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Background: Mild cognitive impairment (MCI) is common in Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), but there are differences in pathogenesis and 
cognitive performance between Mild cognitive impairment due to Alzheimer’s 
disease (AD-MCI) and Parkinson’s disease with Mild cognitive impairment (PD-
MCI) populations. Studies have shown that assessments based on the digital 
clock drawing test (dCDT) can effectively reflect cognitive deficits. Based on 
this, we  proposed the following research hypothesis: there is a difference in 
cognitive functioning between AD-MCI and PD-MCI populations in the CDT, 
and the two populations can be effectively distinguished based on this feature.

Methods: To test this hypothesis, we  designed the dCDT to extract digital 
biomarkers that can characterize and quantify cognitive function differences 
between AD-MCI and PD-MCI populations. We enrolled a total of 40 AD-MCI 
patients, 40 PD-MCI patients, 41 PD with normal cognition (PD-NC) patients 
and 40 normal cognition (NC) controls.

Results: Through a cross-sectional study, we  revealed a difference in 
cognitive function between AD-MCI and PD-MCI populations in the dCDT, 
which distinguished AD-MCI from PD-MCI patients, the area under the roc 
curve (AUC) = 0.923, 95% confidence interval (CI) = 0.866–0.983. The AUC 
for effective differentiation between AD-MCI and PD-MCI patients with high 
education (≥12 years of education) was 0.968, CI = 0.927–1.000. By correlation 
analysis, we found that the overall plotting of task performance score (VFDB1) 
correlated with the [visuospatial/executive] subtest score on the Montreal 
Cognitive Assessment (MoCA) scale (Spearman rank correlation coefficient 
[R] = 0.472, p < 0.001).

Conclusion: The dCDT is a tool that can rapidly and accurately characterize 
and quantify differences in cognitive functioning in AD-MCI and PD-MCI 
populations.
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1 Introduction

Mild cognitive impairment (MCI) is defined as a progressive 
decline in memory or other cognitive functions, while individuals with 
MCI are still able to maintain daily functioning. MCI is commonly 
seen in two neurodegenerative diseases, Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) (Arvanitakis et al., 2019). According to the 
latest data, there are about 416 million people in the continuous 
spectrum of AD worldwide, 32 million of whom suffer from dementia 
(Gustavsson et al., 2023). AD can be divided into three stages of disease 
progression, namely preclinical AD, AD-derived mild cognitive 
impairment (AD-MCI), and AD dementia, of which AD-MCI is an 
important window for its early recognition (Knopman et al., 2021). 
However, the number of people with PD is currently over 10 million 
worldwide, and most of these patients develop cognitive dysfunction 
as the disease progresses (Wang et al., 2021). Studies have shown that 
half of newly diagnosed PD patients are associated with mild cognitive 
impairment after 3 years, and the conversion rate of mild cognitive 
impairment in PD (PD-MCI) patients to PD dementia (PDD) is close 
to 40% (Pedersen et al., 2017). Both AD-MCI and PD-MCI populations 
suffered from cognitive deficits. Compared to AD-MCI populations, 
PD-MCI populations had less severe memory deficits but more severe 
impairments in executive functioning, visuospatial ability, and 
attention (Brandão et al., 2020; Aamodt et al., 2021; Aarsland et al., 
2021; Chandler et al., 2021). So, further fine-grained quantification of 
the differences in cognitive functioning between the two populations 
would help physicians more accurately diagnose the type of cognitive 
impairment in their patients and formulate targeted treatment plans.

At present, neuropsychological scales are mainly used to examine 
cognitive deficits in AD-MCI and PD-MCI populations, but they are 
highly participatory, time-consuming, and require clinician 
involvement (Lawson et al., 2021; Schmitter-Edgecombe et al., 2022; 
Conca et al., 2024). Scholars believed that digital biomarkers could 
be used to objectively characterize cognitive deficits in AD-MCI and 
PD-MCI populations at a fine-grained level (Ding et al., 2022; Park and 
Schott, 2022). Digital biomarkers are the use of digital averages to 
transform the “signals” emitted by humans into a quantifiable, clinically 
average and objective standard that can detect or predict disease 
progression (Coravos et al., 2019; Avram et al., 2020). Most importantly, 
they provided simpler and less costly continuity of real data and early 
detection of subtle changes (Dorsey et al., 2017; Gold et al., 2018). 
Therefore, the use of digital assessment is expected to quantify and 
characterize the differences in cognitive functioning between AD-MCI 
and PD-MCI populations at a fine-grained level, as well as provide a 
favorable reference for further accurate diagnosis of the types of 
cognitive impairment in AD-MCI populations and PD-MCI.

The clock drawing test (CDT) is a multidimensional cognitive 
functioning assessment tool that captures several aspects of cognitive 
functioning, such as executive functioning, planning, visuospatial 
ability, memory and attention (Dion et al., 2021). Whereas, the digital 
clock drawing test (dCDT) provides a more nuanced assessment of 
cognitive functioning status by capturing more detailed parameters. 
Schejter-Margalit et  al. (2021) demonstrated that the use of a 
quantitative digital clock drawing test demonstrated greater sensitivity 
in identifying subtle cognitive declines in early Parkinson’s disease 
when compared to current standardized tests. Li et al.’s (2023) previous 
study showed that the digital clock mapping test could assess cognitive 
dysfunction at a fine-grained level in a population with MCI of AD 

origin and had good early warning efficacy. A Meta-analysis showed 
that the diagnostic performance of the digital clock drawing test was 
superior to that of the traditional pen-and-paper CDT as well as other 
types of digital drawing tests in AD-MCI populations (Chan et al., 
2022). In addition, studies had been conducted to differentiate AD-MCI 
populations from PD-MCI populations based on clock-drawing test 
performance, and the results suggested that clock-drawing test could 
be  used as a complementary tool to clinical diagnostic criteria for 
differentiating AD-MCI populations from PD-MCI populations (Saka 
and Elibol, 2009; Saur et al., 2012; Stagge et al., 2024). Studies on the 
application of the clock drawing test in comparing AD populations with 
cognitively impaired PD populations are detailed in Table 1.

Most studies on clock drawing tests have focused on extracting 
metrics from the final clock drawing results, without a detailed analysis 
of the drawing process. This made it difficult to quantify fine-grained 
differences in cognitive functioning between AD-MCI and PD-MCI 
populations. For example, Jalakas et al. (2019) conducted a study that 
failed to find significant differences between AD and PDD populations 
in clock mapping tests. In contrast, the dynamic digital biomarker-
based clock mapping method provided the possibility of objectively 
and accurately detecting differences in cognitive function between 
AD-MCI and PD-MCI populations, owing to its ability to quantify the 
entire clock mapping process at a fine-grained and continuous level.

In summary, we proposed the following research hypothesis: there 
is a difference in cognitive function between AD-MCI and PD-MCI 
populations in the digital clock drawing test, and the two populations 
can be  effectively differentiated based on this feature. To test the 
hypothesis, we designed the dCDT, extracted digital biomarkers that 
can characterize cognitive function differences between AD-MCI and 
PD-MCI populations, and provided favorable references for the early 
diagnosis, treatment, and prevention of dementia progression in 
AD-MCI and PD-MCI populations.

2 Materials and methods

2.1 Participants recruitment

2.1.1 Sample size estimation
We used the G*Power tool to approximate the final sample size for 

inclusion, with the relevant parameters being Test family: “F tests,” 
Statistical test: “ANOVA: Fixed effects, omnibus, one-way,” Type of 
power analysis: “A priori: Compute required sample size—given α, 
power, and effect size,” Effect size f = 0.3, α err prob = 0.05, Power (1–β 
err prob) = 0.9, Number of groups = 4, and the total sample size was 
calculated to be 164, i.e., 41 people were required for each of the NC 
group, AD-MCI group, PD-MCI group, and PD-NC group.

2.1.2 Participant recruitment process and 
inclusion criteria

In this study, 175 participants were recruited from the 
Department of Neurology and the Department of Nuclear Medicine 
of the Second Medical Center of the General Hospital of the Chinese 
People’s Liberation Army. A total of 165 participants were followed 
up in the trial, including 41 patients with AD-MCI, 42 patients with 
PD-MCI, 42 patients with PD-NC, and 40 NC controls. During the 
formal trial, one AD-MCI patient withdrew due to disease 
progression, and two PD-MCI patients and one PD-NC patient 
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could not participate for unspecified reasons. This left an effective 
sample size of 161, including 40 AD-MCI patients, 40 PD-MCI 
patients, 41 PD-NC patients, and 40 normal controls. PD-MCI and 
PD-NC patients were discontinued within 12 h prior to dCDT. The 
participant screening process is shown in Supplementary Figure 1. 
The demographic characteristics of the participants is shown in 
Supplementary Table  1. To ensure consistency of data, all 
participants completed the dCDT, MMSE, and MoCA sequentially 
on the same day. The MDS-UPDRS assessment was also completed 
by all participants except those in the AD-MCI group.

All of the above participants were native speakers of Chinese and 
given a definite diagnosis by clinical experts. Participants’ general 
information data included age, gender, years of education, Minimum 
Mental State Examination (MMSE) score, Montreal Cognitive 
Assessment (MoCA) score, and Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale III (MDS-UPDRS III) score. The above 
MMSE, MoCA, and MDS-UPDRSIII scales are all standardized Chinese 
versions (Yu et al., 2017; Jia et al., 2021). All experimental procedures 
were in accordance with the Helsinki Declaration and approved by the 
Medical Ethics Committee of the Chinese People’s Liberation Army 
General Hospital (Ethics No. S2022-770-02). Eligible participants were 
collected according to the following inclusion and exclusion criteria.

AD-MCI patients inclusion criteria: (1) met clinical MCI 
diagnostic criteria developed by the National Institute on Aging (NIA) 
and Alzheimer’s Association (ADA) in 2011; (2) 11C-PIB PET/CT 
positive imaging; (3) the dominant hand was the right hand and was 
able to cooperate in completing test; (4) aged 45–80 years old, gender 
was not limited; and (5) signed informed consent form.

PD-MCI patients inclusion criteria: (1) met the British Brain Bank 
PD diagnostic criteria; (2) Parkinson’s disease background, by the 
patient’s family statement or clinician found that the patient’s gradual 

cognitive decline; (3) neuropsychological test cognitive impairment; (4) 
cognitive impairment, but had not yet significantly intervened in the 
patient’s functional independence; (5) the affected side or the more 
serious are the right side of the limb, the habitual hand for the right hand 
and able to cooperate in the completion of the test; (6) aged 45–80 years 
old, gender was not limited; and (7) signed informed consent form.

PD-NC patients inclusion criteria: (1) met the diagnostic criteria of 
the British Brain Bank for PD; (2) cognitive decline was not observed by 
patient informants or clinicians; (3) cognitive decline was not reflected 
in neuropsychological tests or overall cognitive scales; (4) affected side 
or more severely all right limb, dominant hand was right hand, and they 
were able to cooperate with completion of test; (5) aged 45–80 years old, 
gender was not limited; and (6) signed informed consent form.

NC inclusion criteria: (1) no complaints and objective evidence 
of neurologic disease (normal neurologic clinical examination); (2) 
no cognitive impairment; (3) habitual hand is right-handed and 
able to cooperate with the test; (4) aged 45–80 years old, gender 
was not limited; and (5) signed informed consent form.

Exclusion criteria for all participants: (1) history of schizophrenia, 
severe anxiety and depression, and other psychiatric disorders; (2) 
history of severe head injury and other serious illnesses; (3) history of 
alcohol and drug abuse; and (4) other conditions that may prevent 
completion of the test (including arm disability, etc.).

2.2 Design of digital clock drawing test and 
digital biomarkers

Based on the research hypothesis that there is a difference in 
cognitive functioning between AD-MCI and PD-MCI populations in 
the dCDT, and that this feature is effective in distinguishing between 

TABLE 1 Application of the clock drawing test in comparing AD and PD cognitively impaired populations.

Researcher Method Limitation

Saka and Elibol (2009)
Participants draw watches on white paper. Points are 

awarded based on the result of the drawing of the clock.

(1) The sample sizes of AD-MCI patients and PD-MCI patients were small; (2) 

the dimensions of the extracted metrics were limited, and only the final drawn 

clock images were analyzed; and (3) the accuracy of distinguishing between 

AD-MCI patients and PD-MCI patients was low, with an AUC of only 0.668.

Saur et al. (2012)

Participants take a clock drawing test. Points are 

awarded based on the picture of the clock results 

drawn.

(1) The sample sizes of AD-MCI patients and PD cognitively impaired patients 

were small; (2) the dimensionality of the extracted metrics was limited and only 

analyzed on the final drawn clock pictures.

Allone et al. (2018)
Participants drew clocks on paper. The clock drawings 

were rated both quantitatively and qualitatively.

(1) The sample size of PD-MCI patients was small; (2) the dimensionality of 

metrics extraction was limited, and only the final drawn clock pictures were 

analyzed.

Jalakas et al. (2019)
Participants were given a clock drawing test. Scoring 

was based on pictures of the clock drawing results.

(1) There was a large difference in sample size ratios between AD and PDD 

patients; (2) performance on the clock-drawing test was compared between AD 

and PDD patients, but no significant differences were found; and (3) the 

dimensionality of the extracted metrics was limited, and only the final clock 

drawings were analyzed.

Tafiadis et al. (2021)
Participants were given a clock drawing test. Scoring 

was based on pictures of the clock drawing results.

(1) The sample sizes of patients with AD and PDD were small; (2) the 

performance of patients with AD and PDD on the clock-drawing test was 

compared, but no significant differences were found; and (3) the dimensionality 

of the extracted metrics was limited, and only the final clock drawings were 

analyzed.

Alzheimer’s disease (AD), Parkinson’s disease (PD), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), 
Parkinson’s disease with normal cognition (PD-NC), Parkinson’s disease dementia (PDD), area under the roc curve (AUC).
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these two populations, we  designed the dCDT using projected 
intercapacitive haptic feedback technology. Details of the test are 
outlined below.

2.2.1 Experimental test design prerequisite
The hardware required for this experiment consists of an Intel 

computer (NUC11PAHi5), a touchable monitor with 3,840 × 2,160 
pixels (Length, width and height 392 × 250 × 10 mm, screen size 
17.3 inches). The software system involved in this experiment is a 
human-computer interaction system. We  built the front-end 
interface of this system through Electron and Vue3, and constructed 
dCDT through HTML5 Canvas, and the sampling frequency of 
human-computer interaction data in the test assessment process 
was about 55 Hz. We  built the back-end system of this system 
through python, and built the human-computer interaction 
database through Mysql database. Human-computer interaction 
data acquisition is shown in Figure 1A.

2.2.2 Experimental test design and principle 
interpretation

The clock drawing test can be  used as a cognitive function 
assessment tool that involves the synergistic effect of multidimensional 
cognitive functions such as executive function and visuospatial 
function. We designed the dCDT to quantify the entire clock-drawing 
process, collect real-time human-computer interaction data reflecting 
participants’ visuospatial and executive functions, and then evaluate 
participants’ cognitive functions in the test process.

The target of the dCDT was that participants need to draw a clock 
at 11:10 on the screen with their right index finger through fingertip 
interaction, and they need to write down all the digits and clock hands 
on the clock face, and the test is limited to 3 min.

2.2.3 Definition and quantitative analysis of digital 
biomarkers

We extracted digital biomarkers from the database via python 
(3.10.0) based on the above objectivized human-computer interaction 
data. To compare cognitive functioning differences between AD-MCI 
and PD-MCI populations in the dCDT at a fine-grained level, 
we  classified digital biomarkers into visuospatial function digital 
biomarkers and executive function digital biomarkers.

The visuospatial function digital biomarkers (VFDB) were used to 
reflect participants’ ability to process, understand, and respond in the 
visuospatial environment of a painted clock, and to assess participants’ 
ability to translate the visual image of a clock (clock numbers, outline, 
and clock hands) into a concrete concept of time or mathematical 
representation, and to focus on clock numbers, outline, and hand 
positions on the clock dial, as well as to effectively ignore other 
irrelevant visual information. The VFDB was scored on the 
participant’s image of the clock-drawing result, including an overall 
score on the participant’s image of the clock (Task Performance of 
Overall Drawing Score), individual scores on the outline of the clock 
(Task Performance of Outline Drawing Score), individual scores on 
the numbers within the clock (Task Performance of Numbers Drawing 
Score), and individual scores on the clock hands (Task Performance 
of Clock Hands Drawing Score).

The executive function digital biomarkers (EFDB) were designed 
to reflect the participant’s ability to plan, strategize, and solve problems 
in the dCDT. The EFDB was measured using a fingertip interaction 
technique to assess participants’ planning, conceptualization, and 
recall of the clock drawing prior to “drawing execution,” including 
Task Completion Time, Total Drawing Pause Time, Initial Drawing 
Pause Time, Drawing Process Pause Time (including total time, 
average time, and maximum time) and Number of Pauses during 

FIGURE 1

Introduction of digital clock drawing testing. (A) Human-computer interaction data acquisition. (B) Dynamic trajectory diagram.
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Drawing. Task Completion Time was used to describe the time it took 
participants to draw the complete clock. Total Drawing Pause Time 
was used to describe the overall thinking and planning of participants 
during clock drawing. Initial Drawing Pause Time was used to 
describe participants’ planning and thinking before the clock was 
drawn. Drawing process Pause Time and Number of Pauses during 
Drawing. They were used to describe participants’ planning and 
thinking about the details of the clock drawing during the 
assessment process.

At the same time, the EFDB was also designed to reflect 
participants’ drawing performance after “planning” through 
fingertip interaction technology, including Drawing Time, Number 
of Draws, Efficiency of Drawing, Length of Drawn Line, Initial 
Drawing Speed, Average of Drawing Speed, Variability of Drawing 
Speed. Drawing Time was used to describe the time participants 
spent drawing the clock. Number of Draws was used to describe the 
number of strokes made by the participants in the clock drawing. 
Efficiency of Drawing was used to describe how efficiently 
participants drew the clock. Length of Drawing Line was used to 
describe the length of lines drawn by participants during the clock 
drawing process. Initial drawing speed, Average of drawing speed, 
Variability of drawing speed were used to describe the magnitude 
and degree of variability of participants’ drawing speed during the 
clock drawing process.

To facilitate future digital biomarker mining analyses, we provided 
a detailed conceptual definition of the various digital biomarkers in 
the test:

 (1) Visuospatial Function Digital Biomarkers (VFDB)

Descriptions of visuospatial function digital biomarkers are 
shown in Table 2, and a graphical representation of digital visuospatial 
function biomarkers is shown in Figure 2.

 (2) Executive Function Digital Biomarkers (EFDB)

Descriptions of the executive function digital biomarkers are 
shown in Table 3, and a graphical representation of the executive 
function digital biomarkers is shown in Figures 3, 4.

The algorithm for analyzing the above digital biomarkers is 
as follows:

We built on pre-existing algorithms (Li et al., 2023), to obtain Task 
Performance of Overall Drawing Score (VFDB1), Task Performance of 
Numbers Drawing Score (VFDB2), Task Performance of Outline 
Drawing Score (VFDB3) and Task Performance of Clock Hands 
Drawing Score (VFDB4), Task Performance of Overall Drawing Score 
(VFDB1) was calculated by Equation 1:

 1 2 3 4VFDB VFDB VFDB VFDB= + +  (1)

We applied Optical Character Recognition to calculate the Task 
Performance of Numbers Drawing Score (VFDB2), assigning a score 
of 1 if the clock digits were complete and distributed clockwise, and 
0 otherwise. We applied contour edge detection to calculate the Task 
Performance of Outline Drawing Score (VFDB3), assigning a score 
of 1 if the outer contour of the clock was closed, and 0 otherwise. 
We computed the Task Performance of Clock Hands Drawing Score 
(VFDB4) using the Spatial Transformer Network clock recognition T
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architecture, if the clock time was recognized as 11:10, the Task 
Performance of Clock Hands Drawing Score (VFDB4) was 1, 
otherwise, it was 0. The clock time was recognized by the equation:

 ( ) 720T Pictures P= ∈Φ
 (2)

In Equation 2, T was the time of the predicted clock, Pictures 
was the clock image drawn by the participants, and Φ was the 
classification network. There will be 12 results for hours, i.e., 1:00 
to 12:00; and 60 results for minutes, i.e., 0 to 59:00. There were 720 
ways to combine time. P720 was 720 classification results, and the 
calculation of the task. The calculation of Task Performance 
Calculation of Hand Drawing Score (VFDB4) is shown in 
Supplementary Figure 2.

We recorded the participant’s Task Completion Time (EFDB1) and 
Initial Drawing Pause Time (EFDB3). Let the participant’s Number of 
Draws (EFDB9) was A. For each draw: The a-th drawn line (1 ≤ a ≤ A, 
a ∈ N) was labeled La. The drawing duration for the a-th line was ta. 
Line La consisted of Ba drawing coordinate points, with the b-th 
drawing coordinate point (1 ≤ b ≤ Ba, b ∈ N) denoted as ( bX , bY ). The 
pause time between the completion of line La and the start of line 
La + 1 was t(a，a + 1), Total Drawing Pause Time (EFDB2), Total Drawing 
Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), 
Number of Pauses during Drawing (EFDB7) were calculated by 
Equations 3–8:

 2 3 4EFDB EFDB EFDB= +  (3)

 
( ) ( )

1
4 , 1

1
1 a A 1, N

A

a a
a

EFDB t a
−

+
=

= ≤ ≤ − ∈∑
 (4)

 ( )5 , 1
1 a 1

max a a
A

EFDB t +
≤ ≤ −

=
 (5)

 
4

6 1
EFDBEFDB

A
=

−  (6)

 
( ) ( )

( )
1 1

1 1

1
0

b b b b

b b b b

X X and Y Y
D b

X X or Y Y
+ +

+ +

 = ==  ≠ ≠  (7)

 
( )

1
7

1 1

aBA

a b
EFDB D b

−

= =
= ∑ ∑

 (8)

In Equation 7, ( )
1

1

aB

b
D b

−

=
∑  was used to calculate the number of 

pauses in judging a particular drawing of a line, and A indicated that 
the participant drew a total of A lines.

FIGURE 2

Graphical representation of visuospatial function digital biomarkers.
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TABLE 3 Descriptions of the executive function digital biomarkers.

Cognitive impairment Digital biomarkers Abbreviation Interpretation and units

Patients with AD-MCI and PD-MCI exhibit 

impairments in executive function (Arrigoni 

et al., 2024; Zhang et al., 2024)

Executive function digital biomarker1: Task Completion Time EFDB1

It was used to calculate the time taken by the participant from entering the test to 

completing the clock drawing, i.e., the total time taken to complete the test (Unit: seconds, 

s).

Executive function digital biomarker2: Total Drawing Pause Time EFDB2

It was used to calculate the sum of the time intervals during which the participant’s finger 

did not touch the screen, i.e., the sum of the time during which the drawing was not 

performed, during the test (Unit: seconds, s).

Executive function digital biomarker3: Initial Drawing Pause Time EFDB3

It was used to calculate the time between a participant’s entry into the test and the first 

drawing on the screen (Unit: seconds, s).

Executive function digital biomarker4: Total Drawing Process Pause 

Time
EFDB4

It was used to calculate the sum of the time the participant’s finger did not touch the screen 

after the first stroke was drawn during the clock drawing process (Unit: seconds, s).

Executive function digital biomarker5: Maximum of Drawing Process 

Pause Time
EFDB5

It was used to calculate the maximum value of the duration that a participant’s finger does 

not touch the screen after the first stroke of the clock drawing process (Unit: seconds, s).

Executive function digital biomarker6: Average of Drawing Process 

Pause Time
EFDB6

It was used to calculate the average duration that a participant’s finger does not touch the 

screen after the first stroke during the clock drawing process (Unit: seconds, s).

Executive function digital biomarker7: Number of Pauses during 

Drawing
EFDB7

It was used to count the number of times a participant’s finger stays on the screen during the 

clock drawing process (Unit: times).

Executive function digital biomarker8: Drawing Time EFDB8

It was used to calculate total time the participant actively spent drawing, i.e., the duration 

the finger stays on the screen (Unit: seconds, s).

Executive function digital biomarker9: Number of Draws EFDB9

It was used to count the number of times a participant drew a line during the clock drawing 

process. (Unit: times).

Executive function digital biomarker10: Efficiency of Drawing EFDB10

It was used to calculate the drawing efficiency of the participants. The participant’s drawing 

time during the clock drawing process, i.e., the time the finger stays on the screen, is first 

calculated, and then analyzed as a percentage of the task completion time (the total elapsed 

time to complete the test), which is Drawing Efficiency (Unit: %).

Executive function digital biomarker11: Length of Drawn Line EFDB11

It was used to calculate the total length of the line drawn by the participant during the clock 

drawing process (Unit: pixels, px).

Executive function digital biomarker12: Initial Drawing Speed EFDB12

It was used to calculate the speed at which the participant drew the first line in the clock 

drawing process (Unit: pixels/seconds, px/s).

Executive function digital biomarker13: Average of Drawing Speed EFDB13

It was used to calculate the average speed at which participants drew each line during the 

clock drawing process (Unit: pixels/seconds, px/s).

Executive function digital biomarker14: Variability of Drawing Speed EFDB14

It was used to calculate the variability of a participant’s drawing speed. That is, the degree of 

variability in the speed at which the participant draws each line is calculated during the 

clock drawing process (Unit: %).
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Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), and 
Length of Drawn Line (EFDB11) were calculated by Equations 9–12:
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In Equation 9, ( ) ( )
1

2 2
1 1

1

aB
b b b b

b
X X Y Y

−

+ +
=

− + −∑  was used to 

calculate the length of the line La drawn by the participants.

We separately calculated the speed at which the participants 
draws each line, i.e., the speed Va at which the a-th line La (which has 
a total of Ba drawing coordinate points) was drawn, and then 
calculated the Initial Drawing Speed (EFDB12), Average of Drawing 
Speed (EFDB13) and Variability of Drawing Speed (EFDB14), which 
were given by Equations 13–17:
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FIGURE 3

Graphical representation of the executive function digital biomarkers (1).
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In Equation 16, σ  was the standard deviation of the drawing speed 
when participants draw all lines during the test.

2.2.4 Design of experimental rules
Participants were in a quiet room for the test assessment to 

prevent the results from being affected by the noisy environment. 
We positioned a comfortable and stable chair in front of the display 
with touch screen function, after the participant sat down, their 
posture was adjusted to maintain an approximate distance of 30 cm 
between their upper body and the display. This setup ensured clear 
visibility and comfortable finger-based interaction, minimizing 
potential visual interference or operational discomfort that could 
compromise the experimental results. In addition, all participants in 
this experiment were right-handed, and the affected side of PD-MCI 
patients and PD-NC patients were on the right side, so as not to 
interfere with the experimental results by hand habits.

2.3 Experimental settings

2.3.1 Experimental procedures
Prior to the official launch of the dCDT, we trained the staff in 

advance, informing them of the testing process of the dCDT and 
the operation of the human-computer interaction system, and 

subsequently the experimenter will inform participants on the test 
process, objectives, and instructions. All participants were tested 
in a quiet room. We positioned a comfortable and stable chair in 
front of display with touch screen function. After the participants 
were seated, the experimenter assisted will adjust their posture to 
maintain an approximate distance of 30 cm between their upper 
body and the display. Participants were asked to draw a clock at 
11:10 with the fingertips of their right index finger, and the test was 
limited to 3 min. If a participant took longer than 3 min to 
complete the task, they were deemed to have failed the protocol 
and were excluded from further analysis. The dynamic trajectory 
of the dCDT is shown in Figure 1B.

2.4 Statistical analysis

All statistical analyses were performed using the Universal 
Data Analysis Software SPSS 26.0 package. We  conducted a 
comparative analysis of the data from the NC, AD-MCI, PD-MCI, 
and PD-NC groups. Count data were compared between groups 
using chi-square test. Measurement information conforming to 
the normal distribution was expressed as mean ± standard 
deviation (x ± s), and one-way Analysis of Variance (ANOVA) was 
used to compare the differences between multiple groups, and 

FIGURE 4

Graphical representation of the executive function digital biomarkers (2).
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when there was a difference, the least significant difference (LSD) 
method was used for one-to-one comparisons used for pairwise 
comparisons between groups. Measurement data conforming to 
the skewed distribution were expressed as median (interquartile 
spacing), and the Kruskal-Wallis H test was used to compare the 
differences between multiple groups, and multiple comparisons 
between groups were performed. When differences existed, the 
Bonferroni method was used to compare each comparison group 
individually (differences were compared by corrected p-values). 
Additionally, we stratified the AD-MCI and PD-MCI groups by 
educational attainment and conducted comparative analyses 
specifically within the higher education subgroup (years of 
education ≥12 years). Continuous variables with normal 
distributions were presented as mean ± standard deviation (x ± s), 
and intergroup differences were compared using independent 
samples t-tests. For continuous variables with skewed 
distributions, data were expressed as median (interquartile 
spacing) and analyzed using Mann–Whitney U tests. Qualitative 
information was expressed as a rate (%). We used a binary logistic 
regression model to plot the receiver operating characteristic 
curve (ROC) and determined the accuracy of distinguishing 
between different populations for individual digital biomarkers 
and multiple combined digital biomarkers by comparing the area 
under the roc curve (AUC). In conducting correlation analyses 
between digital biomarkers and the Montreal Cognitive 
Assessment (MoCA) total scores with selected subdomain scores, 
Pearson linear correlation analysis was applied when both 
continuous variables exhibited normal distributions. For 
non-normally distributed variables, Spearman rank correlation 
analysis was utilized. p < 0.05 was considered to indicate a 
statistically significant difference.

3 Results

3.1 Demographic and clinical 
characteristics

The effective sample size of this study was 161, including 
40 AD-MCI patients, 40 PD-MCI patients, 41 PD-NC patients, and 
40 normal cognitive controls. They were included in the AD-MCI 
group, PD-MCI group, PD-NC group, and NC group, respectively. 
We  analyzed the difference in baseline data of the four groups, 
including age, gender, years of education, MMSE, MOCA, and 
MDS-UPDRS III of the participants in the four groups, and the results 
of demographic difference analysis for each group are shown in 
Table 4.

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were 
no statistical differences in age (p = 0.470, degree of freedom 
[df] = 3), gender (p = 0.617, df = 3), or years of education 
(p = 0.942, df = 3). However, there were statistical differences in 
MMSE (p < 0.001, df = 3) and MoCA (p < 0.001, df = 3). In the NC 
and AD-MCI groups, there were statistical differences in MMSE 
(p < 0.001) and MoCA (p < 0.001). In the NC and PD-MCI groups, 
there were statistical differences in MMSE (p < 0.001), MoCA 
(p < 0.001) and MDS-UPDRS III (p < 0.001). In the NC and 
PD-NC groups, there were no statistical differences in MMSE 
(p = 0.425) and MoCA (p = 1.000). There were statistical 
differences in MDS-UPDRS III (p < 0.001). In the AD-MCI and 
PD-MCI groups, there were no statistical differences in MMSE 
(p = 1.000) and MoCA (p = 1.000). In the PD-MCI and PD-NC 
groups, there were statistical differences in MMSE (p < 0.001) and 
MoCA (p < 0.001). There were no statistical differences in 
MDS-UPDRS III (p = 1.000). In the AD-MCI and PD-NC groups, 

TABLE 4 The results of demographic difference analysis for each group.

NC 
(n = 40)

AD-MCI 
(n = 40)

PD-MCI 
(n = 40)

PD-NC 
(n = 41)

NC vs. 
AD-
MCI

NC vs. 
PD-
MCI

NC vs. 
PD-
NC

AD-
MCI 
vs. 

PD-
MCI

PD-
MCI 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
NC

NC vs. 
AD-

MCI vs. 
PD-

MCI vs. 
PD-NC

Corrected p value
p 

value, 
df

Age, years 61.00 (15.25) 65.50 (13.00) 66.00 (12.00) 65.00 (9.00) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.470, 3

Sex (female/

male)
22/18 21/19 21/19 17/24 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.617, 3

Years of 

education
12.00 (6.00) 12.00 (6.00) 12.00 (0.00) 12.00 (3.50) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.942, 3

MMSE 29.00 (2.00) 25.50 (2.00) 26.00 (2.75) 28.00 (1.50) <0.001 <0.001 0.425 1.000 <0.001 <0.001 <0.001, 3

MoCA 25.00 (3.00) 22.00 (3.00) 21.00 (4.75) 25.00 (1.00) <0.001 <0.001 1.000 1.000 <0.001 <0.001 <0.001, 3

MDS-

UPDRS III
4.00 (2.00) / 19.50 (12.75) 16.00 (8.00) / <0.001 <0.001 / 1.000 / /

Because there were no MDS-UPDRS III data for AD-MCI, the NC, PD-MCI, and PD-NC groups were compared in the comparison of differences between multiple groups (p < 0.001, df = 2). 
Highlighting significant p-values (p < 0.05) in bold.
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC), p-values (p), degree of freedom (df), Minimum Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale III (MDS-UPDRS III).
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there were statistical differences in MMSE (p < 0.001), MoCA 
(p < 0.001).

3.2 Analysis of digital biomarkers

We analyzed the differences in digital biomarkers in the NC, 
AD-MCI, PD-MCI and PD-NC groups. The results of the differential 
analysis of digital biomarkers for each group are shown in Table 5.

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were 
statistical differences in Task Performance of Overall Drawing Score 

(VFDB1) (p < 0.001, df = 3), Task Performance of Numbers Drawing 
Score (VFDB2) (p = 0.002, df = 3), Task Performance of Clock Hands 
Drawing Score (VFDB4) (p = 0.005, df = 3), Task Completion Time 
(EFDB1) (p < 0.001, df = 3), Total Drawing Pause Time (EFDB2) 
(p < 0.001, df = 3), Initial Drawing Pause Time (EFDB3) (p = 0.019, 
df = 3), Total Drawing Process Pause Time (EFDB4) (p < 0.001, df = 3), 
Maximum of Drawing Process Pause Time (EFDB5) (p < 0.001, 
df = 3), Average of Drawing Process Pause Time (EFDB6) (p < 0.001, 
df = 3), Number of Pauses during Drawing (EFDB7) (p < 0.001, 
df = 3), Drawing Time (EFDB8) (p < 0.001, df = 3), Number of Draws 
(EFDB9) (p = 0.029, df = 3), Efficiency of Drawing (EFDB10) (p = 0.002, 

TABLE 5 The results of the differential analysis of digital biomarkers for each group.

NC 
(n = 40)

AD-MCI 
(n = 40)

PD-MCI 
(n = 40)

PD-NC 
(n = 41)

NC 
vs. 

AD-
MCI

NC 
vs. 

PD-
MCI

NC 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
MCI

PD-
MCI 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
NC

NC vs. 
AD-
MCI 
vs. 

PD-
MCI 
vs. 

PD-
NC

Corrected p value
p 

value, 
df, F*

Visuospatial function digital biomarkers

VFDB1 3.00 (1.00) 2.00 (1.00) 2.00 (1.75) 2.00 (1.50) <0.001 0.001 0.004 1.000 1.000 1.000 <0.001, 3

VFDB2 1.00 (0.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.002 0.012 0.069 1.000 1.000 1.000 0.002, 3

VFDB3 1.00 (1.00) 0.50 (1.00) 1.00 (1.00) 0.00 (1.00) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.244

VFDB4 1.00 (0.00) 0.50 (1.00) 0.00 (1.00) 1.00 (1.00) 0.019 0.009 0.096 1.000 1.000 1.000 0.005, 3

Executive function digital biomarkers

EFDB1 39.61 (19.48) 44.64 (34.12) 75.92 (43.03) 50.33 (24.33) 0.789 <0.001 0.056 <0.001 0.002 1.000 <0.001, 3

EFDB2 22.82 (15.34) 28.52 (27.84) 50.02 (38.63) 30.02 (20.43) 0.328 <0.001 0.141 0.001 0.002 1.000 <0.001, 3

EFDB3 3.61 (2.74) 3.30 (3.35) 5.95 (5.82) 6.08 (6.69) 1.000 0.096 0.491 0.056 1.000 0.317 0.019, 3

EFDB4 19.52 (14.39) 24.54 (27.67) 45.49 (38.53) 22.33 (14.96) 0.224 <0.001 1.000 0.003 <0.001 1.000 <0.001, 3

EFDB5 4.21 (5.80) 5.11 (9.30) 12.50 (15.59) 5.14 (4.81) 0.781 <0.001 1.000 0.034 0.016 1.000 <0.001, 3

EFDB6 0.79 (0.61) 0.87 (0.61) 1.44 (1.20) 0.87 (0.45) 1.000 <0.001 1.000 0.001 <0.001 1.000 <0.001, 3

EFDB7 43.00 (35.00) 44.50 (64.00) 76.00 (87.00) 72.00 (199.00) 1.000 <0.001 0.006 0.030 1.000 0.356 <0.001, 3

EFDB8 16.42 (7.44) 13.92 (7.23) 22.79 (9.06) 17.64 (8.60) 1.000 <0.001 0.201 <0.001 0.148 0.005 <0.001, 3

EFDB9 24.00 (5.75) 26.50 (10.75) 28.00 (12.00) 26.00 (6.50) 0.243 0.028 1.000 1.000 0.460 1.000 0.029, 3

EFDB10 0.40 ± 0.10 0.33 ± 0.12 0.32 ± 0.10 0.39 ± 0.12 0.005 0.001 0.570 0.662 0.007 0.023
0.002, 3, 

5.358

EFDB11

4702.75 

(1796.29)

5145.90 

(1414.18)

5323.38 

(1638.93)

5419.64 

(1169.04)
>0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.196

EFDB12 756.60 ± 306.98 867.75 ± 396.20 532.79 ± 274.22 610.86 ± 327.57 0.133 0.003 0.048 <0.001 0.288 0.001
<0.001, 3, 

8.258

EFDB13 268.05 (140.69) 307.53 (184.96) 171.28 (66.20) 207.13 (131.64) 1.000 <0.001 0.737 <0.001 0.017 0.025 <0.001, 3

EFDB14 71.71 (85.05) 118.16 (64.06) 92.10 (71.93) 91.91 (69.28) 0.004 1.000 1.000 0.034 1.000 0.030 0.003, 3

* means that when a numerical biomarker satisfies a normal distribution, its F-value will be listed. Highlighting significant p-values (p < 0.05) in bold.
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC), p-values (p), degree of freedom (df), F-values (F), Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task 
Performance of Outline Drawing Score (VFDB3), Task Performance of Clock Hands Drawing Score (VFDB4), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Initial 
Drawing Pause Time (EFDB3), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of 
Pauses during Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws (EFDB9), Efficiency of Drawing (EFDB10), Length of Drawn Line (EFDB11), Initial Drawing Speed (EFDB12), 
Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).
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df = 3, F = 5.358), Initial Drawing Speed (EFDB12) (p < 0.001, df = 3, 
F = 8.258), Average of Drawing Speed (EFDB13) (p < 0.001, df = 3) and 
Variability of Drawing Speed (EFDB14) (p = 0.003, df = 3).

In the NC and AD-MCI groups, Task Performance of Overall 
Drawing Score (VFDB1), Task Performance of Numbers Drawing Score 
(VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), 
and Efficiency of Drawing (EFDB10) were significantly lower in the 
AD-MCI group than in the NC group, whereas the Variability of 
Drawing Speed (EFDB14) was significantly higher in the AD-MCI group 
than in the NC group.

In the NC and PD-MCI groups, Task Completion Time (EFDB1), 
Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time 
(EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average 
of Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), and Number of Draws 
(EFDB9) were significantly higher in the PD-MCI group than in the NC 
group. In contrast, Task Performance of Overall Drawing Score (VFDB1), 
Task Performance of Numbers Drawing Score (VFDB2), Task 
Performance of Clock Hands Drawing Score (VFDB4), Efficiency of 
Drawing (EFDB10), Initial Drawing Speed (EFDB12), and average speed 
of drawing in the Average of Drawing Speed (EFDB13) were significantly 
lower in the PD-MCI group than in the NC group.

In the NC and PD-NC groups, Task Performance of Overall 
Drawing Score (VFDB1) and Initial Drawing Speed (EFDB12) were 
significantly lower in the PD-NC group than in the NC group, whereas 
Number of Pauses during Drawing (EFDB7) was significantly higher in 
the PD-NC group than in the NC group.

In the AD-MCI and PD-MCI groups, Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of 
Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were 
significantly higher in the PD-MCI groups than in the AD-MCI group. 
In contrast, Initial Drawing Speed (EFDB12), Average of Drawing Speed 
(EFDB13), and Variability of Drawing Speed (EFDB14) were significantly 
lower in the PD-MCI group than in the AD-MCI group.

In the PD-MCI and PD-NC groups, Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), and Average of Drawing Process Pause Time (EFDB6) were 
significantly higher in the PD-MCI group than in the PD-NC group. 
Efficiency of Drawing (EFDB10), and Average of Drawing Speed (EFDB13) 
were significantly lower in the PD-MCI group than in the PD-NC group.

In the AD-MCI and PD-NC groups, Drawing Time (EFDB8) and 
Efficiency of Drawing (EFDB10) were significantly smaller in the 
AD-MCI group than in the PD-NC group, whereas Initial Drawing 
Speed (EFDB12), Average of Drawing Speed (EFDB13), and Variability of 
Drawing Speed (EFDB14) were significantly larger in the AD-MCI group 
than in the PD-NC group.

3.3 Correlation analyses between digital 
biomarkers and MoCA

We further investigated statistically significant digital biomarkers 
across the NC, AD-MCI, PD-MCI, and PD-NC groups, specifically 
focusing on: Performance of Overall Drawing Score (VFDB1), Task 
Performance of Numbers Drawing Score (VFDB2), Task Performance 

of Clock Hands Drawing Score (VFDB4), Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Initial Drawing Pause 
Time (EFDB3), Total Drawing Process Pause Time (EFDB4), 
Maximum of Drawing Process Pause Time (EFDB5), Average of 
Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws 
(EFDB9), Efficiency of Drawing (EFDB10), Initial Drawing Speed 
(EFDB12), Average of Drawing Speed (EFDB13) and Variability of 
Drawing Speed (EFDB14). Non-parametric correlations with MoCA 
total scores and [visuospatial/executive] subtest score were computed 
using Spearman rank correlation analysis, given non-normal 
distribution of both variables in all analyzed pairs, as detailed in 
Table 6.

Among them, Performance of Overall Drawing Score (VFDB1) 
correlated positively with the total MoCA score (Spearman rank 
correlation coefficient [R] = 0.312, p < 0.001) and the [visuospatial/
executive] subtest score (R = 0.472, p < 0.001). Task Performance of 
Numbers Drawing Score (VFDB2) correlated positively with the total 
MoCA score (R = 0.258, p = 0.001) and the [visuospatial/executive] 
subtest score (R = 0.394, p < 0.001). Task Performance of Clock Hands 
Drawing Score (VFDB4) correlated positively with the total MoCA 
score (R = 0.307, p < 0.001) and the [visuospatial/executive] subtest 
score (R = 0.456, p < 0.001). Task Completion Time (EFDB1) 

TABLE 6 Correlation coefficients of digital biomarkers with MoCA total 
scores and [visuospatial/executive] subtest score.

Digital 
biomarkers

MoCA score [Visuospatial/
executive] subtest 

score in MoCA

R p R p

VFDB1 0.312 <0.001 0.472 <0.001

VFDB2 0.258 0.001 0.394 <0.001

VFDB4 0.307 <0.001 0.456 <0.001

EFDB1 −0.318 <0.001 −0.262 0.001

EFDB2 −0.343 <0.001 −0.295 <0.001

EFDB3 −0.036 0.653 −0.119 0.133

EFDB4 −0.384 <0.001 −0.327 <0.001

EFDB5 −0.298 <0.001 −0.270 <0.001

EFDB6 −0.321 <0.001 −0.231 0.003

EFDB7 −0.164 0.038 −0.092 0.247

EFDB8 −0.072 0.367 −0.066 0.404

EFDB9 −0.257 0.001 −0.265 0.001

EFDB10 0.331 <0.001 0.292 <0.001

EFDB12 −0.071 0.368 −0.035 0.655

EFDB13 0.122 0.122 0.090 0.255

EFDB14 −0.290 <0.001 −0.232 0.003

Highlighting significant p-values (p < 0.05) in bold.
Montreal Cognitive Assessment (MoCA), Spearman rank correlation coefficient (R), p-
values (p), Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers 
Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Initial Drawing Pause Time 
(EFDB3), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws (EFDB9), Efficiency of 
Drawing (EFDB10), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), 
Variability of Drawing Speed (EFDB14).
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correlated negatively with the total MoCA score (R = −0.318, 
p < 0.001) and the [visuospatial/executive] subtest score (R = −0.262, 
p = 0.001). Total Drawing Pause Time (EFDB2) correlated negatively 
with the total MoCA score (R = −0.343, p < 0.001) and the 
[visuospatial/executive] subtest score (R = −0.295, p < 0.001). Total 
Drawing Process Pause Time (EFDB4) correlated negatively with the 
total MoCA score (R = −0.384, p < 0.001) and the [visuospatial/
executive] subtest score (R = −0.327, p < 0.001). Maximum of 
Drawing Process Pause Time (EFDB5) correlated negatively with the 
total MoCA score (R = −0.298, p < 0.001) and the [visuospatial/
executive] subtest score (R = −0.270, p < 0.001). Average of Drawing 
Process Pause Time (EFDB6) correlated negatively with the total 
MoCA score (R = −0.321, p < 0.001) and the [visuospatial/executive] 
subtest score (R = −0.231, p = 0.003). Number of Pauses during 
Drawing (EFDB7) correlated negatively with the total MoCA score 
(R = −0.164, p = 0.038). Number of Draws (EFDB9) correlated 
negatively with the total MoCA score (R = −0.257, p = 0.001) and the 
[visuospatial/executive] subtest score (R = −0.265, p = 0.001). 
Efficiency of Drawing (EFDB10) correlated positively with the total 
MoCA score (R = 0.331, p < 0.001) and the [visuospatial/executive] 
subtest score (R = 0.292, p < 0.001). Variability of Drawing Speed 
(EFDB14) correlated negatively with the total MoCA score (R = −0.290, 
p < 0.001) and the [visuospatial/executive] subtest score (R = −0.232, 
p = 0.003).

3.4 Extraction of digital biomarkers of 
cognitive function and analysis of the ROC 
curve

We screened 10 digital biomarkers with intergroup variability in 
AD-MCI and PD-MCI groups. Since the AD-MCI and PD-MCI 
groups differed in cognitive and motor function, these digital 
biomarkers may have included both digital biomarkers of cognitive 
function associated with cognitive impairment and digital biomarkers 
of motor function associated with motor impairment. Given that the 
central goal of this study was to investigate the variability in cognitive 
function between AD-MCI and PD-MCI populations on the clock 
drawing test, these 10 digital biomarkers were further screened to 
exclude motor function differences from interfering with cognitive 
function variability in subsequent analyses.

The 10 digital biomarkers with intergroup variability in the 
AD-MCI and PD-MCI groups were listed below: Task Completion 
Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing 
Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), 
Number of Pauses during Drawing (EFDB7), and Drawing Time 
(EFDB8), Initial Drawing Speed (EFDB12), Average of Drawing Speed 
(EFDB13) and Variability of Drawing Speed (EFDB14).

In the PD-MCI and PD-NC groups, there was no statistically 
significant difference in MDS-UPDRS Part III scores between the two 
groups, indicating that there were no differences in motor function 
and only differences in cognitive function between the two groups. 
Therefore, the 7 digital biomarkers of intergroup variability in 
PD-MCI and PD-NC groups were digital biomarkers of cognitive 
function characterizing cognitive function. These included: Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 

Pause Time (EFDB5), and Average of Drawing Process Pause Time 
(EFDB6), Efficiency of Drawing (EFDB10), and Average of Drawing 
Speed (EFDB13).

In the PD-NC and NC groups, there were only differences in 
motor function between the PD-NC and NC groups, the three 
indicators of intergroup variability in the PD-NC and NC groups 
were digital biomarkers of motor function characterizing motor 
function, including Task Performance of Overall Drawing Score 
(VFDB1), Number of Pauses during Drawing (EFDB7) and Initial 
Drawing Speed (EFDB12).

To identify digital biomarkers that could characterize cognitive 
function in the AD-MCI and PD-MCI groups, we  plotted Venn 
diagrams, the Venn diagram of digital biomarkers is shown in Figure 5.

In Figure  5, we  found no overlap in digital biomarkers of 
cognitive function between PD-MCI and PD-NC groups, or in 
digital biomarkers of motor function between NC and PD-NC 
groups. This indicates that biomarkers identified in the PD-MCI 
and PD-NC groups accurately reflect cognitive function, while 
those in the NC and PD-NC groups accurately reflect motor 
function. Finally, we identified six digital biomarkers of cognitive 
function that could accurately characterize AD-MCI and PD-MCI 
populations as follows:

Task Completion Time (EFDB1), Total Drawing Pause Time 
(EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of 
Drawing Process Pause Time (EFDB5), Average of Drawing Process 
Pause Time (EFDB6), and Average of Drawing Speed (EFDB13).

Subsequently, we plotted ROC curves to assess the ability of digital 
biomarkers to differentiate the AD-MCI group from the PD-MCI group. 
The combined AUC of the six digital biomarkers of cognitive function 
was 0.923, 95% confidence interval (CI) = 0.876–0.983, which was only 
slightly lower than the combined AUC of the 10 digital biomarkers with 
intergroup variability (AUC = 0.929, 95% CI: 0.866–0.908). The ROC 
curves and 95% CI of the combined digital biomarkers that differentiate 
the AD-MCI and PD-MCI groups are shown in Figure 6.

3.5 Differential analysis and ROC analysis 
of digital biomarkers of cognitive function 
in highly educated individuals in the 
AD-MCI and PD-MCI groups

Considering that there was an effect of literacy on cognitive 
functioning, we  screened highly educated individuals (years of 
education ≥12 years) in the AD-MCI and PD-MCI groups and 
divided them into AD-MCI1 and PD-MCI1 groups for differential 
analyses of demographic and numerical biomarkers. Among them, 
age (p = 0.348, t = 0.947), sex (p = 0.535), years of education 
(p = 0.368), and MMSE (p = 0.500) were not statistically different. 
MoCA (p = 0.047) was statistically different. Digital biomarkers 
included only the above obtained digital biomarkers of cognitive 
function. In particular, Task Completion Time (EFDB1) (p < 0.001), 
Total Drawing Pause Time (EFDB2) (p < 0.001), Total Drawing 
Process Pause Time (EFDB4) (p = 0.001), Maximum of Drawing 
Process Pause Time (EFDB5) (p = 0.026), Average of Drawing Process 
Pause Time (EFDB6) (p = 0.001), and Average of Drawing Speed 
(EFDB13) (p < 0.001, t = 6.038) were statistically different. The results 
of the differential analysis of demography and digital biomarkers of 
cognitive function are shown in Tables 7, 8.
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Subsequently, we plotted ROC curves to assess the ability of the 
digital biomarkers to distinguish the AD-MCI1 group from the 
PD-MCI1 group. The joint AUC of the above six statistically 
preexisting digital biomarkers of cognitive function was 0.968, 
CI = 0.927–1.000. The ROC curves and 95% CI for the combined 
digital biomarkers to differentiate the AD-MCI1 group from the 
PD-MCI1 group are shown in Figure 7.

4 Discussion

In this study, we proposed the research hypothesis that AD-MCI 
and PD-MCI populations exhibit different cognitive functioning 
characteristics on the dCDT, and that the two populations can 
be effectively distinguished based on this characteristic. Based on this 
hypothesis, we  designed the dCDT to characterize and quantify 

FIGURE 5

Venn diagram of digital biomarkers. The cognitive functions digital biomarkers in the red boxes that can distinguish between AD-MCI and PD-MCI. 
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), 
Parkinson’s disease with normal cognition (PD-NC), Task Performance of Overall Drawing Score (VFDB1), Task Completion Time (EFDB1), Total Drawing 
Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause 
Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), 
Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).

FIGURE 6

ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI and PD-MCI groups. Area under the roc curve (AUC), confidence 
interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), 
Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).
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differences in cognitive functioning between AD-MCI and PD-MCI 
populations at a fine-grained level. We extracted statistically different 
digital biomarkers between AD-MCI, PD-MCI, PD-NC and NC 
groups, respectively. The digital biomarkers were differentiated in 
terms of motor and cognitive functions, and ultimately six digital 
biomarkers of cognitive functions were screened from the AD-MCI 
and PD-MCI groups. The combined AUC of six digital biomarkers for 
distinguishing between AD-MCI and PD-MCI groups could 
reach 0.923.

As a multistep cognitive function assessment tool that integrates 
certain sequences, the clock drawing test necessitates the synergy of 
multiple cognitive and motor functions like executive functions and 
visuospatial abilities (Müller et  al., 2017). Specifically, during the 
clock-drawing process, as the participants touches the screen to draw 
the clock, their executive functions like executive control and cognitive 
dexterity become dominant. This dynamic process can be accurately 

characterized by digital biomarkers like drawing duration, speed, and 
efficiency (Dion et  al., 2020). In addition, the clock-drawing test 
demands that participants to draw circular or near-circular outline 
and correctly place the numerals as well as the clock hands. These 
details assess participants’ visuospatial cognitive abilities, characterized 
by digital biomarkers like the outline scores, numbers scores, and 
hand-drawing scores (Davoudi et al., 2020). Thus, by synthesizing and 
analyzing digital biomarkers from the dCDT, participants’ cognitive 
and motor performance in complex tasks can be finely characterized.

First, the results of this study showed that Initial Drawing Speed 
(EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing 
Speed (EFDB14) were significantly lower in the PD-MCI group than 
the AD-MCI group. These results were consistent with those of Saur 
(Saur et al., 2012). Previous studies have shown that PD-MCI patients 
have more severe impairments in executive functioning than AD-MCI 
patients. Moreover, executive dysfunction, which is the most 
characteristic cognitive impairment in PD-MCI patients, is closely 
related to impaired integrity of the frontal-striatal loop (van den 
Heuvel et al., 2013). In contrast to the pattern of cognitive impairment 
in PD-MCI patients, the pattern of cognitive decline in AD-MCI 
patients was primarily associated with cortical involvement in the 
hippocampus and medial temporal lobe (Li et al., 2022). Executive 
dysfunction significantly affects patients’ social behavior, making it the 
most common clinical complaint. This was usually manifested as a 
greater difficulty in completing daily and routine tasks. Additionally, 
the impairment of executive functioning was particularly prominent 
when performing complex tasks that required the integration of 
multiple sequential steps (Blair, 2016). Therefore, in the dCDT, the 
executive functions of PD-MCI patients may be  more severely 
impaired than those of AD-MCI patients, resulting in significantly 
slower Average of Drawing Speed (EFDB13).

In addition, our findings showed that Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), Number 
of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were 
significantly higher in the PD-MCI groups than in the AD-MCI 
group. This suggested that PD-MCI patients have more significant 
deficits in executive ability than AD-MCI patients.

Whereas the PD-MCI and AD-MCI groups showed differential 
digital biomarkers on the clock drawing test, which may have resulted 
from cognitive differences or motor differences between them. The 
aim was to further explore and identify digital biomarkers to 
accurately characterize cognitive functioning differences in the clock 
drawing test between AD-MCI and PD-MCI populations. 
We separately compared cognitive functioning differences between 
the PD-MCI and PD-NC groups (no statistically significant difference 
in MDS-UPDRS-III motor scores between the two groups) and 
between PD-NC and NC groups (no statistically significant difference 
in MMSE and MoCA scores between the two groups). This was done 
with the objective to identifying digital biomarkers of cognitive 
function that could accurately differentiate between the PD-MCI and 
AD-MCI group.

In the PD-MCI and PD-NC groups, there were only differences 
in cognitive function between the two groups, so digital biomarkers 
that were significantly different between the two groups can 
be considered digital biomarkers of cognitive function characterizing 
cognitive function differences. Among the digital biomarkers, Task 

TABLE 7 Results of demographic difference analysis between the AD-
MCI1 and PD-MCI1 groups.

AD-MCI1 
(n = 28)

PD-MCI1 
(n = 31)

p value, t*

Age, years 66.39 ± 6.68 64.58 ± 7.88 0.348, 0.947

Sex (female/

male)
14/14 18/13 0.535

Years of 

education
12.00 (3.00) 12.00 (3.00) 0.368

MMSE 26.00 (2.00) 26.00 (3.00) 0.500

MoCA 22.00 (3.75) 21.00 (5.00) 0.047

* means when variables satisfy a normal distribution using an independent samples t-test, 
p-values and t-values will be presented.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), participants with years of education ≥ 12 years in the 
AD-MCI group (AD-MCI1), participants with years of education ≥ 12 years in the AD-MCI 
group (PD-MCI1), p-values (p), t-values (t), Minimum Mental State Examination (MMSE), 
Montreal Cognitive Assessment (MoCA).

TABLE 8 Results of the differential analysis of digital biomarkers of 
cognitive function between the AD-MCI1 and PD-MCI1 groups.

Digital 
biomarkers of 
cognitive 
function

AD-MCI1 
(n = 28)

PD-MCI1 
(n = 31)

p value, 
t*

EFDB1 42.89 (28.84) 73.14 (40.38) <0.001

EFDB2 25.15 (23.35) 48.07 (37.34) <0.001

EFDB4 21.19 (21.91) 42.45 (35.31) 0.001

EFDB5 4.78 (10.58) 10.34 (13.12) 0.026

EFDB6 0.85 (0.53) 1.40 (1.17) 0.001

EFDB13 321.55 ± 115.14 180.21 ± 48.05
<0.001, 

6.038

* means when variables satisfy a normal distribution using an independent samples t-test, 
p-values and t-values will be presented. Highlighting significant p-values (p < 0.05) in bold.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), participants with years of education ≥ 12 years in the 
AD-MCI group (AD-MCI1), participants with years of education ≥ 12 years in the AD-MCI 
group (PD-MCI1), p-values (p), t-values (t), Task Completion Time (EFDB1), Total Drawing 
Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Average of 
Drawing Speed (EFDB13).
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Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 
Pause Time (EFDB5), and Average of Drawing Process Pause Time 
(EFDB6) were significantly higher in the PD-MCI group than in the 
PD-NC group. Efficiency of Drawing (EFDB10), and Average of 
Drawing Speed (EFDB13) were significantly lower in PD-MCI group 
than in PD-NC group. These findings were largely consistent with 
Cosgrove et al. and together revealed significant deficits in executive 
function in PD-MCI patients (Cosgrove et al., 2021). These results 
further validated that digital biomarkers like pause duration and 
drawing speed effectively capture executive function deficits.

In the PD-NC and NC groups, digital biomarkers that were 
significantly different between the two groups can be  considered 
digital biomarkers of motor function that characterize motor function, 
since there were only differences in motor function between the two 
groups. The results of the study showed that the PD-NC group had a 
significantly higher Number of Pauses during Drawing (EFDB7) and 
slower Initial Drawing Speed (EFDB12) compared to the NC group. 
This difference may be  related to motor retardation and reduced 
motor control in PD-NC populations.

Based on the above findings of the PD-MCI and AD-MCI groups, 
the PD-MCI and PD-NC groups, and the PD-NC and NC groups, as 
well as the cascading relationships between the three groups of digital 
biomarkers, we finally identified six digital biomarkers of cognitive 
function that were able to accurately reflect the differences in cognitive 
function between AD-MCI and PD-MCI populations. These 6 digital 
biomarkers of cognitive function include: Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), and 
Average of Drawing Speed (EFDB13). The combined efficacy of these 
six digital biomarkers of cognitive function in distinguishing between 
AD-MCI patients and PD-MCI patients was up to 0.923, which 
further confirms that there are indeed differences in cognitive 

function between the AD-MCI populations and the PD-MCI 
populations in the clock-drawing test, and that by using these digital 
biomarkers of cognitive function, we can more accurately differentiate 
between the two populations. At the same time, considering the 
influence of literacy on cognitive function, we performed differential 
and ROC analyses of digital biomarkers of cognitive function in 
highly educated individuals in both AD-MCI and PD-MCI groups 
(given that the total sample size of the low-education group was too 
small, no analysis was performed). Six statistically significant digital 
biomarkers of cognitive function were finally screened, and their joint 
warning AUC was 0.968, which was higher than the original joint 
warning AUC = 0.923, suggesting that the results of this study were to 
some extent influenced by literacy. Therefore, future studies still need 
to include more groups with different literacy levels to clarify the 
extent to which literacy influences this study.

In addition, the differential results of the NC and AD-MCI 
groups, the NC and PD-MCI groups, and the AD-MCI and PD-NC 
groups in the dCDT were investigated. In comparisons between the 
AD-MCI and NC groups, we found that Task Performance of Overall 
Drawing Score (VFDB1), Task Performance of Numbers Drawing 
Score (VFDB2), Task Performance of Clock Hands Drawing Score 
(VFDB4), and Efficiency of Drawing (EFDB10) were significantly lower 
in the AD-MCI group than in the NC group, whereas the Variability 
of Drawing Speed (EFDB14) was significantly higher in the AD-MCI 
group than in the NC group. Significant deficits in executive function 
and visuospatial abilities were confirmed in AD-MCI patients.

In the NC and the PD-MCI groups, we  found that Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 
Pause Time (EFDB5), Average of Drawing Process Pause Time 
(EFDB6), Number of Pauses during Drawing (EFDB7), Drawing Time 
(EFDB8), and Number of Draws (EFDB9) were significantly higher in 
the PD-MCI group than in the NC group. In contrast, Task 
Performance of Overall Drawing Score (VFDB1), Task Performance of 

FIGURE 7

ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI1 and PD-MCI1 groups. Area under the roc curve (AUC), confidence 
interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Average of Drawing Speed (EFDB13).
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Numbers Drawing Score (VFDB2), Task Performance of Clock Hands 
Drawing Score (VFDB4), Efficiency of Drawing (EFDB10), Initial 
Drawing Speed (EFDB12), and average speed of drawing in the Average 
of Drawing Speed (EFDB13) were significantly lower in the PD-MCI 
group than in the NC group. These findings confirmed the significant 
deficits in visuospatial and executive functions in patients 
with PD-MCI.

In the AD-MCI and the PD-NC groups, we found that Initial 
Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), and 
Variability of Drawing Speed (EFDB14) were significantly larger in the 
AD-MCI group than in the PD-NC group. This showed that AD-MCI 
group were significantly faster than the PD-NC group, suggesting 
cognitive decline in AD-MCI and decreased fine motor control in 
PD-NC. Variability of Drawing Speed (EFDB14) illustrated the stability 
of participants’ drawing speed, and we suggest that AD-MCI may 
be less stable than PD-MCI under cognitive task (Montero-Odasso 
et al., 2014).

To further demonstrate that the above digital biomarkers 
characterize cognitive functions well, we  performed a correlation 
analysis between the digital biomarkers and the MoCA scale. 
Performance of Overall Drawing Score (VFDB1), Task Performance of 
Numbers Drawing Score (VFDB2), Task Performance of Clock Hands 
Drawing Score (VFDB4) and Efficiency of Drawing (EFDB10) were 
positively correlated with the MoCA scale as well as the [visuospatial/
executive] subtest score; Task Completion Time (EFDB1), Total 
Drawing Pause Time (EFDB2), Total Drawing Process Pause Time 
(EFDB4), Maximum of Drawing Process Pause Time (EFDB5), 
Number of Pauses during Drawing (EFDB7), Number of Draws 
(EFDB9) and Variability of Drawing Speed (EFDB14) were negatively 
correlated with the MoCA scale as well as with the [visuospatial/
executive] subtest score. The results suggested that the above 
mentioned digital biomarkers can better characterize visuospatial and 
executive functions, providing a new tool for early screening and 
dynamic monitoring of cognitive impairment.

The effects of Parkinson’s disease (PD) drugs on motor function 
and cognitive processing speed are complex. It was suggested that 
decreased processing speed in PD patients is associated with 
abnormalities in the caudate nucleus, and that drugs may affect these 
regions (Price et al., 2016). There were also studies that mentioned the 
effects of dopamine medications on executive function and error 
processing, such as abnormal ERN waves, which might affect cognitive 
control (Seer et al., 2017; Yang et al., 2017). However, some studies 
have also found that processing speed is associated with reduced 
FDOPA uptake in the caudate nucleus, and medication may not fully 
restore this function (Pal et al., 2016). Most of the patients included in 
this study used medication, but were in OFF medication at the time 
of testing, which reduced the drug’s effect to some extent.

Compared to previous studies, the main innovation of this study 
is that digital biomarkers that can accurately characterize participants’ 
cognitive functions were extracted through the dCDT, thus providing 
a fine-grained quantification of participants’ cognitive functioning 
characteristics during task execution. Moreover, this dCDT 
demonstrated a good discriminatory ability to distinguish between 
AD-MCI and PD-MCI populations. Although previous studies also 
used digital clock drawing tests to differentiate AD patients from PD 
patients/PD-MCI patients, these studies had significant limitations, 
such as a single dimension of extracted metrics, low discriminatory 
efficacy, and a limited sample size (Allone et al., 2018). In contrast, the 

dCDT proposed in this study not only had higher accuracy, but also 
significantly improved assessment efficiency, which could 
be  completed in just 3 min, much less than the time-consuming 
traditional scale assessment methods. Therefore, the dCDT proposed 
in this study was high objectivity, accuracy and efficiency, with 
potential for in-depth research and wide dissemination, and was 
relatively unaffected by race, culture and language compared to 
neuropsychological scales such as MMSE, MoCA, and others (Kehl-
Floberg et al., 2023). In addition, compared to our team’s previous 
study (which demonstrated whether there was a difference in cognitive 
function between NC and AD-MCI through digital biomarkers), this 
study built on pre-existing algorithms to differentiate between 
different types of cognitive dysfunction (AD-MCI and PD-MCI) 
through digital biomarkers. Therefore, the dCDT proposed in this 
study, which was highly objective, less time-consuming, had good 
replication potential in densely populated communities, and provided 
a new approach to differentiate between AD-MCI and PD-MCI using 
digital biomarkers in initial community screening.

However, this study also presents some limitations. First, the 
effective sample size included in this study was 161 cases, and all were 
from a single medical center, potentially limiting the generalizability 
of the findings to the overall AD-MCI and PD-MCI populations. To 
overcome this limitation, future research aims to conduct a multicenter 
study and increase the sample size, enhancing the accuracy and 
generalizability of the study results. Second, potential confounders 
such as gender and cognitive drugs (e.g., dopaminergic treatments in 
PD patients), which are limited by the design of the study and scope 
of data collection, have not been systematically addressed and may 
have biased trial results. Third, the dimensions of the digital 
biomarkers explored in this study are limited, and future research will 
explore additional dimensions such as pressure, orientation, 
acceleration, angular velocity, and delving into the medical 
mechanisms and potential associations with blood biomarkers or 
imaging biomarkers. Meanwhile, the dCDT designed in this study is 
primarily suited for early warning and screening of cognitive disorders, 
but for diagnostic use in AD-MCI and PD-MCI, further integration 
with multidimensional data (such as Aβ-PET, MMSE, MoCA) is 
required. However, it is hoped that the diagnosis of AD-MCI and 
PD-MCI may be achieved by dCDT alone at a later stage as more data 
are recorded and combined with large model technology. Finally, this 
study is currently limited to a cross-sectional study due to research 
conditions. In order to verify the validity and reliability of the dCDT 
more comprehensively, future research will involve longitudinal studies.

5 Conclusion

In summary, we  proposed the research hypothesis that 
AD-MCI and PD-MCI populations exhibit different cognitive 
functioning characteristics in the digital clock drawing test, and 
that based on this characteristic, we can effectively differentiate 
between these two populations. Based on this hypothesis, 
we  designed the dCDT, extracted digital biomarkers that can 
characterize participants’ cognitive functions, and quantified 
participants’ task-wide cognitive function characteristics at a fine-
grained level, revealing differences in cognitive functions between 
AD-MCI populations and PD-MCI populations. After clinical 
validation, the AUC of digital biomarkers of cognitive function in 
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distinguishing between AD-MCI and PD-MCI populations was up 
to 0.923, and the method provided a favorable reference for early 
diagnosis, treatment and prevention of dementia development in 
AD-MCI and PD-MCI populations.
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SUPPLEMENTARY FIGURE 1

Participant screening process. Normal cognition (NC), Mild cognitive 
impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC).

SUPPLEMENTARY FIGURE 2

The calculation of Task Performance Calculation of Clock Hands Drawing 
Score(VFDB4). Φ was the classification network.
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