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Background: Eye-tracking technology has proven to be a valuable tool in

detecting visual scanning patterns associated with autism spectrum disorder

(ASD). Its advantages in easily obtaining reliable measures of social attention

could help overcome many of the current challenges in the assessment of

neurodevelopmental disorders. However, the clinical use of this technology

has not yet been established. Two key challenges must be addressed: the

difficulty in reliably distinguishing between disorders with overlapping features,

and the efficient management of eye-tracking data to yield clinically meaningful

outcomes.

Purpose: The aim of this study is to apply explainable machine learning (XML)

algorithms to eye-tracking data from social attention tasks involving children

with ASD, developmental language disorder (DLD), and typical development

(TD), in order to assess classification accuracy and identify the variables that

best differentiate between groups.

Methods: Ninety-three children participated in a visual preference task that

paired social and non-social stimuli, specifically designed to capture features

characteristic of ASD. Participants were distributed across three groups: ASD

(n = 24), DLD (n = 25), and TD (n = 44). Eye-tracking data were used to generate

four datasets, which were then analyzed using XML algorithms to evaluate the

accuracy of group classification across all possible combinations.

Results: The model achieved an F1-score of 0.912 in distinguishing DLD

from TD, 0.86 for ASD vs. TD, and 0.88 for the combined ASD+DLD group

vs. TD. Performance was moderate for ASD vs. DLD, with an F1-score of

0.63. The most informative areas of interest were those broadly grouping

social and non-social stimuli, while more specific variables did not improve

classification accuracy. Naive Bayes and Logistic Model Trees (LMT) emerged

as the most effective algorithms in this study. The resulting model enabled the
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identification of potential disorder-specific markers, such as the mean duration

of visits to objects.

Conclusion: These findings highlight the potential of applying XML techniques

to eye-tracking data collected through tasks designed to capture features

characteristic of neurodevelopmental conditions. They also underscore the

clinical relevance of such approaches for identifying the variables and

parameters that differentiate between disorders.

KEYWORDS

explainable machine learning, autism spectrum disorder, developmental language
disorder, eye-tracking, differential diagnosis, computer-aided diagnosis

1 Introduction

1.1 Neurodevelopmental disorder
characteristics

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder (NDD) defined by the presence of persistent deficits in
social interaction and communication across multiple contexts,
and repetitive and restrictive patterns of behaviors, interests,
and activities (American Psychiatric Association [APA], 2022).
An early diagnosis is essential to apply efficient interventions,
but, at the same time, it is a challenge at 2 or 3 years of age
because the behavioral repertoire is still very restricted, above all
in oral language. There is another NDD that shares communicative
impairments with ASD – developmental language disorder (DLD)
(American Psychiatric Association [APA], 2022), also known as
specific language impairment or language disorder. DLD is a
developmental condition characterized by severe and persistent
deficits in the acquisition or use of language, with a great impact on
individuals’ daily functioning (American Psychiatric Association
[APA], 2022; Bishop et al., 2016, 2017; World Health Organization
[WHO], 2019). DLD affects communication and secondarily social
skills and emotional development (Aguilar-Mediavilla et al., 2022).
Communicative impairments are a characteristic shared between
DLD and ASD, and it makes the differential diagnosis difficult at
early ages (Bishop, 2010; Vacas et al., 2021a).

The most recent estimated prevalence of DLD ranges from
7.58% in children aged 5–6 years in the United Kingdom (Norbury
et al., 2016), to 6.4% in 10-year-old children in Australia (Calder
et al., 2022), and 8.5% in Mandarin-speaking children aged 5–6
years (Wu et al., 2023). This prevalence is nearly seven times higher
than that of ASD. While the global prevalence of ASD has been
estimated at approximately 1% (Brugha et al., 2012; Zeidan et al.,
2022), considerable regional variability has been reported, with
rates reaching 2.23% in the USA (Maenner et al., 2023), 0.36% in
Asia (Qiu et al., 2020), and 0.7% in China (Zhou et al., 2020). These
variations likely reflect differences in diagnostic criteria, sampling
methods, and sociocultural factors. Despite these prevalence rates,
research on DLD remains limited (McGregor, 2020), and even less
on ASD and DLD jointly. However, both disorders have different
severities and prognoses (McGregor, 2020) and require applying
different supports for children and families. All this makes it

necessary to have instruments for early differential diagnostics
(Bishop et al., 2016; Georgiou and Spanoudis, 2021; Rice, 2016;
Vacas et al., 2021b, 2022a; Weismer, 2013).

ASD and DLD have been considered different conditions, with
language difficulties well-differentiated in each disorder. However,
the wide heterogeneity of both profiles, in language, autistic traits,
and social behavior (Bishop, 2000; Bishop and Norbury, 2002;
Conti-Ramsden et al., 2006), has raised the issue of the unclear
boundaries between these disorders. In this context, a differential
visual scanning pattern with social and non-social objects may help
to distinguish between conditions (Vacas et al., 2021c, 2024).

1.2 Eye-tracking for neurodevelopmental
disorders screening

Using eye movement-based markers as screening tests for ASD
is yielding highly encouraging outcomes. This may be partly due to
the fact that eye-tracking provides a direct and sensitive measure
of gaze behavior during visual stimulus processing (Mastergeorge
et al., 2021). Thus, most studies in the field have aimed to
distinguish between individuals with typical development and
those with an ASD diagnosis or risk, while to a lesser extent
incorporating comparisons with other clinical groups (e.g., DLD)
to establish a differential diagnosis. However, the main challenge
in clinical practice arises from the early differential diagnosis of
disorders that share similar characteristics, like with ASD and DLD.
Eye-tracking has been used in research on NDDs, especially with
ASD but less with DLD (Vacas et al., 2022a).

Another challenge in employing eye-tracking methodology
for NDD screening is the use of diverse tasks and measurements
of a wide range of eye-tracking parameters and variables,
significantly complicating comparisons across different studies.
Presented stimuli can be static or dynamic, singular or multiple
simultaneously, social or objects, displaying emotions or
not, etc.; and the participant’s elicited response may vary
from passive observation to more complex engagement such
as emotion recognition, situational interpretation, or even
interaction (Mastergeorge et al., 2021; Setien-Ramos et al.,
2023). These procedural differences have implications for results,
interpretations, and the selection of the most suitable procedures
and metrics as specific markers for distinct NDDs, a task yet
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to be fully addressed (Vacas et al., 2022a). Studies that facilitate
comparisons across different disorders can assist in identifying
eye-tracking variables, stimuli, and tasks that best differentiate
between these disorders and elucidate the affected processes
underlying such visual behavior (Vacas et al., 2024).

1.3 Machine learning for
neurodevelopmental disorders screening

Machine learning (ML) techniques have emerged as valuable
tools in research on the assessment and diagnosis of NDD (Moreau
et al., 2023); its main advantage over traditional methods is
its ability to process large volumes of heterogeneous data and
detect latent patterns that are not evident through conventional
analysis. Nevertheless, their direct application in clinical practice
still remains limited. Recent studies have implemented ML for the
analysis of data from the Autism Diagnostic Observation Schedule
(ADOS), achieving accurate differentiation between individuals
with ASD and those with typical development (TD), with AUC
(area under the curve) values of 0.95 for Module 3 and 0.93
for Module 2 (Levy et al., 2017), and accuracy values of 0.89
for children/younger adolescents (Kamp-Becker et al., 2021).
Similarly, ML techniques have been applied to distinguish between
ASD and attention-deficit/hyperactivity disorder (ADHD), using
data from the Social Responsiveness Scale (SRS), resulting in
significant improvements in classification (Duda et al., 2016).
Nevertheless, these approaches do not eliminate the need for
neuropsychological testing, which requires a substantial time
investment and specialized training. For this reason, it is essential
to continue gathering data to apply ML algorithms, with the aim
of progressively reducing reliance on neuropsychological testing
while maintaining or even improving the accuracy of profile
classification.

In addition to the use of clinical instrument data, ML
applications have been explored with data obtained from
electroencephalography and magnetic resonance imaging,
optimizing feature selection and diagnostic classification
(Arbabshirani et al., 2017; Heinsfeld et al., 2017; Levy et al., 2017;
Mazumdar et al., 2021; Rahman et al., 2020). These methodologies
have shown potential for identifying specific biomarkers associated
with ASD, although their clinical applicability is still in preliminary
stages. Less common applications include the use of data from
linguistic productions (Kato et al., 2024; Parikh et al., 2019) and
genetic analyses (Nahas et al., 2024).

The integration of multimodal data -including behavioral,
clinical, neuroimaging, and genetic features- has become
increasingly common in recent years to improve the screening and
diagnosis of NDDs (Bone et al., 2016; Levy et al., 2017; Lombardo
et al., 2019; Wang et al., 2024).

Given the potential of ML to handle large volumes of data,
combining ML with eye-tracking methodology is particularly
valuable, especially for extracting complex visual exploration
patterns related to specific NDDs. For example, recent studies
have demonstrated that gaze behavior, when analyzed with ML
techniques, can reveal complex, nonlinear markers associated with
autism spectrum disorder and cognitive development (Wang et al.,
2023; Wei et al., 2023; Zhou et al., 2023). This approach can enhance

diagnostic accuracy and screening (Kollias et al., 2021). These
studies, along with broader reviews such as Moreau et al. (2023),
highlight the ongoing shift toward multimodal, dynamic, and
interpretable ML applications in neurodevelopmental screening.

Typically, the use of ML in addressing NDDs has focused
on comparing ASD with TD, while only a few studies have
compared different NDD groups with each other. This aspect
increases the risk of bias in studies by overestimating the accuracy
of assessment or classification, as it reduces the symptom overlap
that exists between different disorders (Whiting et al., 2011).
Additionally, a differential diagnosis of NDDs that share similar
symptoms is often very challenging, especially at early ages when
the range of behaviors is limited. Again, gaps are observed in the
characterization, early identification, and differentiation of NDDs,
making it necessary to continue research to meet the demands of
clinical practice.

Within ML technology, and to leverage the benefits of using
ML in NDDs, different types of algorithms can be employed. In this
study, given the nature of the problem, we focused on classification-
oriented algorithms. In this way, a predictive model was generated
to classify the participants of the study into different diagnostic
groups (TD, ASD, and DLD). Besides looking for a good model,
this work pursued the objective of studying which eye-tracking
group of variables (dataset) better differentiated participants based
on their diagnosis. Datasets were designed with more or fewer
variables, and with different types of information about ocular
behavior (parameters) and type of stimulus (objects or faces,
emotions, specific areas of the face such as the mouth and eyes).
These datasets were specifically constructed to capture differences
in visual attention to social and non-social stimuli, considering
parameters and stimulus identified in the literature as sensitive to
variations in gaze behavior across NDDs (Jónsdóttir et al., 2023;
Polzer et al., 2024; Sasson and Touchstone, 2014), and metrics such
as fixation duration, fixation count, and latency to first fixation
have been shown to effectively distinguish between individuals with
ASD, DLD and TD (Setien-Ramos et al., 2023; Vacas et al., 2024).

1.4 Algorithms of explainable artificial
intelligent

In mental health, different artificial intelligence (AI) models,
such as explainable AI (XAI) and “black box” approaches, are
being used. These “black box” approaches often involve deep
learning models, such as multilayer neural networks, which have
been applied to neurodevelopmental screening using neuroimaging
(Heinsfeld et al., 2017), speech analysis (Parikh et al., 2019)
and health administrative data (Dick et al., 2025). These models
do not provide direct insight into how or why a specific
classification is made. Although both types of algorithms aim
to maximize classification accuracy, XAI models provide a
transparent interpretation of the variables that influence model
decisions (Joyce et al., 2023; Sangwan, 2024). This capability is
crucial in neuropsychology, as it allows for the identification of
which behavioral variables or neuropsychological responses are
modulating the models predictions. In this study, XAI algorithms
were used to comprehensively analyze the parameters that
differentiated between various clinical groups, fostering a better
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understanding of the underlying processes and their potential
application in clinical contexts. Especially interesting was the
possibility to test models that may be interpretable by experts.

The XAI-based algorithms have different approaches; some
are based on popular decision trees, rule sets, or probabilistic
functions, etc. In this study, inherently interpretable algorithms
such as Naive Bayes, RIPPER, One Rule, PART, C4.5 (J48),
and Logistic Model Tree (LMT) were selected due to their
ability to provide directly understandable explanations. Unlike
black-box models, whose decision-making processes are opaque
and require post hoc explanation tools such as SHAP (SHapley
Additive exPlanations; Lundberg and Lee, 2017) or LIME (Local
Interpretable Model-agnostic Explanations; Ribeiro et al., 2016) to
decompose their predictions, interpretable models present decision
rules, tree structures, or probabilistic relationships that can be easily
understood and validated by experts (Molnar, 2022). While black-
box models often achieve higher accuracy in complex scenarios,
their interpretability is partial and depends on the faithfulness of
the generated explanations, which can be problematic in clinical
or educational contexts where transparency and traceability of
decisions are essential (Hassija et al., 2023).

Furthermore, we included two groups of disorders (ASD and
DLD), as well as a TD group, with the objective of analyzing
classification accuracy for different combinations of disorders. In
addition, the eye-tracking protocol used for data collection was
designed while considering the specific characteristics of social
attention in individuals with ASD.

Thus, the main objective of this study was to explore
and select the most efficient XML algorithms to distinguish
between TD, ASD, and DLD samples, using eye-tracking data
in order to assist clinicians in making decisions. To pursue
this general goal, we pursued three specific objectives: (1) study
which dataset (with more or fewer variables) is the most useful
for generating explainable classification models; (2) determine
which dataset better differentiates participants based on their
diagnosis; and (3) analyse which ML model generates the
best results for each comparison, identifying the characteristics
(eye-tracking metrics) that are determinant in discriminating
between groups of participants, and ensuring these models are
interpretable by experts.

2 Materials and methods

This study involved two phases: (1) sample recruitment, task
performance, and data transformation, and (2) ML algorithm-
testing.

2.1 Phase 1: sample recruitment, task
performance, and data transformation

2.1.1 Participants
The sample in this study consisted of 93 young children aged

between 32 and 74 months (M = 53.51; SD = 10.6), who were
divided into three groups according to their diagnosis: (1) TD
group (n = 44), (2) ASD group (n = 24), and (3) DLD group (n = 25).
Both clinical groups (ASD and DLD) were recruited from centers

of early childhood intervention in province of Córdoba (Spain).
Inclusion criteria for these groups comprised: (1) the adscription
to an early childhood intervention center; (2) a formal diagnosis of
ASD or DLD assessed by a licensed, experienced team of clinicians,
following the guidelines of the international diagnostic manuals
(DSM-5, American Psychiatric Association [APA], 2022; and ICD-
11, World Health Organization [WHO], 2019) and the protocol
of the Infant Mental Health program at a community mental
health service; and 3) the absence of any comorbid condition,
which was confirmed by the professionals from the early childhood
intervention center. Conversely, TD participants were recruited
from a public school in the same province. Inclusion criteria in this
case comprised: (1) the absence of any developmental condition or
formal diagnosis of NDD either now or in the past, and (2) the
chronological age matching with both clinical groups.

Participants’ features appear in Table 1. We defined our groups
in terms of age, gender, basic attention (percentage of fixations
during the eye-tracking task, which is an indicator of the ability
of participants to fulfill the requirements to complete the task),
and the level of receptive vocabulary, measured with the Peabody
Picture Vocabulary Test-Third Edition (PPVT-III) (Dunn and
Dunn, 1997).

As Table 1 shows, the groups did not differ in age, but they did
regarding the other variables. Post-hoc tests revealed that the TD
group displayed more basic attention compared with both clinical
groups (p < 0.001, in both cases) and all groups showed differences
regarding the PPVT-III Standard Score (TD-ASD: p = 0.02; TD-
DLD: p < 0.001; ASD–DLD: p = 0.016). Finally, the groups also
differed in terms of gender, with the TD group having an equal
proportion of boys and girls, while the clinical groups only included
two girls each. This difference in sex rate was in line with most
reports, indicating that these disorders are more prevalent in male
than female populations (American Psychiatric Association [APA],
2022; Pérez-Crespo et al., 2019).

This study was approved by the Research Ethics Committee
of Córdoba (Spain). Following the principles of the Declaration
of Helsinki drafted by the WHO, families of all participants
were informed of the purpose of the study and the assessment

TABLE 1 Sample features.

TD
(n = 44)

ASD
(n = 24)

DLD
(n = 25)

M (SD) M (SD) M (SD) F(2,90) P

Age
(months)

53.23
(10.04)

53.50
(10.35)

54 (12.14) .041 0.959

Basic
attention

87.09
(11.62)

73.50
(12.66)

73.08
(15.21)

13.23 <0.01**

PPVT-
III
standard
score

108.75
(10.82)

98.65
(12.05)

86.57
(18.90)

19.56 <0.01**

N n N χ2 P

Gender 22/22 22/2 23/2 20.15 <0.01**

Age, basic attention, and PPVT-III Standard Score variables were tested with ANOVA.
Gender was analyzed with chi-square testing. Significance levels: ***p < 0.001; **p < 0.01;
and *p < 0.05.
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procedures, and they were asked to give written informed consent
to authorize their children to take part in this study.

2.1.2 Apparatus and stimuli
The Tobii X2-30 remote eye-tracker (Tobii Technology AB,

Stockholm, Sweden) was used to perform the eye-tracking function
at a sampling rate of 30 Hz with a spatial accuracy of 36◦. The
device belongs to the category of screen-based eye-trackers. It was
conveniently placed at the bottom of a 15” laptop screen.

Stimuli were presented with the Tobii Studio software and a 9-
point calibration, with an animated stimulus as target. Stimuli were
designed following the eye-tracking paired preferences paradigm,
which consists of pairing social and non-social images to assess
visual attention patterns for faces and objects used in the eye-
gaze literature (Sasson and Touchstone, 2014; Vacas et al., 2021c).
Faces displaying three different emotions (happiness, anger, and
neutral) were paired with two types of objects [related to autistic
circumscribed interests (CIOs) and unrelated to them (non-CIOs)]
in each trial. Six experimental conditions were repeated six times,
using different facial identities (36 trials in total, see Figure 1).
The gender of the faces and their location on the screen were
counterbalanced to avoid the potential effects of both variables.
The facial images were taken from the Amsterdam Dynamic Facial
Expression Set (ADFES; Van der Schalk et al., 2011) and were paired
with images of objects (CIOs and non-CIOs). These images were
taken either from the Pixabay website,1 free of copyright under
the Creative Commons CC0 license, or from our own creation.
Selection criteria for CIOs were based on previous studies (Sasson
et al., 2008; Sasson and Touchstone, 2014; South et al., 2005). CIOs
belonged to the categories of blocks, means of transport, animals,
puzzles, and toys, while non-CIOs were clothes, plants, musical
instruments, school materials, tools, and furniture (see Figure 2).

2.1.3 Task performance procedure
The participants were assessed in their natural environment

(their referential center of early childhood intervention for
participants with ADS/DLD, and their schools for TD participants),
using a quiet room without distraction. First, participants were

1 https://pixabay.com/es/

FIGURE 1

Sequence of stimuli presented in each trial to the study participants.
The facial images were taken from the Amsterdam Dynamic Facial
Expression Set (ADFES; Van der Schalk et al., 2011).

seated at a deemed distance of 60 cm from the laptop with
the eye-tracker, which displayed the paired preference task. They
were given no other instruction but to look at the screen. After
calibration, the task consisted of visualizing the set of 36 slides
showing one face and one object for a total time of 3.6 min (5
s per slide). Prior to the presentation of each slide, participants
viewed an animated fixation point for 1 s to drive their attention
to the center of the screen (see Figure 1). After the eye-tracking
task, receptive vocabulary was assessed with the PPTV-III (Dunn
and Dunn, 1997). After completing the assessment session, all
participants received a gift as a reward.

2.1.4 Data transformation
This study aimed to identify the characteristics (eye-tracking

metrics) that are determinant in discriminating between groups
of children. To do so, the eye-tracking software allows one to
create areas of interest (AOIs) to provide data only about the
most relevant elements of the stimuli. The selection of AOIs was
guided by aspects that have been shown to differ in individuals
with ASD, such as emotion processing (Polzer et al., 2024; Vacas
et al., 2022b), facial scanning patterns—particularly attention to
the eyes and mouth—(Jónsdóttir et al., 2023); and the type of
object especially whether it is associated with the circumscribed
interests commonly observed in autism (Sasson and Touchstone,
2014; Vacas et al., 2021c). In this study, we defined five prior
AOIs: (1) happy faces, (2) angry faces, (3) neutral faces, (4)
CIOs, and (5) non-CIOs. For each emotional face, we designed
two additional AOIs (one for the eyes and another one for the
mouth), and we also created two extra AOIs for the total of
faces and objects. This resulted in 13 AOIs (happy face, happy
eyes, happy mouth, angry face, angry eyes, angry mouth, neutral
face, neutral eyes, neutral mouth, CIO, non-CIO, total faces, total
objects).

On the other hand, Tobii Studio provides information about
10 eye-tracking raw metrics: (1) time to first fixation (TFF);
(2) fixations before (FB); (3) first fixation duration (FFD); (4)
fixation duration (FD); (5) total fixation duration (TFD); (6)
fixation count (FC); (7) visit duration (VD); (8) total visit duration
(TVD); (9) visit count (VC); and (10) percentage fixated (PF).
Additionally, we created two extra eye-tracking metrics to assess
the proportion of fixation duration on each AOI (PFD) and the
meantime per visit (TPV) by dividing TVD/VC. This resulted in
12 eye-tracking metrics. Figure 2 presents a heatmap displaying
the FD metric for a specific stimulus across different participant
groups.

The combination of the eye-tracking metrics for each AOI
yielded a total of 156 variables. To determine which of these
variables are truly necessary to achieve the highest classification
accuracy in distinguishing between groups (ADS, DLD, and TD),
they were organized into four datasets based on their level of
specificity, to be tested with the algorithms. (1) “basic variables,”
comprising all metrics regarding the AOIs of total faces and total
objects (24 variables); (2) “prior variables,” which involved all
metrics regarding the AOIs of happy faces, angry faces, neutral
faces, CIOs, and non-CIOs (60 variables); (3) “secondary variables,”
including all metrics regarding the AOIs of eyes and mouth in each
emotional face (72 variables); and (4) “full variables,” with the 156
eye-tracking variables plus two sociodemographic variables (gender
and age) (158 variables).
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FIGURE 2

Examples of stimuli and heatmaps for the ASD, DLD, and TD groups. (A) Example stimulus pairing a happy face and a CIO. (B) Example stimulus
pairing an angry face and a non-CIO. (C,D) Heatmaps of the ASD group performance. (E,F) Heatmaps of the DLD group performance. (G,H)
Heatmaps of the TD group performance. The facial images were taken from the Amsterdam Dynamic Facial Expression Set (ADFES; Van der Schalk
et al., 2011).

2.2 Phase 2: ML algorithm testing

Following the objective of obtaining results that allow for the
interpretation of the obtained model’s outcomes, we selected and
tested the following XML algorithms:

Naive Bayes: Naive Bayes (Domingos and Pazzani, 1997) is
a probabilistic method, which, as its name suggests, is based
on the calculation of the Bayes theorem, which calculates the a
posteriori probability, that is, the membership of new patterns
to a class, based exclusively on previous observations. Thus, the
probability calculated with Equation 1, and therefore the label and
the corresponding class of a new data, is given by the class with
maximum probability:

P(yn|a1 aj) = P(yn) ·

j∏
i=1

P(ai|yn) (1)

Let P(yn|a1 aj) be the probability of belonging to the class,
considering all its attributes {a1 . . . aj}; n: number of classes; j:
total number of attributes; P(yn), the probability of an instance to
belong to the class;

∏j
i=1 P(ai|yn), the conditional probability of

ai attribute, given the class yn.
Ripper: Ripper stands for repeated incremental pruning to

produce error reduction, or in short, the RIPPER (Cohen, 1995)

algorithm, which is an iterative method based on the generation
of a model based on interpretable rules. RIPPER is an algorithm
designed to be able to find a specific set of rules to classify with
higher accuracy the classes that have a smaller number of samples.
The general operation consists of iterating each class, starting from
the minority to the majority, and for each of them dividing the
training set into two, one pruning and one growth. Each rule grows
in conditions until there are no more samples of a class in the
growth set or the generated rules that provide an error greater than
50%. After this, the rules are optimized by choosing those that have
a minimum value in the decision length (DL) metric. Once the set
of rules has been obtained, those that increase the DL metric are
eliminated (Equation 2).

DL(H, D) = DL(H)+ DL(D|H) (2)

where H is the set of rules, D is the training dataset, DL(H)
represents the length of the encoded rule set, and DL(D| H) is the
cost of encoding the misclassified examples.

One Rule: One Rule (OneR) (Holte, 1993) is an algorithm that
generates concrete rules for a given feature. It is an extremely
simplified algorithm in which all rules will have only one single
feature. Therefore, the set of rules is defined by rules in which
all have in common a single attribute that discriminates between
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classes. Because of the way it works, it is necessary that the
characteristics that identify the different subjects are discretized or
categorized.

To generate the rules around a single feature, the algorithm
iterates over all the features in the training set and for each value of
each of the features the specific samples that have that feature, and
its associated class label is obtained. Once all the labels have been
obtained, the majority class is considered to be the one in which the
label count for that class is the maximum. The remaining samples
that do not correspond to that feature are considered errors, so that
for each feature, the total error for a given value is the sum of these
errors. After calculating all the errors, the feature that best separates
the data into the different classes is the one for which the sum of the
errors of its possible values is minimum (Equation 3).

ŷ(x) = arg max P (c|xj = v) (3)

where:

xj is the variable selected as the best according to OneR,

v is the value of xj in the example x,

c is the class,

P(c|xj = v) is the proportion of class c

observed in the training set for that value v.

Partial Decision Trees: The partial decision tree (PART) algorithm
(Frank and Witten, 1998) is a method that, like the previously
described RIPPER, is a rule-induction method. Like RIPPER, it
follows the “divide and conquer philosophy“ to generate rules, with
the difference that the rules are organized hierarchically into a tree
structure. This method, unlike C4.5 and RIPPER, avoids complex
optimization steps or adjustments to modify individual rules in the
rule set. To limit the deep growth of the tree (depth levels nested
in the rules), a pruning step is performed to simplify the generated
tree.

This method uses (like C4.5) the entropy metric to perform the
divisions of the tree branches. In this way, the set of examples is
divided into subsets and the sets are recursively subdivided into
branches until only leaf nodes remain. Once the level of leaf nodes
has been reached, it is checked whether the error that the subset of
the tree is greater or smaller than that estimated for the node. If it is
less, the subtree is simplified by directly generating a leaf node that
replaces the subtree (Equation 4).

Let R = {r1, r2, . . . , rm}be the set of generated rules. Each rule
the following form:

rk(x) =

{
ck, if Condk(x) = true,
not applicable, if Condk(x) = false,

(4)

where: ckis the class predicted by rule rk, Condk(x) is the logical
condition over the variables (e.g., x1 = 5 ∧ x3 = A). The final
prediction is:

ŷ(x) = cj, j = min{k | Condk(x) = true}

C4.5: C4.5 (Quinlan, 1993) is a method based on discrimination
between classes that generates a tree with two types of elements –
decision nodes and leaves. The decision nodes are the separations

that depend on the values of a certain attribute. The leaves represent
the label that corresponds to the data after following the path
traced by the different decision nodes. In this way, a tree is
generated where the decision nodes are generated, using the gain
of information provided by a particular attribute, this being the
one that best divides the data set in each decision. As in the OneR
method, the values corresponding to each characteristic of a sample
must be discrete values or must be discretized in a stage prior to the
generation of the tree.

The operation of the algorithm follows a recursive process,
where if after performing divisions based on the gain of the
information all the methods belong to the same class, then a
leaf node is generated. Otherwise, the information gain for each
attribute is calculated and new decision nodes are generated with
the attribute with the highest information gain (Equation 5).

Entropy(S) = −
m∑

i=1

pilog2pi (5)

where:

m = number of classes,

pi = proportion of examples in S that belong to class i.

Logistic model trees: Although decision trees are usually generated
in a hierarchical way and perform divisions using metrics such as
entropy or information gain, there are some models, like logistic
model trees (LMTs) (Landwehr et al., 2005), that perform logistic
regressions mixed with decision trees to classify the different
data. Specifically, LMTs follow a similar tree-structure that divides
into leaves and decision nodes, like C4.5. The main difference is
that, while in C4.5 each leaf node represents the class label that
corresponds to a piece of data, in LMTs, each leaf node is a logistic
regression.

The division of the tree into decision nodes and leaf nodes is
performed with the LogitBoost algorithm (Friedman et al., 2000),
so that a root node is generated that divides the set into two groups.
Each subgroup is divided again with the same algorithm until the
divisions are only leaf nodes or a stop criterion is reached, such as
the information gain being less than a certain value. At each split
node is where a logistic regression is performed to determine the
path for the tree to follow (Equation 6).

ŷ(x) = σ(β
(l)
0 +

p∑
j=1

β
(l)
j xj) (6)

where:

l = index of the leaf where x falls in the tree,

β
(l)
j = coefficients of the logistic model in leaf l,

σ(z) =
1

1+ e−z = sigmoid function,

p = number of predictors.

In binary classification, class 1 is predicted if ŷ(x) = 0.5; otherwise,
class 0 is predicted.
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2.2.1 Description of dataset partitions
The eye-tracking task was carried out with 93 participants

(Table 1), and for each participant four datasets were obtained:
“full variables” (158), “basic variables” (24), “prior variables”
(60), and “secondary variables” (72) (see Procedure: Task
Performance). For each of these datasets and to analyze the
performance of the classification algorithms, a partitioning of the
data was performed, using a stratified five-folds methodology.
With this methodology, each algorithm trains with a small
subset of the data (four-fold) and tries to predict data that
it has not seen in the training phase with another subset of
the data (one-fold). To summarize the performance of the
different algorithms, the F1-Score (Van Rijsbergen, 1979) metric
is used because it is a commonly used metric in ML that
incorporates “precision” (Manning et al., 2008) and “recall”
(Manning et al., 2008) metrics in its calculation. F1-Scores
range from 0 to 1, where 0.0–0.5 is poor performance (low
precision and/or recall); 0.5–0.7 is moderate performance
(model is improving but not optimal); 0.8–0.9 is good
performance (with some room for improvement); and 0.9–
1.0 is excellent performance (nearly perfect precision and
recall).

As shown in Equation 7, precision and recall were defined as
follows:

Precision =
TP

TP + FP
;Recall =

TP
TP + FN

(7)

where:
TPs (true positives) represent the number of elements of the

positive class correctly classified by the model.
FPs (false positives) represent the number of elements of the

negative class classified as positive class by the model.
FNs (false negatives) represent the number of elements of the

positive class classified as negative class by the model.
An F1-Score is the weighted average of precision and recall, and

it takes both FPs and FNs into account. This metric is calculated,
following (Equation 8):

F1−Score = 2 ·
Precision · Recall

Precisión+ Recall
(8)

Additionally, to the 5-fold partitions, the above-mentioned
datasets were divided into five different scenarios in

which different between group comparisons were tested
(TD–ASD–DLD, TD–ASD, TD–DLD, ASD–DLD, TD–
Disorder). To achieve this, a stepwise analysis of the
results was required, comparing the various group
combinations across the four datasets and applying the six
selected algorithms.

3 Results

To achieve specific objectives, each comparison of groups will
be described in a separate subsection.

3.1 Split for comparison between the TD,
ASD, and DLD groups

The aim of this first test was to study the behavior of the
different algorithms with four datasets in the classification of the
three groups of participants. The F1-Score results are shown in
Table 2.

Table 2 shows values above 0.7 in some cases. The best
algorithms (above 0.7) were for LMTs with full and basic variables,
together with the Naive Bayes algorithm for full and prior variables.
The best overall result was achieved with the Naive Bayes algorithm
with the prior variables (0.724).

3.2 Split for comparison between the TD
and ASD groups

The aim of this second test was to study the behavior of
the different algorithms in the classification of the TD group
versus the ASD group of participants. The results appear in
Table 3.

Table 3 shows values above 0.8 in most cases, except for the
prior variables. On average, the best-performing algorithms were
Naive Bayes and LMTs, and the best dataset was basic variables.
The best overall result for the dataset and algorithm combination
was obtained for the LMT algorithm with the basic variables
(0.867).

TABLE 2 F1-Score for the TD, ASD, and DLD groups per the four datasets across algorithms.

Five-folds Full variables Basic variables Prior variables Secondary
variables

Mean

Naive Bayes 0.712 0.695 0.724 0.613 0.686

Ripper 0.553 0.614 0.590 0.579 0.584

One rule 0.543 0.622 0.511 0.533 0.552

PART 0.511 0.586 0.552 0.541 0.548

C4.5 (J48) 0.591 0.591 0.600 0.564 0.587

LMT 0.715 0.716 0.667 0.624 0.681

Mean 0.604 0.637 0.607 0.576 0.606

MAX 0.715 0.716 0.724 0.624

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an excellent performance.
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TABLE 3 F1-Score for the TD and ASD groups per the four datasets across algorithms.

Five-folds Full variables Basic variables Prior variables Secondary
variables

Mean

Naive Bayes 0.825 0.813 0.798 0.767 0.801

Ripper 0.690 0.839 0.690 0.789 0.752

One rule 0.683 0.811 0.796 0.719 0.752

PART 0.742 0.833 0.716 0.808 0.775

C4.5 (J48) 0.759 0.849 0.682 0.808 0.775

LMT 0.822 0.867 0.749 0.840 0.820

Mean 0.754 0.835 0.739 0.789 0.779

MAX 0.825 0.867 0.798 0.840

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an excellent performance.

TABLE 4 F1-Score for the TD and DLD groups per the four datasets across algorithms.

Five-folds Full variables Basic variables Prior variables Secondary
variables

Mean

Naive Bayes 0.912 0.824 0.854 0.871 0.865

Ripper 0.824 0.840 0.838 0.824 0.832

One rule 0.813 0.728 0.806 0.852 0.800

PART 0.806 0.840 0.785 0.840 0.818

C4.5 (J48) 0.803 0.882 0.812 0.809 0.827

LMT 0.812 0.912 0.855 0.856 0.859

Mean 0.828 0.838 0.825 0.842 0.833

MAX 0.912 0.912 0.855 0.871

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an excellent performance.

3.3 Split for comparison between the TD
and DLD groups

The aim of the third test was to study the behavior of the
different algorithms in the classification of the TD group versus the
DLD group. The results are shown in Table 4.

Table 4 shows F1-Score values above 0.8 in all cases except
one, even reaching values above 0.9. The overall best-performing
algorithms were Naive Bayes for the full set of variables
and LMTs for the basic variables, both reaching a value of
0.912.

3.4 Split for comparison between the
ASD and DLD groups

The aim of this fourth test was to study the behavior
of the different algorithms in the classification of
the two types of disorders. The results are shown in
Table 5.

In this case, the results were approximately 0.5, with some
of them around 0.6. Again, the best value of all was obtained
with the Naive Bayes algorithm, using the basic variables
(0.632).

3.5 Split for comparison between the TD
and disorder groups (ASD and DLD)

The aim of the fifth test was to study the behavior of the
different algorithms in the classification between the TD and
disorder groups. The disorder group was the union of the ASD and
DLD participants. The results are shown in Table 6.

Table 6 shows values close to 0.9 in most cases. The LMT
algorithm performed best across all datasets, particularly with the
basic variables, which yielded the highest value (0.881).

3.6 Selection of the best algorithms and
datasets for the compared groups

In summary, Table 7 shows the results of the algorithm and
dataset combinations that achieved the highest F1-Score values for
each comparison group.

In Table 7, in four out of five comparisons, the best results
were obtained with the basic variables dataset, and the LMT and
Naive Bayes algorithms achieved the same top results. Moreover,
the highest model accuracy was achieved when comparing the TD
versus DLD groups, although good accuracy was also obtained
when comparing the TD versus Disorder groups (ASD + DLD), as
well as TD versus ASD.
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TABLE 5 F1-Score for the ASD and DLD groups per the four datasets across algorithms.

Five-folds Full variables Basic variables Prior variables Secondary
variables

Mean

Naive Bayes 0.626 0.632 0.609 0.529 0.599

Ripper 0.508 0.611 0.427 0.506 0.513

One rule 0.444 0.522 0.408 0.540 0.479

PART 0.446 0.510 0.530 0.465 0.488

C4.5 (J48) 0.408 0.509 0.408 0.442 0.442

LMT 0.531 0.509 0.531 0.460 0.508

Mean 0.494 0.549 0.486 0.490 0.606

MAX 0.626 0.632 0.609 0.540

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an excellent performance.

TABLE 6 F1-Score for the TD and Disorder Groups (ASD and DLD) per the four datasets across algorithms.

Five-folds Full variables Basic variables Prior variables Secondary
variables

Mean

Naive Bayes 0.860 0.828 0.850 0.817 0.839

Ripper 0.785 0.807 0.771 0.785 0.787

One rule 0.697 0.828 0.697 0.750 0.743

PART 0.816 0.839 0.762 0.828 0.811

C4.5 (J48) 0.795 0.838 0.709 0.828 0.793

LMT 0.870 0.881 0.870 0.827 0.862

Mean 0.804 0.837 0.777 0.806 0.806

MAX 0.870 0.881 0.870 0.828

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an excellent performance.

3.7 Model

The main objective of this study was to explore and select the
most efficient XML algorithms to distinguish between TD, ASD,
and DLD samples, using eye-tracking data, to assist clinicians in
making decisions. Moreover, to analyze if XAI algorithms can help
clinicians explain the specific characteristics for each group, we
studied the model resulting from the learning of this algorithm.
The model obtained for the different group combinations using
the LMT algorithm through the full-variable dataset is presented
in Figure 3.

TABLE 7 Summary of findings.

Comparison
groups

Best
dataset

Best
algorithm

F1-
Score

TD vs. ASD vs. DLD Prior Naive Bayes 0.724

TD vs. ASD Basic LMT 0.867

TD vs. DLD Full/basic Naive
Bayes/LMT

0.912

ASD vs. DLD Basic Naive Bayes 0.632

TD vs. Disorders
(ASD + DLD)

Basic LMT 0.881

F1-Scores ranged from 0 to 1, where 0.0–0.5 was a poor performance; 0.5–0.7 was
a moderate performance; 0.7–0.9 was a good performance; and 0.9–1.0 was an
excellent performance.

Analyzing the model obtained with the DLD versus the TD
groups, we observed that it was a simple model in which, first,
we obtained a very simple tree with a single leaf node. Second, in
the leaf node we obtained a function in which only the variables
“gender,” “total fixation duration faces,” and “visit count faces” were
considered, which indicates that these were the most important
variables that would be the first examined. The same result with
the same variables was found in the comparison of the two disorder
groups (ASD + DLD) versus TD, unlike the model obtained with
the ASD versus the TD groups, which included an additional
eye-tracking variable specific to this comparison: “duration index
objects.”

4 Discussion

Here we analyze our conclusions while considering the specific
objectives of this study. Our first objective was determining which
dataset was the most useful for generating explainable classification
models, and the second was to identify which dataset better
differentiated participants based on their diagnosis. The best
classification results were achieved with the basic variables dataset,
which included all metrics related to the AOIs of total faces and
total objects, comprising only 24 of the 156 possible variables. Thus,
increasing the number of variables in the ML model by including
parameters from smaller AOIs, such as the mouth and eyes, or more
specific AOIs, such as emotion or object interests, did not improve
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FIGURE 3

Model obtained for the different group combinations, using the full variables dataset and the LMT algorithm.

the group classification results. Furthermore, our results suggest
that the essential features to be included in the dataset were eye-
tracking variables that captured differences between objects and
faces. This finding aligns with previous studies, where attention
to faces versus non-social stimuli is identified as a distinguishing
characteristic of ASD (Anderson et al., 2006; Pierce et al., 2011;
Vacas et al., 2021c, 2022a). On the other hand, although previous
studies have found differences in the exploration of facial regions
(Jónsdóttir et al., 2023) and facial emotional expressions (Polzer
et al., 2024; Vacas et al., 2022b) between ASD and TD, these
variables do not appear to be critical for the classification accuracy
achieved by the different algorithms.

To evaluate the performance of the obtained ML models,
comparisons were made between the different participant groups.
The results reflect good accuracy in distinguishing the disorder
groups (ASD and DLD) from the TD group, both individually
and combined. However, the accuracy was less satisfactory when
comparing the two disorder groups with each other (ASD vs.
DLD). These findings are consistent with the overlap in deficits
observed between both disorders (Félix et al., 2024). Furthermore,
given the limited number of studies comparing these NDDs in
terms of ocular behavior during social attention tasks (Vacas
et al., 2024), the results provide valuable insights into shared
characteristics of both disorders and confirm the challenges of
making a differential diagnosis at early ages. In conclusion, the eye-
tracking variables obtained from preference tasks (specifically the
basic variables related to object and face AOIs), combined with
ML algorithms, were effective in distinguishing disorder cases from
TD participants, although they did not differentiate between ASD
and DLDs. Perhaps the findings reported in previous studies, using
ML and eye-tracking data to classify ASD and TD groups (Kollias
et al., 2021), might have overestimated their accuracy because they
only included comparisons between ASD and TD groups, avoiding
comparisons with groups that share similar symptomatology.

Conversely, regarding our objective of analyzing which ML
model was more efficient in distinguishing between TD, ASD, and
DLD samples using eye-tracking data, both the LMT algorithm
and Naive Bayes performed significantly better in the various tests
conducted. Additionally, our objective included ensuring that the
information provided by the XLM algorithms could be interpreted
to explain the disorders and assist in decision-making in clinical
practice. In this regard, the analysis of the model generated by
the LMT algorithm (Figure 3) in the comparison of the different
groups provided more specific results than those obtained by
comparing different datasets. The XLM algorithms allow access
to information on the eye-tracking variables that determine case
classification among the various groups. The models generated by
the LMT algorithm showed that, to differentiate the ASD and DLD
groups from the TD group, the relevant eye-tracking variables were
Total Fixation Duration to Faces and Visit Count to Faces (both
lower in the disorder groups). Additionally, when comparing the
ASD group to the TD group, the specific variable added to the
previous variables was Duration Index to Objects. Perhaps both
disorders share common aspects regarding attention to faces —
less total fixation time and fewer visits to faces compared to their
TD counterparts. However, longer fixation duration on objects
was a distinctive marker of the ASD group, though it did not
emerge as a relevant variable in the ML models for the DLD or
TD groups. Longer fixation duration can be interpreted, from the
perspective of attentional processes, as a difficulty in disengaging
attention from objects. Previous studies had already indicated this
as a characteristic of ASD that may be a contributing factor to some
of the core features of autism, such as social interaction difficulties
(Landry and Bryson, 2004).

These results suggest important directions for future work,
including incorporate additional XML algorithms, such as Gradient
Boosting Trees and Explainable Boosting Machines (EBMs).
These algorithms represent a significant advancement in the
field of interpretable machine learning, as they combine strong
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predictive performance with accessible interpretability. In the
next phase of our research, we also intend to expand our
analytical framework by integrating multimodal data, combining
eye-tracking variables with additional behavioral, cognitive, or
neurophysiological measures. This integration could enhance both
the robustness and the clinical applicability of our models,
contributing to the development of effective and interpretable tools
for the differential diagnosis of neurodevelopmental disorders.

From this study, we recommend including different diagnostic
groups when applying ML algorithms to classify diagnostic
groups to avoid an overestimation bias in classification accuracy.
Additionally, the use of XLM algorithms is recommended, as they
allow access to information about the relevant variables that explain
the differences between groups and can aid in explaining the
disorder

One of the distinctive aspects of this study is the use of
data obtained through tasks specifically designed to capture
attentional patterns characteristic of children with autism. This
methodological decision aligns with the goal of advancing toward
differential diagnosis through the application of XML techniques.
The quality and specificity of the input data are key factors for both
the performance and interpretability of XML models.

This study had limitations, particularly regarding the scope of
the experiment and the sample size. Additionally, our diagnostic
tools could have been supplemented with further assessments.
However, ours were the only tools available at the time of the
research. Therefore, it is crucial to replicate this study, using
the most current behavioral assessments to ensure that future
research provides more accurate and up-to-date data. Moreover,
diagnoses at early ages are provisional and may evolve over time.
Consequently, our findings should be interpreted with caution.

5 Conclusion

Our findings are multifaceted. The accuracy achieved in
distinguishing participants with ASD and DLD from TD
participants was excellent to very good, while it was moderate
for differentiating between ASD and DLD, suggesting that the
approach is more effective as a screening tool than for differential
diagnosis. Notably, the most informative eye-tracking variables
were those that differentiated between social and non-social stimuli
in general; including additional variables with specific details of
the stimuli did not enhance accuracy. Furthermore, Naive Bayes
and LMT algorithms yielded models better tailored to our data and
objectives. Additionally, this study uncovered specific values for key
indices that may help identify distinct markers (e.g., Duration Index
to Objects) for each condition, moving closer to the development
of new tools that support early differential diagnoses. Overall,
ML has proven its utility in processing a large amount of data
generated from eye movement recordings and appears essential
for implementing intelligent systems. These systems can serve in
preliminary steps toward the implementation of computer-aided
diagnoses for NDDs like ASD and DLDs.
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