to highlight recent findings on the circuits and pathways that underlie or modulate

circadian rhythms and sleep, including genetic, molecular/cellular, electrophysiological,

neuroanatomical, pharmacological, and mathematical approaches. The Research Topic

includes six papers that focus on three themes: (1) circadian modulation at different

spatial scales (Hiro et al.; Aten et al.); (2) genetics of sleep/wake cycles (Kobayashi et al.;

Doldur-Balli et al.); and (3) characterization and regulation of sleep stages (Yun et al.;

Ginsberg et al.). Below, we provide an overview of each paper.

Circadian rhythms: from signaling molecules to
sexual behavior

Circadian rhythms are driven by a transcriptional/translational feedback loop

(TTFL) composed of core clock genes and their products that manifest across many

spatial/temporal scales from molecular to complex animal behavioral rhythms. At

the molecular scale, Hiro et al. investigated circadian rhythm coordination in the

suprachiasmatic nucleus (SCN), the location of the mammalian master circadian clock.

SCN neurons exhibit circadian rhythms in cytosolic Ca2+, serving as a mediator in

signaling pathways linking SCN electrical activity to TTFL gene expression (Colwell, 2011;

Welsh et al., 2010; Mohawk et al., 2012; Takahashi, 2017). However, Ca2+ modulatory

mechanisms between the cytosol and nucleus remain obscure. To better understand the

mechanistic underpinnings of nuclear Ca2+ regulation, Hiro et al. performed dual-color

nuclear and cytosolic Ca2+ imaging of mouse SCN neurons, using genetically encoded
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Ca2+ sensors (Chen et al., 2013; Dana et al., 2016). Results

revealed a strong nuclear Ca2+ rhythmwhich was in-phase with the

cytosolic Ca2+ rhythm, both within single neurons and SCN-wide

subregions. Their results also suggest that circadian Ca2+ rhythms

are driven from the extracellular space, although more work is

needed to understand the mechanisms involved.

At the behavioral level, Aten et al., review time-of-

day dependence in sexual and reproductive behaviors and

connections to circadian rhythms in reproductive hormones

in rodents, non-human primates, and humans. They also

propose a novel neural circuit—spanning the SCN and sub-

paraventricular zone to the ventromedial hypothalamus and

medial preoptic area—that may control sexual behaviors

across the circadian day. Lastly, they highlight studies

that examine time-of-day differences in human sexual

behaviors and discuss how circadian dysfunction negatively

impacts reproduction.

Genes that modulate the sleep/wake
cycle

Sleep is an evolutionarily conserved behavioral state (Joiner,

2016), and model organisms like Drosophila and zebrafish have

been widely used to genetically dissect sleep (Cirelli and Bushey,

2008; Zhdanova, 2006). Motivated by the finding that a mutation

(Sleepy) in the salt-inducible kinase 3 (Sik3) gene was previously

shown to alter sleep in mice (Funato et al., 2016), Kobayashi

et al. tested whether a phosphorylation-deficient mutant form of

the Sik3 gene (“Sik3-SA”) might also affect sleep regulation in

flies. They found that overexpression of this Sik3-SA mutation

in all Drosophila neurons increased sleep while overexpression

of Sik3-SA specifically in pigment-dispersing factor (PDF), which

modulates circadian rhythms in Drosophila (Guo et al., 2016),

increased daytime sleep and decreased the circadian rhythm

amplitude. Their results also suggest that Sik3-SA alters sleep

regulation by PDF neurons in Drosophila, but future experiments

are necessary to understand the relationship between Sik3-SA and

PDF neuron functionality.

Sleep regulation may also be affected by hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels. In zebrafish,

Doldur-Balli et al. investigated HCN “pacemaker” channels

(Wobig et al., 2020), which are also known to modulate

sleep/wake cycles (Lewis and Chetkovich, 2011; Sartiani et al.,

2017). The authors tested the effects of three HCN channel

inhibitors, Ivabradine, Zatebradine Hydrochloride, and ZD7288,

on sleep/wake cycles in zebrafish and found that Ivabradine

(at 0.1µM) led to a shorter latency to daytime sleep relative

to vehicle treatment. In addition, Zatebradine Hydrochloride

(at 30µM) led to a decrease in average daytime activity, and

ZD7288 (at 4.5µM) led to a nighttime sleep increase. While

these three compounds are used to reduce heart rate (Novella

Romanelli et al., 2016), this is the first study to report the

effects of HCN channel inhibition in zebrafish—results that

could provide insight into potential therapeutics that may impact

sleep function.

Electrophysiological and
mathematical approaches to measure
and predict sleep

Previous studies of local field potential (LFP) frequency

band power and single-unit dynamics have helped advance our

knowledge of sleep/wake stages, including rapid eye movement

(REM) sleep and non-REM (NREM) sleep, and other complex

brain functions (Brown et al., 2012; Rasch and Born, 2013). Yun

et al. contribute to this literature by examining power spectral

density of LFPs in the primary motor cortex inMacaca nemestrina

monkeys. Single-unit activity was tracked simultaneously with six

different frequency bands, and behavioral state-dependent changes

in cross-frequency coupling were determined. They showed that

LFP bands depend on the macaque’s behavioral state, providing a

foundation for future work that examines the function of various

LFP bands in wake, NREM sleep, and REM sleep.

Although it is known that mammals alternate between REM

and NREM sleep, the mechanisms driving this alternation have

not been established (Le Bon, 2020). One hypothesis posits that a

homeostatic drive for REM sleep increases during NREM sleep and

dissipates during REM sleep (Benington et al., 1994; Heller, 2021).

Ginsberg et al. build on previous work from Park et al. (2021) to

define a new measure of REM sleep propensity. Their analyses of

spontaneous mouse sleep data suggests that time spent in NREM

sleep may increase the propensity to transition into REM sleep

in a homeostatic “hourglass-like” manner, but only for a limited

range of NREM sleep durations. Future work is needed to validate

this REM propensity measure in other species or contexts such as

sleep deprivation.

Conclusion

Insights from the six papers in this Research Topic should

provide direction for future experiments that will translate these

fundamental-research-based methods into tools that could be used

clinically to improve sleep and circadian-related health outcomes

in humans.
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